
Gradient Descent: The Ultimate Optimizer

Kartik Chandra⇤
MIT CSAIL†

Cambridge, MA
kach@csail.mit.edu

Audrey Xie⇤
MIT CSAIL

Cambridge, MA
ahx@mit.edu

Jonathan Ragan-Kelley
MIT CSAIL

Cambridge, MA
jrk@csail.mit.edu

Erik Meijer
Meta, Inc.

Menlo Park, CA
erikm@fb.com

Abstract

Working with any gradient-based machine learning algorithm involves the tedious
task of tuning the optimizer’s hyperparameters, such as its step size. Recent work
has shown how the step size can itself be optimized alongside the model parameters
by manually deriving expressions for “hypergradients” ahead of time.
We show how to automatically compute hypergradients with a simple and elegant
modification to backpropagation. This allows us to easily apply the method to
other optimizers and hyperparameters (e.g. momentum coefficients). We can even
recursively apply the method to its own hyper-hyperparameters, and so on ad in-
finitum. As these towers of optimizers grow taller, they become less sensitive to the
initial choice of hyperparameters. We present experiments validating this for MLPs,
CNNs, and RNNs. Finally, we provide a simple PyTorch implementation of this
algorithm (see people.csail.mit.edu/kach/gradient-descent-the-ultimate-optimizer).

1 Introduction

When we train deep neural networks by gradient descent, we have to select a step size ↵ for our
optimizer. If ↵ is too small, the optimizer runs very slowly, whereas if ↵ is too large, the optimizer
fails to converge. Choosing an appropriate ↵ is thus itself an optimization task that machine learning
practitioners face every day. Why not apply gradient descent here, too? To do so, we need to compute
the derivative of the loss function not only with respect to the neural network’s weights, but also with
respect to ↵. Baydin et al. (2018), applying an insight from Almeida et al. (1999), describe how to
efficiently compute such “hypergradients” by manually differentiating standard optimizer update
rules with respect to the step size hyperparameter. This allows for on-line learning rate adaptation,
which generally improves convergence, especially when the initial ↵ is sub-optimal.

However, the above method has three limitations: (1) manually differentiating optimizer update rules
is tedious and error-prone, and must be re-done for each optimizer variant; (2) the method only tunes
the step size hyperparameter, not other hyperparameters such as the momentum coefficient; and
(3) the method introduces a new hyperparameter, the hyper-step-size, which must also be tuned.

In this paper, we address all three limitations by replacing manual differentiation with automatic
differentiation (AD), which (1) automatically computes correct derivatives without any additional
human effort, and (2) naturally generalizes to other hyperparameters (e.g. momentum coefficient)
for free. As for (3), we observe that AD can be applied to optimize not only the hyperparameters,
but also the hyper-hyperparameters, and the hyper-hyper-hyperparameters, and so on. In fact, we
can implement arbitrarily tall towers of recursive optimizers, which are increasingly robust to the
choice of initial hyperparameter. These “hyperoptimizers” therefore reduce the burden on humans
responsible for tuning the hyperparameters. (Such an effect was hypothesized by Baydin et al., but
not tested because manual differentiation of complex sequences of nested optimizers is impractical.)

⇤Equal contribution.
†Work done in part at Meta, Inc. and in part at Stanford University.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

http://people.csail.mit.edu/kach/gradient-descent-the-ultimate-optimizer

Although “just apply AD” is a seemingly straightforward recipe, an efficient implementation that
properly allows for recursive self-application requires some care. To close the loop, we take inspiration
from the study of recursion and combinators in programming language theory (and the long tradition
of programming language papers named “Lambda: The Ultimate X”). We spell out the details in
Section 2, and evaluate our method in Section 3. We find that across a variety of architectures (MLPs,
CNNs, and RNNs) our hyperoptimizers are robust to suboptimal choices of initial hyperparameters,
and that this robustness increases as we grow the stacks of optimizers taller.

2 Implementing hyperoptimizers

Consider some loss function f that we want to minimize using gradient descent, and let wi be the
weights at the beginning of step i (we will omit subscripts on f , even though it varies at each step due
to the stochasticity of minibatches). First, recall the standard weight update rule at step i for SGD,
using some fixed step size ↵:

wi+1 = wi � ↵
@f(wi)

@wi

We would like to also update ↵ at each step, so we will index it as well with the step number; that is,
let ↵i be the step size at the beginning of step i. At each step, we will first update ↵i to ↵i+1 using
some update rule yet to be derived, and then use the updated step size ↵i+1 to update the weights
from wi to wi+1.

↵i+1 = ↵i � adjustment for ↵i

wi+1 = wi � ↵i+1
@f(wi)

@wi

What should the adjustment for ↵i be? By analogy to w, we want to adjust ↵i in the direction of the
gradient of the loss function with respect to ↵i, scaled by some hyper-step size . In other words, the
adjustment should be (@f(wi)/@↵i). Our modified update rule is therefore:

↵i+1 = ↵i � 
@f(wi)

@↵i
(1)

wi+1 = wi � ↵i+1
@f(wi)

@wi
(2)

All that remains is to compute @f(wi)/@↵i in equation (1). Below, we first review how Baydin et al.
(2018) take this derivative by hand. Then, we show how to obtain the same result automatically and
efficiently using AD. Finally, we discuss how this automation allows us to generalize the method.

2.1 Computing the step-size update rule by hand

One option to compute @f(wi)/@↵i, explored by Baydin et al. (2018), is to proceed by direct manual
computation of the partial derivative. Applying the chain rule to (1), we have

@f(wi)

@↵i
=

@f(wi)

@wi
· @wi

@↵i
=

@f(wi)

@wi
·
@
⇣
wi�1 � ↵i

@f(wi�1)
@wi�1

⌘

@↵i
(3)

=
@f(wi)

@wi
·
✓
�@f(wi�1)

@wi�1

◆
(4)

where (3) is obtained by substituting the update rule in (2) for wi and (4) is obtained by observing
that wi�1 and f(wi�1) do not depend on ↵i. As Baydin et al. note, this expression lends itself to a
simple and efficient implementation: simply remember the past two gradients from backpropagation,
and take their dot product to obtain the hypergradient with respect to the step size.

We were able to take this derivative by hand because the update rule for SGD is simply a multiplication
by a constant, whose derivative is trivial. What about other optimizers? Consider the Adam optimizer
(Kingma and Ba, 2014), which has a much more sophisticated update rule involving the four
hyperparameters ↵,�1,�2, ✏ (though ✏ is typically not tuned). Differentiating the update rule by hand,

2

we obtain significantly more complex expressions for the hypergradients:

@wi

@↵i
= � m̂i�

✏i +
p
v̂i
� @wi

@�1i

= �
↵i

⇣
�@f(wi�1)

@wi�1
+mi�1 + i�1

(i�1)
i m̂i

⌘

�
1� �1

i
i

� �
✏i +

p
v̂i
�

@wi

@✏i
=

↵im̂i�
✏i +

p
v̂i
�2

@wi

@�2i

=

↵im̂i
p
v̂i

✓
�
⇣

@f(wi�1)
@wi�1

⌘2
+ vi�1 + i�2

(i�1)
i v̂i

◆

2vi
�
✏i +

p
v̂i
�2

This manual approach to derive hypergradients simply does not scale: it is tedious and error-prone,
and must be repeated for every optimizer variant. However, with a little bit of care, we can compute
hypergradients automatically and efficiently alongside the regular gradients.

2.2 Computing the step-size update rule automatically

In order to compute hypergradients automatically, let us first briefly review the mechanics of reverse-
mode AD. Differentiable programming systems that provide reverse-mode AD typically build up a
computation graph as the function is computed forwardly. For example, when a user computes the
function f(wi), the system internally stores a DAG whose leaves are the weights wi, whose internal
nodes are intermediate computations, and whose root is the final loss. It can then backpropagate
through the computation graph starting at this root node, depositing gradients in each internal node
as it descends, until the weights wi at the leaf nodes have accumulated their gradients @f(wi)/@wi.
Once the gradient @f(wi)/@wi is computed by the backwards pass, we update the weights wi+1 =
wi � ↵ · @f(wi)/@wi, and repeat the cycle for the next step of gradient descent.

An important consideration at this point is for the weights to be “detached” from the computation
graph before the next iteration of this algorithm — that is, for the weights to be forcibly converted to
leaves of the graph by removing any inbound edges. The effect of the “detach” operation is depicted
in Figure 1a. If this step were skipped, backpropagation at the next iteration would continue beyond
the current weights and into the previous iteration’s computation graph. Over time the computation
graph would grow taller linearly in the number of steps taken; because backpropagation is linear in
the size of the graph, the overall training would become quadratic-time and intractable.

Let us take PyTorch as an example. In the built-in SGD optimizer (Paszke et al., 2017, optim/sgd.py,
commit ff94c9d), this is implemented by wrapping the update in the @torch.no_grad() context
manager. Here, we need finer grained control over gradient flow, so will make the .detach()
operations explicit. Below is pseudocode for an SGD optimizer that uses .detach() as we have
discussed. The highlighted calls to .detach() correspond to detaching the weights and their gradients.

def SGD.__init__(self, alpha):
self.alpha = alpha

def SGD.step(w):
d_w = w.grad.detach()
w = w.detach() - self.alpha.detach() * d_w

Now, in order to have backpropagation deposit the gradient with respect to ↵i as well as wi, we
can simply refrain from detaching ↵i from the graph, detaching instead its parents. This is depicted
in Figure 1b. Because we want to compute @f(wi)/@↵i, the edge from ↵i to wi needs to remain
intact. To implement this, instead of calling .detach() on alpha directly, we detach its parents when
applying equation (1). This yields the following fully-automated hyperoptimization algorithm:

def HyperSGD.step(w):
update alpha using equation (1)
d_alpha = self.alpha.grad.detach()
self.alpha = self.alpha.detach() - kappa.detach() * d_alpha

update w using equation (2)
d_w = w.grad.detach()
w = w.detach() - self.alpha.detach() * d_w

3

(a) Computation graph of SGD with a single fixed hy-
perparameter ↵.

(b) Computation graph of SGD with a continuously-
updated hyperparameter ↵i.

Figure 1: Visualizing the computation graphs of SGD and HyperSGD.

Since we only extend the computation graph by a little extra amount, corresponding to evaluating the
optimizer, the hyperoptimizer’s computational overhead is negligible (see Figure 4f).

2.3 Extending to other optimizers

As suggested by Maclaurin et al. (2015), it should be possible to apply gradient-based methods to
tune hyperparameters of common variations on SGD such as AdaGrad (Duchi et al., 2011), AdaDelta
(Zeiler, 2012), or Adam (Kingma and Ba, 2014). The above implementation of HyperSGD generalizes
quite easily to these optimizers — we simply replace the last line with the new update rule.

Unlike previous work, our method also allows for simultaneously optimizing all hyperparameters of
these optimizers (e.g. all of ↵, �1, and �2 for Adam) “for free.” We simply treat them just like alpha
in the implementation. Our evaluation in Section 3.2 demonstrates that this indeed advantageous to
do. There are, however, two important subtleties: First, because hyperparameters like �1 and �2 must
be strictly in the domain (0, 1), we clamp the “raw” values to this domain using a scaled sigmoid.
Without this step, we might accidentally adjust these values outside their domains. Second, the Adam
optimizer in particular involves the term

p
v̂i, which is continuous but not differentiable at v̂i = 0.

Because Adam normally initializes v̂0 = 0, backpropagation fails on the first step due to division by
zero. We fix this problem by initializing v̂0 to ✏ rather than 0.

2.4 Stacking hyperoptimizers recursively

At this point it is natural to ask whether the hyperoptimizer can itself be optimized; that is, whether
the hyper-hyperparameters can be adjusted by a hyper-hyperoptimizer. The possibility of doing
so recursively ad infinitum to obtain an optimization algorithm that is highly robust to the human-
chosen hyperparameter was hypothesized by Baydin et al. (2018). Computing the gradients of these
higher-order hyperparameters by hand is impossible without knowing the exact sequence of stacked
optimizers in advance, and, as discussed above, would be extremely tedious and error-prone.

However, the ability to compute these gradients automatically by AD makes it possible to realize
this vision. To do so, let us revisit our previous implementation of HyperSGD. Notice that there is
an opportunity for recursion lurking here: the adjustment to alpha can be factored out with a call to
SGD.step, where SGD’s hyperparameter is kappa.

def HyperSGD.step(w):
update alpha using Equation (1)
SGD(kappa).step(self.alpha)

update w using Equation (2)
d_w = w.grad.detach()
w = w.detach() - self.alpha * d_w

4

Because SGD is already careful to properly detach its parameter (typically w, but in this case ↵), this
implementation is functionally identical to the one above. Indeed, any optimizer that observes this
protocol would suffice, so let us abstract out the optimizer as a parameter to HyperSGD:

def HyperSGD.__init__(self, alpha, opt):
self.alpha = alpha
self.optimizer = opt

def HyperSGD.step(w):
self.optimizer.step(self.alpha)
d_w = w.grad.detach()
w = w.detach() - self.alpha * d_w

opt = HyperSGD(0.01, opt=SGD(kappa))

Finally, after this refactoring, we can recursively feed HyperSGD itself as the optimizer, obtaining a
level-2 hyperoptimizer HyperSGD(0.01, HyperSGD(0.01, SGD(0.01))). Similarly, we can imagine
taller towers, or towers that mix and match multiple different kinds of optimizers, such as Adam-
optimized-by-SGD-optimized-by-Adam.

A natural concern is whether this process actually exacerbates the hyperparameter optimization
problem by introducing even more hyperparameters. Baydin et al. (2018) predicted that as the
towers of hyperoptimizers grew taller, the resulting algorithms would become less sensitive to the
human-chosen hyperparameters. This is indeed the case; Section 3.4 presents an empirical evaluation.

3 Experiments

In this section we evaluate the hyperoptimizers made possible by our system, exploring in particular
the benefits of optimizing hyperparameters beyond just the step size, and of stacking hyperoptimizers
to multiple levels. Each of these experiments was conducted on a single NVIDIA TITAN Xp GPU.

3.1 Hyperoptimization for SGD

First, we establish some basic properties about hyperoptimizers: (1) whether an SGD hyperoptimizer
performs better than a regular SGD optimizer, and (2) whether the final learned step size is better
than the initial human-chosen step size. We test the latter property by running a fresh regular
SGD optimizer with the final learned step size of the hyperoptimizer. Following authors of prior
work (Maclaurin et al., 2015; Baydin et al., 2018), we conducted initial experiments on the MNIST
dataset (Lecun et al., 1998) using a neural network with one fully-connected hidden layer of size 128,
tanh activations, and a batch size of 256. We trained all networks for 30 epochs, reporting statistics
over 3 runs. As a baseline we used SGD with ↵ = 0.01.

Table 1a summarizes the results of our experiments. We find that hyperoptimized SGD outperforms
the baseline by a significant margin. This holds even if we use other optimizers (e.g. Adam) to
adjust the step size of the SGD optimizer. Furthermore, when we re-ran the regular optimizers with
the new learned hyperparameters, we found that they performed better than the initial hyperparameter.

3.2 Hyperoptimization for Adam, AdaGrad and RMSProp

In Section 2.3, we described how to apply our system to the Adam optimizer, simultaneously
optimizing not only the learning rate ↵, but also the momentum coefficients �1,2. Here, we ask
three questions: (1) whether hyperoptimized Adam optimizers perform better than regular Adam
optimizers, (2) whether the learned hyperparameters outperform the baseline, and (3) whether there
is a benefit to optimizing all the hyperparameters, as opposed to only optimizing the learning rate
as Baydin et al. (2018) do. Because Adam has significantly faster convergence than SGD, we only
run these experiments for 5 epochs to avoid overfitting.

Table 1b summarizes the results of our experiments. We find that indeed the hyperoptimized Adam
optimizer outperforms the regular Adam optimizer on its “default” settings. As with SGD, the
learned hyperparameters perform better than the initial hyperparameters when re-run with the regular
optimizer. Inspecting the learned hyperparameters, we find that the algorithm raises the learning rate

5

Optimizer Test error

SGD 8.99±0.05%

SGD / SGD 4.81±0.10%
SGD(0.0769) 5.44±0.10%

SGD / Adam(0.1) 4.86±0.06%
SGD(0.4538) 2.80±0.09%

SGD / AdaGrad 4.85±0.21%
SGD(0.0836) 5.17±0.03%

SGD / RMSprop(0.1) 4.52±0.02%
SGD(0.5920) 2.52±0.07%

(a) Experiments with SGD (Section 3.1)

Optimizer Test error

Adam 4.67±0.06%

Adam / SGD(10�5) 3.03±0.02%
Adam(0.0040, 0.899, 0.999) 3.11±0.06%

Adam↵ / SGD(10�5) 3.12±0.04%
Adam↵(0.0021) 3.47±0.02%

Adam / Adam 3.05±0.09%
Adam(0.0038, 0.870, 0.999) 3.24±0.13%

Adam↵ / Adam 3.04±0.08%
Adam↵(0.0036) 3.08±0.12%

(b) Experiments with Adam (Section 3.2)

Optimizer Test error

AdaGrad 7.40±0.08%

AdaGrad / SGD 6.90±0.16%
AdaGrad(0.0080) 7.75±0.02%

AdaGrad / AdaGrad 5.03±0.23%
AdaGrad(0.0151) 6.67±0.08%

(c) Experiments with AdaGrad (Section 3.2)

Optimizer Test error

RMSProp 4.19±0.47%

RMSProp↵ / SGD(10�4) 3.55±0.23%
RMSProp(0.0030) 3.93±0.70%

RMSprop↵,� / SGD(10�4) 3.33±0.07%
RMSProp(0.0032, 0.9899) 3.25±0.09%

RMSProp↵ / RMSProp(10�4) 3.42±0.45%
RMSProp(0.0021) 3.60±0.04%

RMSProp↵,� / RMSProp(10�4) 2.96±0.11%
RMSProp(0.0020, 0.9962) 3.65±0.36%

(d) Experiments with RMSProp (Section 3.2)

Table 1: Hyperoptimization experiments with MNIST. We denote hyperoptimizers by their constituent
optimizers separated by slashes (the leftmost item adjusts the model’s weights). Adam↵ is an Adam
optimizer where only ↵ is optimized as by Baydin et al. (2018); RMSProp↵ is similar. If not
specified, initial hyperparameters are PyTorch defaults (10�2 for learning rates except 10�3 for
Adam; �1 = 0.9,�2 = 0.99 for Adam and � = 0.99 for RMSProp). Each hyperoptimizer experiment
is repeated using the final hyperparameters (typeset in pink) learned by the algorithm.

↵ and slightly lowers �1, but does not significantly affect �2. Nevertheless, learning �1 does help
slightly, though not when the top-level optimizer is itself another Adam optimizer.

Similarly, we can add any other optimizer to our system with just a few straightforward lines of
code. Here, we show results for AdaGrad (Table 1c) and RMSProp (Table 1d; also run to 5 epochs).
These experiments took less than an hour each to implement from scratch, and show that
every hyperoptimizer stack outperforms the non-hyperoptimized baseline. We remark that
AdaGrad is known to “stall” over time as the effective step size goes to zero; inspecting the learned
↵ over time, we find that the AdaGrad/AdaGrad hyperoptimizer increases ↵ to make up for this
effect. Additionally, we tried to hyperoptimize RMSProp’s new � parameter, which modulates the
accumulation of gradient RMS terms. This yielded even better results (compare ↵ to ↵,� trials), and
required only a 1-line change in our code.

3.3 Hyperoptimization at scale

Next, we evaluate our hyperoptimizers on two different real-world neural network architectures.

3.3.1 Convolutional neural networks for computer vision

We train a ResNet-20 (He et al., 2016) with and without hyperoptimization on the CIFAR-10
dataset (Krizhevsky, 2012). As a baseline, we replicate the training procedure of He et al. (2016): we

6

(a) For a wide range of “bad” initial hyperparameter configurations, the hyperoptimizer improves on (or at least
matches) final test accuracy, and often matches or even outperforms the “good” initial hyperparameters.

(b) The hyperoptimizer matches performance of the hand-engineered learning rate decay schedule by He et al.
(2016), learning a strikingly similar decay schedule (right plot).

Figure 2: Training ResNets on CIFAR-10 with hyperoptimizers (Section 3.3.1).

use the same network architecture, optimizer (SGD), step size (0.1), momentum (0.9), and weight
decay (10�4), though without their custom learning rate decay schedule (which we will address later).
Experiments were run for 200 epochs, which takes around 3 hours on our hardware.

First, we test how robust the hyperoptimizer is to “bad” initial choices of step size and momentum.
We vary the initial step size and the momentum among “small,” “good,” and “large” values (that
is, ↵ 2 {0.01, 0.1, 1.0} and µ 2 {0.09, 0.9, 0.99}), and add a hyperoptimizer (↵↵ = ↵2 · 10�3,
↵µ = 1/(1�µ) ·10�6). The results of this experiment are shown in Figure 2a. In every configuration,
the hyperoptimizer matches or outperforms the regular optimizer in final test accuracy. Furthermore,
in nearly all of the configurations, the hyperoptimizer matches or exceeds the “good” hyperparameters’
final test accuracy. Only when both hyperparameters are bad in the same direction (too small or too
large) is it unable to manage this, and even then for the too-large case it dramatically lowers the
loss compared to no hyperoptimizer. We conclude that hyperoptimizers are indeed beneficial for
tuning both step size and momentum in this real-world setting.
Next, we add in the learning rate decay schedule hand-engineered by He et al. (2016): the step size is
divided by 10 at epochs 100 and 150. We compare this with a hyperoptimizer initialized with the same
starting hyperparameters, training both variants for 500 epochs. Our results are shown in Figure 2b.
The hyperoptimizer not only matches the final test loss of the hand-engineered learning rate
decay schedule, but also learns a decay schedule strikingly similar to one hand-engineered by
He et al. Of course, both networks significantly outperform the baseline trained with a fixed step size.

3.3.2 Recurrent neural networks for language modeling

We train a character-level RNN (“Char-RNN”) on the Tolstoy dataset, as proposed by Karpathy et al.
(2015) as a convenient testbed for language models, which is now often used to benchmark optimizers
(Schneider et al., 2018; Schmidt et al., 2021). We took the architecture (2-layer LSTM with 128
hidden nodes) and “expert” optimizer (Adam optimizer with ↵ = 2⇥ 10�3, run for 50,000 gradient
descent steps) directly from Johnson (2017) as recommended by Karpathy et al. We compare against

7

Figure 3: Training RNNs with hyperoptimizers (Section 3.3.2). As the initial learning rate is lowered,
the regular Adam optimizer’s convergence slows, but the hyperoptimizer is able to accelerate it. The
hyperoptimizer also slightly improves convergence when the initial learning rate is too high.

our HyperAdam optimizer on a wide range of initial learning rates ↵ 2 {10�4, 2 ⇥ 10�3, 10�2},
with ↵↵ = ↵ · 10�2. We do not vary initial �1,2 because in our experience these hyperparameters are
typically left at their default values. However, we do allow the hyperoptimizer to vary �1,2 over the
course of training (with ↵�1 = 10�4 and ↵�2 = 2⇥ 10�4). All runs took around 1 hour to train.

The results of this experiment are shown in Figure 3. We find that the hyperoptimizer performs
comparably to the expert-chosen fixed step size (perplexity 5.41 ± 0.26 with hyperoptimizer vs
5.27± 0.31 without), and improves upon “bad” initial step sizes in both directions (5.45± 0.76 vs
5.77± 0.34 when too high; 6.51± 0.88 vs 8.71± 0.91 when too low).

3.4 Higher-order hyperoptimization

In Section 2.4 we developed an interface for building arbitrarily tall towers of optimizers. Baydin et al.
(2018) hypothesized that taller towers would yield hyperoptimizers that were increasingly robust to
the initial human-chosen hyperparameters. To validate this behavior of higher-order hyperoptimizers,
we ran each of our benchmarks from above (MLP on MNIST, CNN on CIFAR-10, RNN on Tolstoy)
with towers of hyperoptimizers of increasing heights, and with bottom-level step sizes ↵ initialized
across many orders of magnitude. In practice we find that if the initial hyper-step sizes are too large,
the computation diverges for networks larger than the MNIST MLP. So, we initialize each level’s
hyperparameter to be smaller than that of the previous level. Specifically, we use the following scheme:
from ↵ = 10�8 to 10�4 the higher layers’ step sizes were initialized to [↵ · 102,↵ · 100,↵ · 10�2]
respectively, while for ↵ � 10�3 they were initialized to [↵ · 10�3,↵ · 10�4, 10�8] respectively.

Figure 4 shows our results. It is indeed the case across these different benchmarks (each of which has
a different dataset, architecture, and optimizer type) that the taller the hyperoptimizer stack, the less
sensitive the results become to the human-chosen hyperparameters. With a three-level optimizer
stack, a single hyperoptimizer design obtains reasonable results in all of our benchmarks across
several orders of magnitude of base-level step size.

Further tests of scalability To test if our hyperoptimizers continue to work in even larger regimes,
we fine-tuned a ResNet-152 (pretrained on ImageNet) to the Caltech-256 dataset Griffin et al. (2007).
Figure 4e shows the results: a height-1 hyperoptimizer recovers ⇡ 11% error for both ↵ = 10�6 and
↵ = 10�4 (without a hyperoptimizer, ↵ = 10�6 gives 91.5% error). A height-2 hyperoptimizer is
additionally able to make significant progress when ↵ = 10�2.

We stress how lightweight and practical this method is. Figure 4f shows how runtime scales as a
function of hyperoptimizer stack height for the above benchmarks. We find that the scaling is linear:

8

(a) Results on an MLP (Sec 3.1), where all layers
are initialized with the same step size.

(b) Results on an MLP (Sec 3.1), where all layers
are initialized as in Sec 3.4.

(c) Results on a ResNet (Sec 3.3.1) (d) Results on a Char-RNN (Sec 3.3.2)

(e) Results on fine-tuning a pretrained ResNet-152
to the Caltech-256 dataset (Sec 3.4)

(f) Our hyperoptimizers have minimal impact on
runtime, which scales linearly in height (Sec 3.4)

Figure 4: Evaluating higher-order hyperoptimization across a variety of benchmarks (Section 3.4).
As we stack more layers of optimizers, the resulting hyperoptimizer is less sensitive to the initial
choice of hyperparameters, but costs only 1-2% more in runtime.

each additional level costs only 1-2% in additional runtime above the non-hyperoptimized
baseline, and negligible additional memory.

4 Related work

Hyperparameter optimization has a long history, and we refer readers to a recent survey by Feurer
and Hutter (2019) for the full story. Most existing work on gradient-based hyperparameter optimiza-
tion (Bengio, 2000; Domke, 2012; Maclaurin et al., 2015; Pedregosa, 2016; Franceschi et al., 2017)
has focused on computing hyperparameter gradients after several iterations of training, which is
computationally expensive. Baydin et al. (2018), building on a technique first published by Almeida

9

et al. (1999), propose instead updating hyperparameters at each step, and Rubio (2017) provides
a convergence analysis. Wu et al. (2018) demonstrate a “short-horizon bias” in the related online
“stochastic meta-descent” algorithm (Schraudolph, 1999), but Lichtarge et al. (2022) empirically find
encouraging results when optimizing large sequence-to-sequence models. Luketina et al. (2016)
apply a similar technique to regularization hyperparameters, though they note that their proposed
method could work in principle for any continuous hyperparameter. Grefenstette et al. (2019) provide
a library for metalearning via hypergradients. As discussed above, we expand upon this line of work
in three directions: (1) by fully automating this process, rather than requiring manual derivative
computations; (2) by optimizing hyperparameters beyond just the learning rate; and (3) by realizing
the vision of recursive higher-order hyperoptimizers and evaluating the resulting algorithms. We find
that they are indeed more robust to the initial human-chosen hyperparameter, which relates our work
to other learning algorithms that minimize sensitivity to learning rates (Orabona and Tommasi, 2017;
Vaswani et al., 2019).

5 Limitations and future work

As discussed in Section 3.4, one limitation of hyperoptimizers is that they cannot yet handle initial
hyperparameters that are set far too high, because the system is unstable and diverges before the
hyperoptimizer can have an effect. Designing hyperoptimizers robust in this regime requires further
research, such as a deeper theoretical analysis of convergence. Our implementation also requires
some care in avoiding certain bugs related to computation graph management. For example, loggers
must detach what is logged to avoid memory leaks because tensors are not garbage collected unless
all children are detached. Similarly, certain PyTorch modules (e.g. the built-in LSTM) cannot be used
because they silently modify the computation graph, which may lead to incorrect gradients with our
system. Further research is needed to design differentiable programming languages where methods
like ours can be expressed in a modular and composable manner that minimizes the risk of such bugs.

Broader impact Training a modern deep learning system consumes a tremendous amount of energy,
and hyperparameter searches can multiply that energy impact by many orders of magnitude (Strubell
et al., 2019). We hope that advances in on-line hyperparameter tuning can reduce this impact.

6 Conclusion

We presented a technique that enables gradient descent optimizers like SGD and Adam to tune
their own hyperparameters. Unlike prior work, our proposed hyperoptimizers require no manual
differentiation, learn hyperparameters beyond just learning rates, and can be stacked recursively to
many levels. We described an elegant recursive implementation of hyperoptimizers in a reverse-mode
AD system and evaluated it on a variety of benchmarks, showing that as the stacks grow taller, they
become less sensitive to the initial human-chosen hyperparameter.

Acknowledgments and Disclosure of Funding

We thank Samantha Andow, Emilio Arroyo-Fang, Irene Dea, Johann George, Melissa Grueter,
Basil Hosmer, Steffi Stumpos, Alanna Tempest, and Shannon Yang for early discussions, Krishna
Murthy Jatavallabhula and Josh Tenenbaum for their advice when preparing this paper, and the
anonymous reviewers for their thoughtful feedback. KC and JRK were supported by NSF Grants
#2105806, #CCF-1231216, #CCF-1723445 and #CCF-1846502, and ONR Grant #00010803 at
MIT. Additionally, KC was supported by a Hertz Foundation Fellowship, the Paul and Daisy Soros
Fellowship for New Americans, and an NSF Graduate Research Fellowship under Grant #2141064,
and AX was supported by the MIT Undergraduate Research Opportunities Program (UROP).

References
L. B. Almeida, T. Langlois, J. F. M. do Amaral, and A. Plakhov. Parameter adaptation in stochastic

optimization. In On-Line Learning in Neural Networks, 1999.

10

A. G. Baydin, R. Cornish, D. M. Rubio, M. Schmidt, and F. Wood. Online learning rate adaptation
with hypergradient descent. In Sixth International Conference on Learning Representations (ICLR),
Vancouver, Canada, April 30 – May 3, 2018, 2018.

Y. Bengio. Gradient-based optimization of hyperparameters. Neural Computation, 12(8):
1889–1900, 2000. doi: 10.1162/089976600300015187. URL https://doi.org/10.1162/
089976600300015187.

J. Domke. Generic methods for optimization-based modeling. In N. D. Lawrence and M. Girolami,
editors, Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statis-
tics, volume 22 of Proceedings of Machine Learning Research, pages 318–326, La Palma, Canary
Islands, 21–23 Apr 2012. PMLR. URL http://proceedings.mlr.press/v22/domke12.
html.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic
optimization. J. Mach. Learn. Res., 12:2121–2159, July 2011. ISSN 1532-4435. URL http:
//dl.acm.org/citation.cfm?id=1953048.2021068.

M. Feurer and F. Hutter. Hyperparameter Optimization, pages 3–33. Springer International Publishing,
Cham, 2019. ISBN 978-3-030-05318-5. doi: 10.1007/978-3-030-05318-5_1. URL https:
//doi.org/10.1007/978-3-030-05318-5_1.

L. Franceschi, M. Donini, P. Frasconi, and M. Pontil. Forward and reverse gradient-based hyperpa-
rameter optimization. In D. Precup and Y. W. Teh, editors, Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages
1165–1173, International Convention Centre, Sydney, Australia, 06–11 Aug 2017. PMLR. URL
http://proceedings.mlr.press/v70/franceschi17a.html.

E. Grefenstette, B. Amos, D. Yarats, P. M. Htut, A. Molchanov, F. Meier, D. Kiela, K. Cho, and
S. Chintala. Generalized inner loop meta-learning. arXiv preprint arXiv:1910.01727, 2019.

G. Griffin, A. Holub, and P. Perona. Caltech-256 object category dataset. 2007. URL http:
//authors.library.caltech.edu/7694/.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June
27-30, 2016, pages 770–778. IEEE Computer Society, 2016. doi: 10.1109/CVPR.2016.90. URL
https://doi.org/10.1109/CVPR.2016.90.

J. Johnson. torch-rnn. Github repository, 2017. URL https://github.com/jcjohnson/
torch-rnn.

A. Karpathy, J. Johnson, and L. Fei-Fei. Visualizing and understanding recurrent networks. arXiv
preprint arXiv:1506.02078, 2015. URL https://arxiv.org/pdf/1506.02078.pdf.

D. Kingma and J. Ba. Adam: A method for stochastic optimization. International Conference on
Learning Representations, 12 2014.

A. Krizhevsky. Learning multiple layers of features from tiny images. University of Toronto, 05
2012.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, Nov 1998. ISSN 0018-9219. doi:
10.1109/5.726791.

J. Lichtarge, C. Alberti, and S. Kumar. Simple and effective gradient-based tuning of sequence-to-
sequence models. AutoML, 2022. URL https://arxiv.org/pdf/2209.04683.pdf.

J. Luketina, M. Berglund, K. Greff, and T. Raiko. Scalable gradient-based tuning of continuous regu-
larization hyperparameters. In Proceedings of the 33rd International Conference on International
Conference on Machine Learning - Volume 48, ICML’16, pages 2952–2960. JMLR.org, 2016.
URL http://dl.acm.org/citation.cfm?id=3045390.3045701.

11

https://doi.org/10.1162/089976600300015187
https://doi.org/10.1162/089976600300015187
http://proceedings.mlr.press/v22/domke12.html
http://proceedings.mlr.press/v22/domke12.html
http://dl.acm.org/citation.cfm?id=1953048.2021068
http://dl.acm.org/citation.cfm?id=1953048.2021068
https://doi.org/10.1007/978-3-030-05318-5_1
https://doi.org/10.1007/978-3-030-05318-5_1
http://proceedings.mlr.press/v70/franceschi17a.html
http://authors.library.caltech.edu/7694/
http://authors.library.caltech.edu/7694/
https://doi.org/10.1109/CVPR.2016.90
https://github.com/jcjohnson/torch-rnn
https://github.com/jcjohnson/torch-rnn
https://arxiv.org/pdf/1506.02078.pdf
https://arxiv.org/pdf/2209.04683.pdf
http://dl.acm.org/citation.cfm?id=3045390.3045701

D. Maclaurin, D. Duvenaud, and R. P. Adams. Gradient-based hyperparameter optimization through
reversible learning. In Proceedings of the 32Nd International Conference on International Con-
ference on Machine Learning - Volume 37, ICML’15, pages 2113–2122. JMLR.org, 2015. URL
http://dl.acm.org/citation.cfm?id=3045118.3045343.

F. Orabona and T. Tommasi. Training deep networks without learning rates through coin betting.
Advances in Neural Information Processing Systems, 30, 2017.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga,
and A. Lerer. Automatic differentiation in PyTorch. In NIPS Autodiff Workshop, 2017.

F. Pedregosa. Hyperparameter optimization with approximate gradient. In Proceedings of the 33rd
International Conference on International Conference on Machine Learning - Volume 48, ICML’16,
pages 737–746. JMLR.org, 2016. URL http://dl.acm.org/citation.cfm?id=3045390.
3045469.

D. M. Rubio. Convergence analysis of an adaptive method of gradient descent. University of Oxford,
Oxford, M. Sc. thesis, 2017. URL https://damaru2.github.io/convergence_analysis_
hypergradient_descent/dissertation_hypergradients.pdf.

R. M. Schmidt, F. Schneider, and P. Hennig. Descending through a crowded valley-benchmarking
deep learning optimizers. In International Conference on Machine Learning, pages 9367–9376.
PMLR, 2021.

F. Schneider, L. Balles, and P. Hennig. Deepobs: A deep learning optimizer benchmark suite. In
International Conference on Learning Representations, 2018.

N. Schraudolph. Local gain adaptation in stochastic gradient descent. In 1999 Ninth International
Conference on Artificial Neural Networks ICANN 99. (Conf. Publ. No. 470), volume 2, pages
569–574 vol.2, 1999. doi: 10.1049/cp:19991170. URL https://ieeexplore.ieee.org/
document/817990.

E. Strubell, A. Ganesh, and A. McCallum. Energy and policy considerations for deep learning in NLP.
arXiv preprint arXiv:1906.02243, 2019. URL https://arxiv.org/pdf/1906.02243.pdf.

S. Vaswani, A. Mishkin, I. Laradji, M. Schmidt, G. Gidel, and S. Lacoste-Julien. Painless stochastic
gradient: Interpolation, line-search, and convergence rates. Advances in neural information
processing systems, 32, 2019.

Y. Wu, M. Ren, R. Liao, and R. Grosse. Understanding short-horizon bias in stochastic meta-
optimization. ICLR, 2018. URL https://arxiv.org/pdf/1803.02021.pdf.

M. D. Zeiler. ADADELTA: An adaptive learning rate method. CoRR, abs/1212.5701, 2012. URL
http://dblp.uni-trier.de/db/journals/corr/corr1212.html#abs-1212-5701.

12

http://dl.acm.org/citation.cfm?id=3045118.3045343
http://dl.acm.org/citation.cfm?id=3045390.3045469
http://dl.acm.org/citation.cfm?id=3045390.3045469
https://damaru2.github.io/convergence_analysis_hypergradient_descent/dissertation_hypergradients.pdf
https://damaru2.github.io/convergence_analysis_hypergradient_descent/dissertation_hypergradients.pdf
https://ieeexplore.ieee.org/document/817990
https://ieeexplore.ieee.org/document/817990
https://arxiv.org/pdf/1906.02243.pdf
https://arxiv.org/pdf/1803.02021.pdf
http://dblp.uni-trier.de/db/journals/corr/corr1212.html#abs-1212-5701

	Introduction
	Implementing hyperoptimizers
	Computing the step-size update rule by hand
	Computing the step-size update rule automatically
	Extending to other optimizers
	Stacking hyperoptimizers recursively

	Experiments
	Hyperoptimization for SGD
	Hyperoptimization for Adam, AdaGrad and RMSProp
	Hyperoptimization at scale
	Convolutional neural networks for computer vision
	Recurrent neural networks for language modeling

	Higher-order hyperoptimization

	Related work
	Limitations and future work
	Conclusion

