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Abstract. Automated detection and segmentation of kidneys, tumors, and cysts are useful for renal 
diagnosis and treatment planning. Here we propose a two-stage contrast-enhanced CT detection and 
segmentation framework that automatically segments the kidney, kidney tumor, and cyst. Testing the 
proposed algorithm on the KiTS21 dataset, we achieve the mean dice of 0.6543 and the mean surface 
dice of 0.4658. 
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1   Introduction 

Renal refers to the kidneys. The terms "tumor" and "mass" refer to abnormal body growths. Our kidneys might develop 
masses (growths or tumors) from time to time. Some kidney tumors are benign (noncancerous), whereas others are 
malignant (cancerous).  According to GLOBOCAN data from 2018, an estimated 403,000 persons are diagnosed with 
abnormal kidney growth each year, accounting for 2.2% percent of all cancer diagnoses [1]. Due to the enormous 
variation in kidney and kidney tumor shape, there is a lot of interest in understanding how tumor morphology 
influences surgical outcomes [2, 3] and developing sophisticated surgical planning techniques [4].  

For this purpose, measuring the shape and dimensions of a kidney tumor can be revealed by contrast-enhanced 
Computed Tomography (CT) imaging which is essential for diagnosis, treatment, and safe surgery [5]. Safe surgery 
involves avoiding injury to the kidney's vascular network. As a result, automatic semantic segmentation becomes a 
critical component of surgical planning and is widely used. Previously the KiTS2019 [6] focused on kidney and kidney 
tumor segmentation, whereas the newly introduced challenge KiTS21 includes an additional class of cyst. Therefore, 
in this article, we propose to segment kidney, kidney tumor, and cyst. This remaining manuscript is organized as 
follows. Methods and procedures are defined in section 2, section 3 presents the experimental results, and section 4 
concludes the overall manuscript. 

2   Methods 

In this work, we use a multi-stage algorithm to segment kidney, tumor and cyst. The proposed algorithm comprises 
two stages, as depicted in Figure 1. The first stage involves the detection process, and the second stage applies the 
segmentation process. In both settings, we consider ResUnet 3D as the backbone network. The detection process we 
use for accurate localization of the kidney. The reason for this, to make the subsequent segmentation process more 
effective.  

Primarily, we preprocess the CT training data by resampling (the z-axis spacing to 2mm, while retaining the x, y-axis 
unchanged) and cropping them to sizes 32x384x384. These CT images are provided as an input to the detection 
network. The detection network initially detects both the kidneys' shapes based on the preprocessed inputs. After the 
detection process, we calculate the centers of each detected kidney according to (x, y, z) points by using the skimage 
library. Further, the detected kidneys were cropped into cube (volume) sizes 64x128x128 and provided that to the 
segmentation network to predict kidney, tumor, and cyst. After that, we combine all the predicted masks from the 
segmentation network to the volume size (s×384×384). Finally, we post-process (by padding and resampling) the 
combined volume size (s×384×384) to the original CT scan size, i.e. (n×512×512). 



 

Figure 1: The architecture of our proposed two-stage detection and segmentation framework. 

2.1   Training and Validation Data 

To validate our proposed framework, we use the official KiTS21 dataset. The dataset is divided into training and 
validation sets (training: 269 cases, validation: 30 cases). For instance, 00000 to 00269 are training cases, and 00270 
to 00299 are validation cases. Note that we removed case 00160 from the adopted dataset due to its different size. In 
addition, we use voxel-wise majority voting (MAJ) for training and validation. 

2.2   Preprocessing 

After analyzing the KiTS21 data, we found different z-axis spacing between cases, i.e., in the range [0.5mm-5mm]. 
In the dataset, around 125 cases where the z-axis spacing is 5mm. To balance the z-axis spacing between each case, 
we resample the data to size (s, 512, 512) and set the z-axis spacing to 2mm, while the x-axis and y-axis remain 
unchanged.  

Further, we discard the useless regions from each resampled CT slice and crop it to size (s,384, 384) according to the 
image's center point for both training and prediction. Note that s denotes the number of resampled slices. The reasons 
for cropping are to reduce the image size and to cover the possible kidney regions. To improve the GPU utilization, 
we use the sliding window with a stride of 8 to resize the CT images to the volume size (32, 384, 384). We also 
perform some data cleaning by removing those volumes not containing the kidney, tumor, and cyst. 



After the kidneys detection in stage 1, we separate left and right kidney regions according to their masks. To cover 
the entire kidney in both left and right regions, we crop the kidney to volume sizes (64,128,128) with a stride of 8 by 
the following formula. 

         𝐶𝑜𝑢𝑛𝑡𝑒𝑟௩௢௟௨௠௘ =
௡ି଺ସ

଼
+ 1                                                      Eq. (1) 

In the above Eq. 1, n is the number of slices.  

Meanwhile, to improve the network accuracy, the intensity of the other organs of the CT is reduced by normalizing 
the HU intensity to the range [-100, 300]. The normalized HU intensity range is further subtracted by 100, i.e., [-200, 
200] and divided by 50, which is more useful for CNNs [7] to process.   

In addition, we use the data augmentation technique such as horizontal flip, translation, affine translation, etc. For 
stage 1, the training set size is extended to 18576 volumes, and the validation set is extended to 1914 volumes. 
Similarly, for stage 2, the training set size is extended to 27066 volumes, and the validation set size is extended to 
2550 volumes. Finally, we resample the z-axis spacing of combined CT scans into the original CT scans' z-axis spacing. 

2.3   Proposed Method 

2.3.1 Network Architecture 

Since U-Net[8] has achieved excellent segmentation results specifically for 3D volumetric CT scans, which are 2D 
image sequences, therefore, our intended model also takes advantage of U-Net 3D [1] and the Residual network [9] 
to perform the three-class segmentation task. Our proposed ResU-Net 3D network architecture is shown in Figure 2. 
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Figure 2：The proposed ResU-Net3D network 



The intended network uses three encoder and decoder blocks, which are residual convolutional blocks. The residual 
block contains three convolutional layers, and the residual convolution kernel size is 3×3×3. The stride size of every 
residual convolution is 1×1×1. In addition, the up-sampling using the transposed convolution and the up-sampling’s 
convolution kernel size is 2×2×2 where the stride is 2. The down-sampling stride size is 2×2×2 convolution, and the 
final output layer is 1×1×1 convolution. The network parameters are given in Table 1. 

Table 1: The network parameters 

Name Layers Stride Kernel size Padding 

Convolution(C) 
Conv - -  

Batch norm  - -  
ReLU - -  

Residual Block 

C1 1×1×1 3×3×3 1×1×1 
C2 1×1×1 3×3×3 1×1×1 
C3 1×1×1 1×1×1 0 

C1+C3    
Down Sample C 2×2×2 2×2×2 0 

Up Sample Transpose Conv 2×2×2 2×2×2 0 

Concat 
Residual Block + 

Up Sample 
   

Output Layer C 1×1×1 1×1×1 0 
 

2.3.2 Training 

Our proposed networks are implemented using the Pytorch1.9.0 framework. To train the network, we use the Adam 
optimizer as the network optimizer. The initial learning rate is set to 0.001, and we choose cross-entropy to calculate 
the loss function of the network. For stage 1, the input volume sizes are 32×384×384, and for stage 2, the input volume 
sizes are 64×128×128. The batch size in stage 1 is set to 4 and 16 in stage 2. A total of 50 iterations (epochs) are 
performed for training the network on 32G Nvidia V100 GPU.  

2.3.3 Validation strategy 

According to Hierarchical Evaluation Classes (HECs) proposed by the KiTS21 challenge, the following HECs will be 
used. 

 Kidney and Masses: Kidney + Tumor + Cyst 
 Kidney Mass: Tumor + Cyst 
 Tumor: Tumor only 

To evaluate the performance of the model, we use dice and surface dice(SD). 

3   Results 

We selected case00270~case00299 as the validation set and provided these cases' to the proposed pipeline for 
prediction purposes. Table 1 shows the three classes dice and surface dice where KMC denotes kidney and Masses 
class, Kidney Mass is denoted by KM, and Tumor class is denoted by T. Table 2 shows the achieved Mean Dice and 
surface dice are 0.6543 and 0.4658. Figure 4 provides the visual analysis of the proposed pipeline prediction. 
 
 

Table 1. Mean Dice and SDS of classes on KiTS21 validation set 

Network KMC Dice KM Dice T Dice KMC SD KM SD T SD 



Ours 0.9130 0.5635 0.4864 0.7718 0.3424 0.2834 
 

Table 2. Mean Dice of the proposed pipeline on KiTS21 validation set 

Network Mean Dice Mean SD 
Ours 0. 6543 0. 4658 

Case288
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Figure 4：Visualization of predictions of our proposed model. The 1st column is the input CT slice, the 2nd 

column is the mask, and the third column is our proposed method predictions. 

 
3   Discussion and Conclusion 

This work proposed two-stages detection and segmentation architecture to automatically segment kidney, cyst, and 
tumor based on the KiTS21 benchmark. For both the detection and segmentation networks, the ResUnet 3D is utilized 
as the backbone. The designed two-stage architecture achieved the mean dice of kidney and messes, kidney messes 
and the tumor is 0.6543, and the mean surface dice is 0.4658. However, our model generated low dice and surface 
dice for the tumor and cyst. The reason for that is that tumor and cyst are quite tiny and have limited availability in 
the adopted dataset. Therefore, to address this problem, in the future, we plan to augment data of the tumor and cyst 
for better detection and segmentation, which will eventually lead us to better quantitative outcomes. 
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regarding our work. We revised the whole manuscript and made the required changes recommended by the reviewers. 
The modified changes are highlighted in the manuscript. The point-to-point responses to the reviewers’ comments are 
provided as follows. 

 
Review 1: 

Overall 
 Please make sure to update the abstract with your performance on the test set once this is known 
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 Looks good 
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 It might be nice to mention the resampling earlier, perhaps before you mention cropping 
Response: Thank you for your useful suggestions. We modified our manuscript according to the 
suggested guidelines. 

 Am I understanding correctly that you simply discard all pixels outside of a 384x384 window? Is 
this only during training? Please clarify within the paper 

Response: Yes, we discard all the outside pixels in both training and prediction. We also clearly 
mentioned this in the revised version of our manuscript. 

 Please explain why you chose your HU bounds for normalization 

Response: Thank you for your deep analysis. Choosing HU bounds normalization is explained as 
follows. 
“Meanwhile, to improve the network accuracy, the intensity of the other organs of the CT is reduced 
by normalizing the HU intensity to the range [-100, 300]. The normalized HU intensity range is 
further subtracted by 100, i.e., [-200, 200] and divided by 50, which is more useful for CNNs [7] to 
process.” We also clearly mentioned this in the modified version of our manuscript. 
 

Results 
 Looks good 

Discussion and Conclusion 
 Looks good 

Rating: 7: Good paper, accept 

Review 2: 

This paper presents a coarse-to-fine approach based on a 3D U-Net. The paper is well-written and 
contains a good level of detail along with nice figures. One point that was omitted, though, is which set of 
aggregated segmentations they used for training and validation? Most teams used majority voting, but some 
used the sampling method from the GitHub repo. The authors should include this detail in their revision. 

Response: Thank you for your insightful analysis. We use voxel-wise majority voting (MAJ) for training 
and validation. We also indicated this in the revised version of our manuscript. 

Rating: 7: Good paper, accept 


