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Abstract

In this paper, we approach the problem of se-001
mantic search by framing the search task as002
paraphrase span detection, i.e. given a segment003
of text as a query phrase, the task is to identify004
its paraphrase in a given document, the same005
modelling setup as typically used in extractive006
question answering. On the Turku Paraphrase007
Corpus of 100,000 manually extracted Finnish008
paraphrase pairs including their original docu-009
ment context, we find that our paraphrase span010
detection model outperforms two strong re-011
trieval baselines (lexical similarity and BERT012
sentence embeddings) by 31.9pp and 22.4pp013
respectively in terms of exact match, and by014
22.3pp and 12.9pp in terms of token-level F-015
score. This demonstrates a strong advantage016
of modelling the task in terms of span retrieval,017
rather than sentence similarity. Additionally,018
we introduce a method for creating artificial019
paraphrase data through back-translation, suit-020
able for languages where manually annotated021
paraphrase resources for training the span de-022
tection model are not available.023

1 Introduction024

With the existence of large, pre-trained language025

models, such as BERT (Devlin et al., 2019),026

GPT (Radford et al., 2019), or T5 (Raffel et al.,027

2020), numerous NLP task requiring deep language028

understanding have recently gained promising re-029

sults. For example, in natural language inference030

and question answering such models have helped to031

substantially narrow down the gap between human032

and model performance (see e.g. Sun et al. (2021)033

or Raffel et al. (2020)). One task clearly requiring034

deep language understanding is semantic search,035

where the objective is to retrieve from a document036

those passages that match the search query in their037

meaning, rather than in their surface forms only.038

Semantic search can also be seen as a form of039

paraphrase detection, identifying statements equiv-040

alent in meaning but differing on the surface level.041

While the traditional term-based search techniques 042

are to a large extent limited to returning results 043

based on surface form matching, the hope in se- 044

mantic search is to rather understand the key mean- 045

ing of the search phrase and return the relevant 046

knowledge. For example, when querying using 047

the phrase What are the dimensions of Volkswa- 048

gen Transporter also documents mentioning the 049

paraphrased versions VW Transporter: size or the 050

length, width and height of VW Transporter should 051

be considered relevant. 052

Recently, a large-scale corpus of Finnish para- 053

phrases, the Turku Paraphrase Corpus (Kanerva 054

et al., 2021b), became available. The paraphrase 055

pairs in the corpus are manually extracted from 056

pairs of related documents, forming annotated ex- 057

amples where the document context of both mem- 058

bers of the paraphrase pair is known. This very 059

property of the dataset is to the best of our knowl- 060

edge unique to this corpus and in turn allows us 061

to take a novel approach to semantic search, by 062

casting it as paraphrase span detection: Given a 063

segment of text as a query, the task of the model 064

is to identify its paraphrase from the given docu- 065

ment. Span detection is typically used in extractive 066

question answering. The primary advantage of us- 067

ing span detection, as opposed to the conventional 068

approach of classifying sentence pairs or comput- 069

ing their pairwise similarity, is the ability to easily 070

extract any part of the target document, not just 071

predefined units such as lines or sentences. 072

We evaluate the span detection model trained on 073

the Finnish paraphrase data and compare it to two 074

sentence-level retrieval baselines. Additionally, we 075

introduce a straightforward method of generating 076

artificial paraphrase data through back-translation, 077

allowing training also for languages where manu- 078

ally annotated paraphrases-in-context data is not 079

available. Finally, we carry out an extensive error 080

analysis to understand the prediction capabilities 081

of the span detection model. 082
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2 Related Work083

Paraphrase In NLP, different paraphrase related084

tasks include detecting, retrieving or generating085

paraphrased versions of a given text span. Numer-086

ous paraphrase corpora, e.g. Quora Question Pairs1,087

Microsoft Research Paraphrase Corpus (Dolan and088

Brockett, 2005), and PARADE (He et al., 2020),089

have been released for these purposes, each in-090

cluding labeled sentence-like text pairs support-091

ing mainly paraphrase classification. Paraphrase092

retrieval is typically approached using large mono-093

lingual corpora and performing one-to-many (find094

a paraphrase for the given text span) or many-to-095

many (find all paraphrase pairs from the text collec-096

tion) sentence similarity comparison between calcu-097

lated sentence-level embeddings (see e.g. Vrbanec098

and Meštrović (2020)), potentially including docu-099

ment level heuristics in order to restrict the search100

space into comparable documents. To our knowl-101

edge, besides the Turku Paraphrase Corpus, there102

is no other paraphrase corpora available where the103

original document context would be available for104

the paraphrase pairs, and thus directly supporting105

the paraphrase span detection task.106

Question Answering In extractive question an-107

swering, the system is given a question posed in108

natural language together with a background doc-109

ument, and the task is to extract the span of the110

correct answer from the document. Span detection111

is a common approach for extractive question an-112

swering, naturally supporting extracting an answer113

segment of any length. There are both monolin-114

gual and cross-lingual question answering (QA)115

datasets available. SQuAD (Rajpurkar et al., 2016)116

is an English QA dataset including approx. 100,000117

examples where the context document has an an-118

swer for the given question. In its second release119

(SQuAD v2), also unanswerable questions are in-120

cluded (Rajpurkar et al., 2018). Some multilingual121

QA corpora include e.g. XQuAD (Artetxe et al.,122

2020), TyDiQA (Clark et al., 2020), and MKQA123

(Longpre et al., 2020), the latter two including also124

Finnish QA examples. Even though the task setup125

used in this work resembles the QA task, the ob-126

jective is different. While in QA the system is127

expected to return an answer for the question, in128

paraphrase retrieval it returns a semantically equiv-129

alent segment from the background document.130

1data.quora.com/First-Quora-Dataset-\
Release-Question-Pairs

Semantic Textual Similarity In the semantic 131

textual similarity (STS) task, each sentence pair 132

is annotated with a similarity score typically rang- 133

ing from 0 to 5, where lower scores mean unrelated 134

or related sentences, while higher scores are for par- 135

tially or fully equivalent sentences, with the highest 136

score typically indicating the sentences being com- 137

pletely equivalent in meaning. The annotations 138

in STS and paraphrasing tasks are highly related 139

(Gold et al., 2019) but not necessarily completely 140

interchangeable between different datasets as the 141

definition of a paraphrase or relatedness may not 142

be fully equivalent. Similar to paraphrase datasets, 143

most of the STS datasets include pairs of approx- 144

imately sentence-long text snippets together with 145

the annotated degree of similarity, therefore sup- 146

porting the setting of a sentence-pair classifica- 147

tion task without contextual information (see e.g. 148

Agirre et al. (2016); Cer et al. (2017)). However, a 149

recent dataset of Sido et al. (2021) includes simi- 150

larity annotations of Czech sentence pairs in doc- 151

ument context, thus to our knowledge being the 152

first STS dataset which could directly be applied to 153

span classification modelling. 154

3 Data 155

The Turku Paraphrase Corpus2 consists of para- 156

phrase pairs manually extracted from pairs of re- 157

lated documents with high probability for naturally 158

occurring paraphrases. As mentioned previously, 159

the position in the respective source documents is 160

preserved. Most of the pairs are obtained from inde- 161

pendent subtitle versions of the same movie or TV 162

episode. Subtitles thus constitute the primary do- 163

main of the data, while a small portion is extracted 164

from other domains, including news articles, dis- 165

cussion forum messages as well as university ex- 166

ercises and essays. Furthermore, each paraphrase 167

pair is manually categorized in a scheme distin- 168

guishing paraphrases primarily by the degree of 169

their context independence. In Figure 1 we illus- 170

trate one paraphrase pair from the original corpus, 171

as well as its transformation into the span detection 172

setting used in this work. 173

The corpus has two categories of examples of 174

interest for this study: 86,986 positive examples of 175

naturally occurring paraphrases in their respective 176

document contexts and 1,308 negative examples 177

of pairs in their document contexts that are seman- 178

2Newest data release available at: https://github.
com/TurkuNLP/Turku-paraphrase-corpus

2

data.quora.com/First-Quora-Dataset-\Release-Question-Pairs
data.quora.com/First-Quora-Dataset-\Release-Question-Pairs
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Figure 1: On the left side is an illustration of one paraphrase pair from the Turku Paraphrase Corpus, and on the
right side is the same paraphrase pair turned into the span detection framework as used in this work.

tically similar but not mutual paraphrases. These179

constitute 84% of the corpus. The remaining 16%180

are unsuitable for this study as they either do not181

have document contexts for various reasons, or are182

manually edited and therefore no longer naturally183

fitting their contexts.184

As the paraphrase pairs are not directional in the185

same manner as for example question-answer ex-186

amples are, and the two paraphrases are always ex-187

tracted from two distinct context documents, each188

pair produces two distinct examples in the span de-189

tection task, resulting in a total of 173,972 distinct190

positive and 2,616 distinct negative examples. The191

data statistics are summarized in Table 1 in terms192

of train, development and test sets, following the193

dataset split provided in the original corpus.194

We pursue two different task setups: 1) Retriev-195

able paraphrases formed from the positive exam-196

ples, where for all examples a valid paraphrase is197

guaranteed to exist in the context. The setup is198

similar to SQuAD v1 in question answering. 2)199

Including the 2,616 negative examples as irretriev-200

able paraphrases, requiring the model not only to201

find a valid paraphrase, but also being able to deter-202

mine when there is not a valid paraphrase present203

in the context. The setup is similar to SQuAD v2204

in question answering.205

4 Experiments206

4.1 Paraphrase-SD model207

The span detection model described in this section208

and referred to as Paraphrase-SD throughout the209

paper is based directly on the implementation of the210

question answering task with a BERT encoder in211

the well-known HuggingFace library3 (Wolf et al.,212

3https://github.com/huggingface/
transformers

Setup 1 Setup 2
Section Examples Examples
Train 138,706 140,848
Devel 17,702 17,930
Test 17,564 17,810
Total 173,972 176,588

Table 1: Dataset sizes after converting the original para-
phrase data into the span detection framework, where
Setup 1 includes only retrievable examples, while
Setup 2 includes both retrievable and irretrievable ex-
amples.

2020). Given a query phrase and a document, sep- 213

arated by the [SEP] token, the model detects the 214

span in the document which paraphrases the query 215

as follows: Each subword encoded by the BERT 216

model is classified by two classification layers, one 217

for predicting the start position of the span and 218

one for predicting the end position. Both output 219

layers are binary and applied independently, thus 220

individually predicting how likely each subword is 221

opening and/or closing the target span. The output 222

of the model is then the span which maximizes the 223

sum of the logits for its opening and closing sub- 224

word. In order to be a valid span, the end position 225

must be higher or equal to the start position, and 226

the start position must point to the context region 227

of the input (sequence after the [SEP] token), not 228

the query phrase region. In Setup 2 that includes 229

also irretrievable examples, the model must also 230

be capable of empty predictions. For these, the 231

model is trained to predict the [CLS] token as both 232

start and end position of the span, thus in practise 233

returning an empty span (null prediction). 234

Many of the documents are longer than the maxi- 235

mum sequence length of the BERT model. We slice 236

the documents (with overlap of 128 tokens) into 237

3
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segments, which form independent examples. Each238

of these examples thus consists of the query phrase239

which is never sliced nor truncated, and a slice of240

the document. Predictions for these examples are241

subsequently merged into a single prediction for the242

whole document, as follows: In Setup 1 including243

only retrievable paraphrases, the span with the high-244

est aggregated score out of all possible spans over245

all slices of the document is chosen. However, this246

necessary slicing interferes with Setup 2. When247

there are multiple document slices, the model is248

likely to give a highly confident null prediction for249

all slices not including the target span. When aggre-250

gating the scores across all slices of the document,251

these confident null predictions would dominate252

the output. Noting that all document slices give253

some probability for the null prediction, the final254

null prediction score can be obtained by taking the255

minimum value (least confident null prediction)256

across all document slices, approximating the null257

prediction value obtained for the full document at258

once. That score is then compared against the most259

confident span predictions selecting the span with260

the highest overall value as the final prediction.261

We use the HuggingFace transformers library262

question answering model implementation, with263

the Finnish FinBERT (Virtanen et al., 2019) lan-264

guage model as the encoder. The weights of the265

pre-trained language model are fine-tuned together266

with the two task specific classification layers dur-267

ing training. We performed a grid search separately268

for Setup 1 and Setup 2 in order to find optimal hy-269

perparameters. Trialed hyperparameters were batch270

sizes 8, 16 and 32, learning rates 5e-5, 3e-5 and271

2e-5 and epochs 2 and 3 on development section272

of the data. For all experiments with Setup 1 we273

use batch size 32, learning rate 3e-5 and the model274

is trained for two epochs. Respectively, for all the275

experiments with Setup 2 the hyperparameters are:276

batch size 16, learning rate 2e-5 and two epochs.277

The source code is available at redacted-for-review.278

4.2 Baselines279

We compare the Paraphrase-SD model with two280

baselines. The first is a straightforward tf-idf base-281

line, where for each paraphrase in the evaluation282

data, the most similar sentence in the target doc-283

ument is retrieved based on the cosine similarity284

of tf-idf weighted vectors. We tested word-level285

features as well as character n-grams created in-286

side word boundaries and maximum number of fea-287

tures set to 300,000. N-gram lengths in the range 288

[2,6] were systematically tested and the best results 289

were gained with the union of character n-grams 290

of lengths 2, 3 and 4. The n-gram vocabulary was 291

induced on the training data only. 292

Our second baseline is based on FinBERT model 293

embeddings. Similar to the first baseline, for each 294

query, the most similar sentence in the document 295

is retrieved, with the embedding for each sentence 296

calculated as the average of token embeddings ob- 297

tained from the last hidden layer of the FinBERT 298

model without any fine-tuning. Again, cosine sim- 299

ilarity of the embeddings is used to calculate the 300

similarity measures. 301

One notable advantage of the Paraphrase-SD 302

model is its ability to return any text segment from 303

the background document. Both baselines, on the 304

other hand, are limited to sentence level predictions, 305

in order to avoid embedding all possible document 306

segments of any length, which would be highly 307

impractical. However, as the paraphrases in the 308

Turku Paraphrase Corpus are not strictly limited to 309

sentence boundaries, with about 25% being longer 310

or shorter than a sentence, the baseline approaches 311

incur a loss. To assess its magnitude, we will re- 312

port also the oracle performance, corresponding to 313

returning the one sentence from the document that 314

is most overlapping with the true target span. 315

4.3 Paraphrase-SD through back-translation 316

Up to this point, we relied on the fact that the Turku 317

Paraphrase Corpus enables our approach by con- 318

taining paraphrases in their context. Such a dataset 319

is, to the best of our knowledge, currently avail- 320

able only for Finnish. In this section, we explore a 321

straightforward heuristic approach based on a form 322

of back-translation (Sennrich et al., 2016), allowing 323

the application of the Paraphrase-SD model also in 324

absence of such a manually annotated corpus. 325

We take an approximate of 60K Finnish subti- 326

tle files from the same subtitle domain as in the 327

original Turku Paraphrase Corpus that were not 328

used in the original data, and split them into shorter 329

text segments yielding 260K documents. Addition- 330

ally, we have acquired approximately 200K Finnish 331

documents from the Reddit discussion forum to ac- 332

company the data. For each of these documents, we 333

randomly sample one sentence from any position in 334

the document to act as a target sentence whose span 335

is to be retrieved from the document in the span 336

detection paraphrase retrieval task. We remove ex- 337
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amples consisting of target sentences longer than338

100 word tokens to reduce unnecessarily noisy ex-339

amples. Finally, we use back-translation to gen-340

erate an assumed paraphrase for each sampled re-341

trievable target sentence. We translate the original342

Finnish target sentences into English, and back343

into Finnish using pre-trained translation models344

from the OPUS-MT project (Tiedemann and Thot-345

tingal, 2020). We decode the translations using346

beam search with a beam size of 6 and a length347

normalization term of 0.6 in both directions. We348

collect the most probable back-translated sentence349

for each source sentence to act as a paraphrase of350

the original sentence. The back-translated sentence351

is always used as the query phrase, while the orig-352

inal sentence in its context acts as the retrievable353

target span.354

The back-translated data is used to train the span355

detection model using the same hyperparameters356

as with the original model. The back-translated357

data was randomly sampled to the same size as358

the original training data, however before sampling359

we removed examples where the back-translation360

produced an identical sentence compared to the361

target span, an empty sentence, or a sentence longer362

than 380 subwords4. Since the back-translated data363

contains only retrievable paraphrases, it is used in364

the Setup 1 experiments only. The final size of the365

training data for the back-translation baseline is366

138,706 examples.367

5 Results368

The main results are summarized in Table 2 using369

two evaluation metrics: exact match (EM), which370

measures the percentage of predictions that match371

the gold segment exactly, and F-score, which mea-372

sures the average token-level overlap between the373

prediction and the gold segment, when segments374

are treated as bag-of-tokens and punctuation char-375

acters are disregarded. All results are reported us-376

ing the test section of the Turku Paraphrase Corpus377

(over 17,000 examples for both setups, see Table 1).378

Our main model, Paraphrase-SD trained with379

the Turku Paraphrase Corpus, outperforms all base-380

lines in both setups with a clear margin, receiving381

EM 88.73 and F-score 94.31 for Setup 1 (only re-382

trievable paraphrases), and EM 84.37 and 89.52383

F-score for Setup 2 (retrievable and irretrievable384

4Sentences longer than 380 subwords were filtered out due
to preserving enough space for the document in the model’s
input.

paraphrases). The second best performing model, 385

Paraphrase-SD model trained with back-translation 386

data, sees about -17.4pp decrease in EM compared 387

to the main model in Setup 1. Both BERT and tf- 388

idf baselines fall behind the back-translation, hav- 389

ing -22.4pp and -31.9pp decrease respectively in 390

EM compared to the main model. The results are 391

similar in terms of F-score, the back-translation 392

and the two baselines being -9.2pp, -12.9pp, and 393

-22.3pp behind the main model. The sentence-level 394

retrieval significantly harms the theoretical upper 395

bound (oracle) of the baselines in terms of EM, and 396

to a much lesser degree in terms of F-score, clearly 397

demonstrating the intrinsic disadvantage of limiting 398

retrieval to such pre-defined units. Nevertheless, 399

both BERT and tf-idf baselines fall notably behind 400

the oracle performance in both metrics, showing 401

that the sentence-level retrieval is not the main lim- 402

iting factor in the baseline performance. By com- 403

paring the Setup 1 and Setup 2 results for the main 404

model, we can see that including the irretrievable 405

cases in the training data and asking the model to 406

recognize when the correct paraphrase does not 407

exist in the document decreases the performance of 408

the Paraphrase-SD model. Naturally, the behavior 409

is expected due to introducing a more difficult task 410

setup. 411

5.1 Data augmentation experiments 412

The Turku Paraphrase Corpus contains only a small 413

fraction of non-paraphrase pairs, corresponding to 414

irretrievable examples in our Setup 2. Therefore, 415

we first experiment with increasing the small pro- 416

portion of irretrievable examples in the original 417

training data by automatically creating artificial ir- 418

retrievable training examples for the Setup 2 model. 419

These are created from retrievable examples by 420

simply removing the target span from the docu- 421

ment. Each retrievable training example is thus 422

introduced twice in the training data, once as a re- 423

trievable example and once as an artificial irretriev- 424

able example, resulting in total of 279,554 training 425

instances with approximately 50/50 label distribu- 426

tion. Nevertheless, we find that the artificial irre- 427

trievables did not improve the model performance, 428

being approximately -2pp worse than the original 429

model on both metrics, mostly resulting from a 430

noticed increase in false null prediction rate. This 431

is not a particularly surprising finding, given that 432

the evaluation data is not changed, causing a distri- 433

bution mismatch between training and evaluation 434
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Setup 1 Setup 2
Model EM F-score EM F-score
Sentence-level baselines

TF-IDF 56.84 72.02 56.06 71.03
BERT 66.32 81.44 65.40 80.31
Oracle 76.74 93.85 75.70 92.57

Paraphrase-SD
Back-translation 71.32 85.07 — —
Main model 88.73 94.31 84.37 89.52

Data augmentation
+ Artificial irretrievables — — 82.35 87.11
+ Back-translation (random) 88.67 94.48 — —
+ Back-translation (tf-idf 0.35-0.66) 88.61 94.28 — —
+ Back-translation (tf-idf most dissimilar) 88.38 94.24 — —

Table 2: The main results for the Setup 1 including only retrievable paraphrases as well as for Setup 2 where
both retrievable and irretrievable paraphrases are used. Results are reported in terms of exact match (EM) and
token-level F-score on test section.

data. Since the removed target span no doubt leaves435

an unnatural artefact in the document, in the place436

where the target used to be, which the model can437

learn to recognize, the results on such artificially438

modified evaluation data would not have been reli-439

able. The fact that the decrease in performance is440

quite limited, even though the training data distri-441

bution is substantially altered shows a surprising442

resilience of the model.443

Next, we carry out preliminary data augmen-444

tation experiments, where our primary training445

data is enhanced with the artificially created446

back-translation examples. We train three addi-447

tional models with mixtures of original and back-448

translation training data using different sampling449

strategies, each including exactly 138,706 back-450

translation examples matching the size of the origi-451

nal training set, and thus doubling the training data452

compared to the original Paraphrase-SD model.453

The first model uses a random sample of the back-454

translation data, the second model strives to in-455

clude “interesting” examples with low lexical over-456

lap obtained by sampling the most dissimilar query–457

target back-translation pairs in terms of tf-idf sim-458

ilarity, and the third model balances between too459

similar (trivial examples) and too dissimilar (likely460

including translation errors) by sampling mid-range461

examples using tf-idf similarities between 0.35–462

0.66. The tf-idf similarities are calculated using the463

same parameters as for the tf-idf sentence retrieval464

baseline.465

The results (Table 2) show that even with pure466

back-translation data, the model exceeds the per- 467

formance of the BERT and tf-idf baselines, show- 468

ing back-translation as a viable option for train- 469

ing a span-detection-based retrieval model. How- 470

ever, when combined with the original training data 471

from the manually annotated paraphrase corpus, 472

the back-translation data did not improve the over- 473

all results. The best result was obtained with the 474

randomly sampled back-translation data, exceed- 475

ing the performance of the main model by a mere 476

+0.2pp. Our experiments of selecting more interest- 477

ing back-translation examples did not yield positive 478

results over the random selection. To maintain the 479

focus and scope of this study, we do not proceed 480

examining the multitude of possible strategies of 481

sampling and incorporating the back-translation 482

data. Nevertheless, given the positive outcome 483

when compared to the tf-idf and BERT baselines, 484

more detailed experiments are clearly justified as a 485

future work. 486

6 Error Analysis 487

We perform several analyses on the development 488

data in order to better understand the capabilities of 489

our main model and the reasons behind incorrect 490

predictions. Firstly, we automatically categorize 491

the incorrect predictions into several subgroups and 492

inspect the different error groups. Secondly, we cal- 493

culate the prediction accuracy against the estimated 494

paraphrase complexity in order to investigate for 495

example whether certain paraphrase categories in 496

the data include more incorrect predictions than 497
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Misprediction type Setup 1 Setup 2
(1) Null prediction — 36.50%
(2) Pred not-paraphrase — 7.17%
(3) Partially correct pred 58.63% 38.67%

(3.1) pred substr. of gold 35.52% 23.86%
(3.2) gold substr. of pred 22.29% 14.16%
(3.3) other partial overlap 0.81% 0.65%

(4) Other 41.37% 17.67%

Table 3: The error categories of incorrect predictions
on the development data.

others. These experiments are carried out using498

the development section of the Turku Paraphrase499

Corpus. Finally, we test the out-of-domain general-500

ization of the model by dividing the paraphrase data501

into two distinct domains. As the out-of-domain502

analysis does not require any manual inspection, it503

is carried out using the test section of the corpus,504

the numbers then being comparable with the main505

experiments.506

6.1 Error categorization507

The incorrect predictions as determined in terms of508

the exact match measure are categorized into sev-509

eral subgroups: 1) the model gave empty prediction510

even if a valid target exists in the document (false511

null prediction for Setup 2), 2) the model predicted512

a span matching one of the negative paraphrase pair513

examples in the corpus, 3) the model predicted a514

span partially overlapping with the target, further515

divided into three subgroups: 3.1) the prediction516

is a substring of the gold segment, 3.2) the gold517

segment is a substring of the prediction, 3.3) other518

partial overlap in predicted and gold segments, and519

4) other, including cases where the model predicts520

a segment not overlapping with the gold annotation.521

The distribution of mispredictions categorized into522

subgroups is given in Table 3.523

While the errors categorized as subgroup (1)524

and subgroup (2) can be seen as clear mispredic-525

tions, where the model is not able to identify a526

paraphrase even if one is guaranteed to exist in527

the document, or identifies the segment annotated528

as not-a-paraphrase in the original data, the errors529

belonging to the subgroup (3) contain cases of par-530

tially correct predictions where the model is able531

to identify approximately the correct area from the532

document, however, the predicted start and end po-533

sitions slightly differ from the gold segment. From534

the finer subcategorization it can be seen that when535

the model makes a partially correct prediction, it is 536

more likely to exclude some part of the gold seg- 537

ment rather than include an additional part. The 538

number of other partial overlaps is negligible. 539

On the other hand, mispredictions in the sub- 540

group (4) include cases which require further man- 541

ual evaluation in order to determine their correct- 542

ness. In these cases the model suggests a para- 543

phrase candidate the annotators have not extracted 544

during the corpus construction. These predictions 545

cannot be directly determined to be incorrect, as 546

it is possible that the document includes another 547

occurrence of a paraphrase of the query, which the 548

model then extracts. For many common generic 549

phrases, the probability of more than one correct 550

paraphrase existing in the document is not negligi- 551

ble. Therefore, the evaluation can be considered 552

to give only the lower bound slightly underestimat- 553

ing the actual performance. Therefore, we perform 554

a further manual evaluation for the category (4) 555

predictions. 556

We sample 200 incorrect predictions from the 557

subcategory (4) for the Setup 1 model, and manu- 558

ally annotate for each example whether the pre- 559

dicted span is a valid paraphrase for the query 560

phrase. We find that full 36% of these are in fact 561

valid paraphrases of the query although not being 562

the gold target segment, mostly due to short repeat- 563

ing lines and generic phrases in the movie subtitle 564

section of the corpus, or repeating material between 565

the title, the lead paragraph and the article body in 566

the news article section of the corpus. 567

6.2 Paraphrase complexity 568

The paraphrase corpus classifies each paraphrase 569

into one of several classes: Context dependent are 570

mutual paraphrases in their present context but not 571

necessarily in other contexts, context independent 572

are perfect mutual paraphrases in all reasonably 573

imaginable contexts. In between these two cate- 574

gories, there are near-perfect context independent 575

paraphrases up to one or more qualifying flags: 576

style for tone or register difference, minor differ- 577

ence marking easily traceable grammatical differ- 578

ences such as person and number, and subsumption 579

marking there is a degree of directionality in the 580

relation, with for instance one paraphrase mention- 581

ing a woman while the other a person. The reader 582

is referred to the annotation guidelines (Kanerva 583

et al., 2021a) for more detailed descriptions and 584

examples of these classes. 585
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Paraphrase type Acc Support
Context independent 95.0 3,898

with minor diff. 92.5 890
with style diff. 90.2 902
with subsumption 89.5 8,372

Context dependent 82.0 4,632
Overall 90.2 17,702

Table 4: Prediction accuracy in Setup 1 for the different
paraphrase types annotated in the corpus.

Category Acc Support
Trivial 96 516

same lemmas 91 32
same content word lemmas 97 30
synonym replacement 98 322
content word lemmas
with synonym replacement 96 132

Non-trivial 90 17,186
Overall 90 17,702

Table 5: Prediction accuracy in Setup 1 on several cate-
gories of trivial paraphrases.

This classification allows us to inspect the model586

performance w.r.t. the type of the paraphrase, and587

its degree of context dependence. As seen in588

Table 4, indeed the Setup 1 model performance589

clearly correlates with the “degree of universality”590

of the paraphrases, with 13pp difference between591

perfect universal paraphrases and context depen-592

dent paraphrases.593

Given the hypothesis of simpler paraphrases594

resulting in more confident predictions, Table 5595

shows the prediction accuracy across automatically596

classified "trivial" paraphrase categories follow-597

ing Chang et al. (2021). Here, paraphrases are598

considered trivial if all their differences can be599

accounted for with simple, automatically recog-600

nizable transformations. These categories include601

phrases which share the same lemmas thus differ-602

ing only in word order or inflections, have the same603

lemmas in terms of content-bearing words only,604

or if their only differences can be accounted for605

with a synonym list, or a combination of these.606

Results show that non-trivial paraphrases, which607

account for most of the data, more often lead to608

incorrect predictions compared with trivial para-609

phrases. However, given the small frequency of610

trivial paraphrases in the data, the results may suf-611

fer from sampling bias.612

6.3 Out-of-domain experiments 613

The majority of the Turku Paraphrase Corpus data 614

is collected from movie and TV episode subtitling 615

data, only 14% of the paraphrase pairs used in 616

this work being from other text domains (e.g news 617

or discussion forum). To find out how the imbal- 618

ance of the training data domains affects the predic- 619

tion ability we evaluated the main model (Setup 1) 620

performance separately on evaluation data divided 621

by the domains into two parts, subtitle and non- 622

subtitle. As expected, the main model performs 623

better on subtitle data, giving exact match scores 624

of 91.72 for subtitle and 66.06 for non-subtitle. For 625

out-of-domain generalization experiments, we also 626

trained a model using only subtitling data from the 627

training set, and evaluated in the same two domains 628

in order to compare the effect of the small amount 629

of in-domain data in the main model when eval- 630

uated on non-subtitle domain. Compared to the 631

main model the performance of this model is only 632

slightly decreased when evaluated on in-domain 633

subtitle data (-0.1pp EM) likely due to the small 634

decrease in the size of training dataset, however, 635

the decrease is notable on the out-of-domain data 636

(-4.9pp EM). 637

7 Conclusions 638

In this paper, we have taken a novel approach to 639

semantic search by casting it as extractive span de- 640

tection of paraphrases, where given a query phrase, 641

the task is to identify its paraphrased target span 642

from a given document. The primary advantage 643

of such a model is its ability to retrieve a segment 644

of any length, not just a predefined units such as 645

sentences, as is the case with the standard retrieval 646

methods utilizing for example embedding similari- 647

ties. Our span detection model trained on the man- 648

ually annotated Turku Paraphrase Corpus clearly 649

outperformed the two retrieval baselines relying on 650

lexical similarity or BERT sentence embeddings by 651

31.9pp and 22.4pp respectively in terms of exact 652

match, demonstrating a clear advantage of the new 653

modelling approach. 654

Additionally, we have introduced a method for 655

creating artificial paraphrase data through back- 656

translation, suitable for languages where similar 657

paraphrase data including document context is not 658

available. While not achieving the performance of 659

the model trained on the manual paraphrase data, 660

the back-translation model clearly outperforms the 661

sentence embedding baselines. 662
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