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ABSTRACT

While message passing Graph Neural Networks (GNNs) have become increas-
ingly popular architectures for learning with graphs, recent works have revealed
important shortcomings in their expressive power. In response, several higher-
order GNNs have been proposed that substantially increase the expressive power,
albeit at a large computational cost. Motivated by this gap, we explore alternative
strategies and lower bounds. In particular, we analyze a new recursive pooling
technique of local neighborhoods that allows different tradeoffs of computational
cost and expressive power. First, we prove that this model can count subgraphs of
size k, and thereby overcomes a known limitation of low-order GNNs. Second,
we show how recursive pooling can exploit sparsity to reduce the computational
complexity compared to the existing higher-order GNNs. More generally, we pro-
vide a (near) matching information-theoretic lower bound for counting subgraphs
with graph representations that pool over representations of derived (sub-)graphs.
We also discuss lower bounds on time complexity.

1 INTRODUCTION

Graph Neural Networks (GNNs) are powerful tools for graph representation learning (Scarselli et al.,
2008; Kipf & Welling, 2017; Hamilton et al., 2017), and have been successfully applied to molecule
property prediction, simulating physics, social network analysis, knowledge graphs, traffic predic-
tion and many other domains (Duvenaud et al., 2015; Defferrard et al., 2016; Battaglia et al., 2016;
Jin et al., 2018). The perhaps most widely used class of GNNs, Message Passing Graph Neural Net-
works (MPNNs) (Gilmer et al., 2017; Kipf & Welling, 2017; Hamilton et al., 2017; Xu et al., 2019;
Scarselli et al., 2008), follow an iterative message passing scheme to compute a graph representation.

Despite the empirical success of MPNNs, their expressive power has been shown to be limited. For
example, their discriminative power, at best, corresponds to the one-dimensional Weisfeiler-Leman
(1-WL) graph isomorphism test (Xu et al., 2019; Morris et al., 2019), so they cannot distinguish
regular graphs, for instance. Likewise, they cannot count any induced subgraph with at least three
vertices (Chen et al., 2020), or learn structural graph parameters such as clique information, diame-
ter, conjoint or shortest cycle (Garg et al., 2020). Yet, in applications like computational chemistry,
materials design or pharmacy (Elton et al., 2019; Sun et al., 2020; Jin et al., 2018), the functions we
aim to learn often depend on the presence or count of specific substructures, e.g., functional groups.

The limitations of MPNNs result from their inability to distinguish individual nodes. To resolve this
issue, two routes have been studied: (1) using unique node identifiers (Loukas, 2019; Sato et al.,
2019; Abboud et al., 2021), and (2) higher-order GNNs that act on k-tuples of nodes. Node IDs, if
available, enable Turing completeness for sufficiently large MPNNs (Loukas, 2019). Higher-order
networks use an encoding of k-tuples and then apply message passing (Morris et al., 2019), or
equivariant tensor operations (Maron et al., 2018).

The expressive power of MPNNs is often measured in terms of a hierarchy of graph isomorphism
tests, specifically the k-Weisfeiler-Leman (k-WL) hierarchy. The k-order models in (Maron et al.,
2018) and (Maron et al., 2019a) are equivalent to the k-WL and (k+1)-WL “tests”, respectively, and
are universal for the corresponding function classes (Azizian & Lelarge, 2020; Maron et al., 2019b;
Keriven & Peyré, 2019). Yet, these models are computationally expensive, operating on Θ(nk)
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tuples and according to current upper bounds requiring up to O(nk) iterations (Kiefer & McKay,
2020). The necessary tradeoffs between expressive power and computational complexity are still
an open question. However, for specific classes of tasks this full universality may not be needed.
Here, we study such an example of practical interest: counting substructures, as proposed in (Chen
et al., 2020). In particular, we study if it is possible to count given substructures with a GNN whose
complexity is between that of MPNNs and existing higher-order GNNs.

To this end, we study a generic scheme followed by many GNN architectures, including MPNNs
and higher-order GNNs (Morris et al., 2019; Chen et al., 2020): select a collection of subgraphs
of the input graph, encode these, and apply an aggregation function on this collection. First, we
study the power of pooling by itself, as a multi-set function over node features. We prove that k
recursive applications on each node’s neighborhood allow to count any substructure of size k. This
is in contrast to iterative MPNNs. We call this technique Recursive neighborhood pooling (RNP).
While subgraph pooling relates to the graph reconstruction conjecture, our strategy has important
differences. In particular, we show how the aggregation “augments” local encodings, if they play
together and the subgraphs are selected appropriately, and this reasoning may be of interest for
the design of other, even partially, expressive architectures. Moreover, our results show that the
complexity is adjustable to the counting task of interest and the sparsity of the graph.

The strategy of pooling subgraph encodings has previously been used for counting in Local Rela-
tional Pooling (LRP) (Chen et al., 2020). LRP relies on an isomorphic encoding of subgraphs, which
is expensive – e.g., the relational pooling it uses requires O(k!) time for a subgraph of size k. Other
higher-order GNNs would be expensive, too, as high orders are needed for complete isomorphism
power. A major difference to our RNP is that our recursion uses subgraphs of varying sizes and
structures, many of them much smaller – adapted to the graph structure and specific counting task.

Furthermore, we study lower bounds on GNNs that count motifs. We show an information-theoretic
lower bound on the number of subgraphs to encode, as a function of an encoding complexity. We
also transfer computational lower bounds that apply to any counting GNN. The lower bounds show
that the recursive pooling is close to tight.

In short, in this paper, we make the following contributions:
• We study the power of pooling encodings of subgraphs, and show that pooling, as an injective

multi-set function, is sufficient by itself for counting when applied recursively on appropriate
subgraphs, remarkably without relying on other encoding techniques or node IDs. This is different
from any other strategy we are aware of in the literature.

• We analyze the complexity of recursive pooling, as a function of the task and input graph.
• We provide complexity lower bounds for pooling and general GNN architectures that count motifs.

For instance, we show a lower bound on the number of subgraphs that need to be encoded.

2 BACKGROUND

Message Passing Graph Neural Networks. Let G = (V, E , X) be an attributed graph with
|V| = n nodes. Here, Xv ∈ X denotes the initial attribute of v ∈ V , where X ⊆ N is a (countable)
domain.A typical Message Passing Graph Neural Network (MPNN) first computes a representation
of each node, and then aggregates the node representations via a readout function into a representa-
tion of the entire graph G. The representation h(i)

v of each node v ∈ V is computed iteratively by
aggregating the representations h(i−1)

u of the neighboring vertices u:

m(i)
v = AGGREGATE(i)

(
{{h(i−1)

u : u ∈ N (v)}}
)
, h(i)

v = COMBINE(i)
(
h(i−1)
v ,m(i)

v

)
, (1)

for any v ∈ V , for k iterations, and with h(0)
v = Xv . The AGGREGATE/COMBINE functions are

parametrized, and {{.}} denotes a multi-set, i.e., a set with (possibly) repeating elements. A graph-
level representation can be computed as hG = READOUT

(
{{h(k)

v : v ∈ V}}
)
, where READOUT

is a learnable aggregation function. For representational power, it is important that the learnable
functions are injective (Xu et al., 2019).

Higher-Order GNNs. To increase the representational power of GNNs, several higher-order
GNNs have been proposed. In k-GNN, message passing is applied to k−tuples of nodes, inspired
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by k-WL (Morris et al., 2019). At initialization, each k-tuple is labeled such that two k-tuples are
labeled differently if their induced subgraphs have different isomorphism types (Maron et al., 2019a;
Cai et al., 1992). As a result, k-GNNs can count (induced) substructures with at most k vertices even
at initialization. Another class of higher-order networks applies (linear) equivariant operations, in-
terleaved with coordinate-wise nonlinearities, to order-k tensors consisting of the adjacency matrix
and input node attributes (Maron et al., 2018; 2019a;b). These GNNs are at least as powerful as
k−GNNs, and hence they too can count substructures with at most k vertices. All these methods
need Ω(nk) operations. Local Relational Pooling (LRP) (Chen et al., 2020) was designed for count-
ing and applies relational pooling (Murphy et al., 2019b;a) on local neighborhoods, i.e., one pools
over evaluations of a permutation-sensitive function applied to all k! permutations of the nodes in a
k-size neighborhood of each node.

3 OTHER RELATED WORKS

Expressive power. Several other works have studied the expressive power of GNNs as function
approximators (Azizian & Lelarge, 2020). Scarselli et al. (2009) extend universal approximation
from feedforward networks to MPNNs, using the notion of unfolding equivalence, i.e., functions on
computation trees. Indeed, graph distinction and function approximation are closely related (Chen
et al., 2019; Azizian & Lelarge, 2020; Keriven & Peyré, 2019). Maron et al. (2019b) and Keriven &
Peyré (2019) show that higher-order, tensor-based GNNs provably achieve universal approximation
of permutation-invariant functions on graphs, and Loukas (2019) analyzes expressive power under
depth and width restrictions. Studying GNNs from the perspective of local algorithms, Sato et al.
(2019) show that GNNs can approximate solutions to certain combinatorial optimization problems.
For counting substricutres, Arvind et al. (2020); Fürer (2017) show that 2-WL, which is equivalent
to MPNNs, can count not necessarily induced cycles and paths of up to 7 vertices with O(n2)
complexity,

Subgraphs and GNNs. Having infromation about subgraphs can be quite helpful in various graph
representation algorithms (Liu et al., 2019; Monti et al., 2018; Liu et al., 2020; Yu et al., 2020; Meng
et al., 2018; Cotta et al., 2020; Alsentzer et al., 2020; Huang & Zitnik, 2020). For example, for graph
comparison (i.e., testing whether a given (possibly large) subgraph exists in the given model), Ying
et al. (2020) compare the outputs of GNNs for small subgraphs of the two graphs. To improve the
expressive power of GNNs, Bouritsas et al. (2020) use features that are counts of specific subgraphs
of interest. Another example is (Vignac et al., 2020), where an MPNN is strengthened by learning
local context matrices around vertices. Recent works have also developed GNNs that pass messages
on ego-nets (You et al., 2021; Sandfelder et al., 2021). With motivation from the reconstruction
conjecture, Cotta et al. (2021) process node-deleted subgraphs with individual MPNNs, and then
pool them with a DeepSets model to get a representation of the original graph.

4 RECURSIVE NEIGHBORHOOD POOLING

Let G = (V, E , X) be an attributed input graph with |V| = n nodes, and let h(0)
v = Xv be the initial

representation of each node v. In this work, we study architectures that first find representations of a
collection of m subgraphs Gi and then aggregate (pool) over these representations with a multi-set
function, i.e.,

AGGREGATE({{ψ(Gi) : i ∈ [m]}}), [m] = {1, . . . ,m}. (2)

It is clear that if the ψ can count a subgraph structure H , then the entire model can count H . In
particular, we aim to apply this strategy to obtain the representations ψ, too. To appreciate the
challenges in doing so, recall two such examples. First, MPNNs follow this pooling strategy, by
iteratively aggregating over node neighborhoods, and then aggregating all node representations into
a graph representation. However, it is known that MPNNs can count at most star structures or edges
(Arvind et al., 2020). This is because they represent a local computation tree, which loses structural
information about node identities and connectivity. Second, this strategy is at the heart of the Graph
Reconstruction Conjecture (Kelly, 1957), which conjectures that a graph G can be reconstructed
from its subgraphs {{Gv = G \ {v} : v ∈ V (G)}} (Appendix E). This, however, is unknown for
general graphs. Although the Gv retain some structure, we lose information about their structural
relationship. In summary, encoding structural information is the key question.
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Figure 1: Illustration of a Recursive Neigh-
borhood Pooling GNN (RNP-GNN) with re-
cursion parameters (2, 2, 1). To compute the
representation of node v in the given input
graph (depicted in the top left of the figure),
we first recurse on G(N2(v)\{v}) (top right
of figure). To do so, we find the represen-
tation of each node u ∈ G(N2(v) \ {v}).
For instance, to compute the representation
of u1, we apply an RNP-GNN with recursion
parameters (2, 1) and aggregate G((N2(v) \
{v}) ∩ (N2(u1) \ {u1})), which is shown in
the bottom left of the figure. To do so, we
recursively apply an RNP-GNN with recur-
sion parameter (1) on G((N2(v) \ {v}) ∩
(N2(u1) \ {u1}) ∩ (N1(u11) \ {u11})), in
the bottom right of the figure.

Hence, to represent the counting function ψ over potentially large neighborhoods, an MPNN does
not suffice. But, aggregation over input node attributes, along with edge information, can count edge
types, i.e., tiny subgraphs. Hence, we recursively apply aggregation on smaller sub-neighborhoods
while remembering structural information, with node-wise aggregation as the base case. For intu-
ition, suppose we aim to count the occurrence of subgraph H in the r1-neighborhood Nr1(v) of
a node v. To do so, we may count Hv = H \ {v} in the smaller graph Nr1(v) \ {v}. But, to
combine these counts with the presence of v to “complete” H , we must know how the Hv are con-
nected to v in the screened graph. Hence, to retain structure information, we mark the neighbors of
v. We then recursively call neighborhood pooling to process smaller neighborhoods Nr2(u) within
Nr1(v) \ {v}. This could, e.g., learn to count marked versions of Hv . The radii r of neighborhoods
may differ in recursive calls. In Section 5, we relate their size to H .

Recursive neighborhood pooling RNP-GNN(G, {hin
u}u∈V(G), (r1, . . . , rτ )) takes an attributed

graph along with a sequence of neighborhood radii for different recursions, and returns a set of
node encodings {hv}v∈V(G). For any v ∈ G, RNP-GNN first constructs v’s neighborhood, removes
v and marks its neighbors1:

Gv ← Nr1(v) \ {v}, hin
u,aug = (hin

u ,1[(u, v) ∈ E(Gv)]). (3)

Here, we extracted r1−neighborhood of v, removed the central node v, and then added the new
structural information to 1−neighbors of v. Then we aggregate over subgraph representations, i.e.,
the representations of Gv, v ∈ [n] when they considered as a set graphs. If τ = 1 (base case), we
use the input features:

hv ← AGGREGATE(τ)(hin
v , {{hin

u,aug : u ∈ Gv}}). (4)

In other words, in this case we only combine hidden representations in each Gv without any itera-
tion/recursion. If τ > 1, we recursively represent neighborhoods of nodes in Gv:

{ĥv,u}u∈G′ ← RNP-GNN
(
Gv, {hin

u,aug}u∈Gv , (r2, r3, . . . , rτ )
)

(5)

hv ← AGGREGATE(τ)
(
hin
v , {{ĥu,v : u ∈ Gv}}

)
. (6)

Here, we first apply an RNP-GNN on each Gv to update the representations of nodes for each node
in Gv . Then, we combine those representations to find the representation of v. The fact that Gv has
less nodes thanG allows to define the algorithm in an inductive way; this ensures the algorithm does
not have any logical loop. For aggregation, we can use, e.g., the injective multi-set function from
(Xu et al., 2019):

AGGREGATE(τ)
(
hv, {hu}u∈Gv

)
= MLP(τ)

(
(1 + ε)hv +

∑
u∈Gv

ĥu

)
, (7)

11[.] is one when the condition is satisfied, and otherwise is zero.
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where we use MLP modules with ReLU activation, and ε is an arbitrary irrational constant (Xu et al.,
2019). The final readout aggregates over the final node representations of the entire graph. Figure 1
illustrates an RNP-GNN with recursion parameters (2, 2, 1), and Appendix F provides pseudocode.
One can optionally do message passing iterations to the representations hv, v ∈ [n] to make the
model more expressive; though our results hold even without those iterations.

While MPNNs also encode a representation of a local neighborhood, the recursive representations
differ as they take into account intersections of neighborhoods. As a result, as we will see in Sec-
tion 5, they retain more structural information and are more expressive than MPNNs; one can take
r1 = 1 to simulate one iteration of MPNNs (and then iterate).

Models like k-GNN and LRP also compute encodings of subgraphs, and then update the resulting
representations via message passing. We can do the same with the neighborhood representations
computed by RNP-GNNs to encode more global information, although our representation results in
Section 5 hold even without that.

5 EXPRESSIVE POWER OF RECURSIVE POOLING

In this section, we analyze the expressive power of RNP-GNNs. We notice that for full expres-
siveness, we indeed need the identifiers in Eq. (3); their addition is an important insight. Still,
RNP-GNN does maintain some expressive power without the augmented identifiers. For instance,
consider the graphs G1 = two triangles and G2 = the 6-cycle, which are 1-WL equivalent and thus
cannot be distinguished by MPNNs. An RNP-GNN with r1 = 1 can distinguish these without the
augmented identifiers. This is because on the first recursion level, the 1-neighborhoods of G1 are
two nodes with an edge between them, and the 1-neighborhoods ofG2 consist of two isolated nodes.

5.1 COUNTING (INDUCED) SUBSTRUCTURES

In contrast to MPNNs, which in general cannot count substructures of three vertices or more (Chen
et al., 2020), in this section we prove that for any set of substructures, there is an RNP-GNN that
provably counts them. We begin with a few definitions.

Definition 1. LetG,H be arbitrary, potentially attributed simple graphs, where V is the set of nodes
in G. Also, for any S ⊆ V , let G(S) denote the subgraph of G induced by S. The induced subgraph
count function is defined as

C(G;H) :=
∑
S⊆V

1{G(S) ∼= H}, (8)

i.e., the number of subgraphs of G isomorphic to H .

To relate the size of encoded neighborhoods to the substructureH , we will need a notion of covering
sequences for graphs.

Definition 2. Let H = (VH , EH) be a simple connected graph. For any S ⊆ VH and v ∈ VH ,
define the covering distance of v from S as

d̄H(v;S) := max
u∈S

d(u, v), (9)

where d(., .) is the shortest-path distance in H .

Definition 3. Let H be a simple connected graph on τ + 1 vertices. A permutation of vertices,
such as (v1, v2, . . . , vτ+1), is called a vertex covering sequence with respect to a sequence r =
(r1, r2, . . . , rτ ) ∈ Nτ called a covering sequence, if and only if

d̄H′i(vi;Si) ≤ ri, (10)

for any i ∈ [τ + 1] = {1, 2, . . . , τ + 1}, where Si = {vi, vi+1 . . . , vτ+1} and H ′i = H(Si) is the
subgraph of H induced by the set of vertices Si. We also say that H admits the covering sequence
r = (r1, r2, . . . , rτ ) ∈ Nτ if there is a vertex covering sequence for H with respect to r.

In particular, in a covering sequence we first consider the whole graph as a local neighborhood of
one of its nodes with radius r1. Then, we remove that node and compute the covering sequence of

5



Under review as a conference paper at ICLR 2022

the remaining graph. Figure 4 shows an example of covering sequence computation. An important
property, which holds by definition, is that if r is a covering sequence for H , then any r′ ≥ r
(coordinate-wise) is also a covering sequence for H .

Note that any connected graph on k nodes admits at least one covering sequence, which is (k −
1, k − 2, . . . , 1). To observe this fact, note that in a connected graph, there is at least one node that
can be removed and the remaining graph still remains connected. Therefore, we may take this node
as the first element of a vertex covering sequence, and inductively find the other elements. Since the
diameter of a connected graph with k vertices is always bounded by k − 1, we achieve the desired
result. However, we will see in the next section that, when using covering sequences to identify
sufficiently powerful RNP-GNNs, it is desirable to have covering sequences with low r1, since the
complexity of the resulting RNP-GNN depends on r1.

More generally, if H1 and H2 are (possibly attributed) simple graphs on k nodes and H1 b H2, i.e.,
H1 is a subgraph of H2 (not necessarily induced subgraph), then it follows from the definition that
any covering sequence for H1 is also a covering sequence for H2. As a side remark, as illustrated in
Figure 2, covering sequences need not always to be decreasing. Using covering sequences, we can
show the following result.
Theorem 1. Consider a set of (possibly attributed) graphsH on τ+1 vertices, such that anyH ∈ H
admits the covering sequence (r1, r2, . . . , rτ ). Then, there is an RNP-GNN f(·; θ) with recursion
parameters (r1, r2, . . . , rτ ) that can count any H ∈ H. In other words, for any two graphs G1, G2,
if there existsH ∈ H such that C(G1;H) 6= C(G2;H), then f(G1; θ) 6= f(G2; θ). The same result
also holds for the non-induced subgraph count function.

Theorem 1 states that, with appropriate recursion parameters, any set of (possibly attributed) sub-
structures can be counted by an RNP-GNN. Interestingly, induced and non-induced subgraphs can
be both counted in RNP-GNNs2. Also, for a given covering sequence, we can simultaneously count
a set of substructures that each admit it. This means that one RNP-GNN is able to potentially count
many substructures. We prove Theorem 1 in Appendix A.2. The main idea is to show that we
can implement the intuition for recursive pooling outlined in Section 4 formally with the proposed
architecture and multiset functions3.

The theorem holds for any covering sequence that is valid for all graphs in H. For any graph, one
can compute a covering sequence by computing a spanning tree, and sequentially pruning the leaves
of the tree. The resulting sequence of nodes is a vertex covering sequence, and the corresponding
covering sequence can be obtained from the tree too (Appendix D). A valid covering sequence for
all the graphs inH is the coordinate-wise maximum of all these sequences.

For large substructures, the sequence (r1, r2, . . . , rτ ) can be long or include large numbers, and this
will affect the computational complexity of RNP-GNNs. For small, e.g., constant-size substructures,
the recursion parameters are also small (i.e., ri = O(1) for all i), raising the hope to count these
structures efficiently. In particular, r1 is an important parameter. In Section 5.3, we analyze the
complexity of RNP-GNNs in more detail.

5.2 A UNIVERSAL APPROXIMATION RESULT FOR LOCAL FUNCTIONS

Theorem 1 shows that RNP-GNNs can count substructures if their recursion parameters are chosen
carefully. Next, we provide a universal approximation result, which shows that they can represent
any function related to local neighborhoods or small subgraphs in a graph.

First, we recall that for a graph G, G(S) denotes the subgraph of G induced by the set of nodes S.
Definition 4. A function ` : Gn → Rd is called an r−local graph function if

`(G) = φ({{ψ(G(S)) : S ⊆ V, |S| ≤ r}}), (11)

where ψ : Gr → Rd′ is a function on graphs, φ is a multi-set function, and V denotes the set of all
nodes.

2For simplicity, we assume thatH only contains τ + 1 node graphs. IfH includes graphs with strictly less
than τ + 1 vertices, we can simply append a sufficient number of zeros to their covering sequences.

3One can also generalize this theorem to wider classes of graphs; see Remark 1. However, here in this paper
we focus on a special class of graph with covering sequences to keep the results simple and insightful
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In other words, a local function only depends on small substructures.
Theorem 2. For any r−local graph function `(.), there exists an RNP-GNN f(.; θ) with recursion
parameters (r − 1, r − 2, . . . , 1) such that f(G; θ) = `(G) for any G ∈ Gn.

To prove the theorem, we use specific aggregation functions, but since MLPs with ReLU activation
are universal approximators, we can approximate those aggregations and find an RNP-GNN f(G; θ)
implemented by MLPs such that |f(G; θ) − `(G)| < ε, for arbitrary small ε. As a result, we can
provably approximate all the local information in a graph with an appropriate RNP-GNN. Note that
we still need recursions, because the function ψ(.) may be an arbitrarily difficult graph function.
However, to achieve the full generality of such a universal approximation result, we need to consider
large recursion parameters (r1 = r − 1) and injective aggregations in the RNP-GNN network. For
universal approximation, we may also need high dimensions if fully connected layers are used for
aggregation (see the proof in Appendix B for more details).

As a remark, for r = n, achieving universal approximation on graphs implies solving the graph
isomorphism problem. But, in this extreme case, the computational complexity of RNP is in general
not polynomial in n.

5.3 COMPUTATIONAL COMPLEXITY

v1

v2 v3 v4 v5 v6

Figure 2: For the above graph,
(v1, v2, . . . , v6) is a vertex covering se-
quence. The corresponding covering se-
quence (1, 4, 3, 2, 1) is not decreasing.

The computational complexity of RNP-GNNs is graph-
dependent. For instance, we need to compute the set of
local neighborhoods, which is cheaper for sparse graphs.
Moreover, in the recursions, we use intersections of
neighborhoods which become smaller and sparser.
Theorem 3. Let f(.; θ) : Gn → Rd be an RNP-
GNN with recursion parameters (r1, r2, . . . , rτ ). As-
sume that the observed graphs G1, G2, . . ., whose rep-
resentations we compute, satisfy the following property:
maxv∈[n] |Nr1(v)| ≤ c, for a constant c. Then the num-
ber of node updates in the RNP-GNN is O(ncτ ).

In other words, if c = no(1) and τ = O(1), then RNP-
GNN requires relatively few updates (that is, n1+o(1)).
If the maximum degree of the given graphs is ∆, then c = O(r1∆r1). Therefore, similarly, if
∆ = no(1) then we can count with at most n1+o(1) updates. Additional gains may arise from rapidly
shrinking neighborhoods, which are not yet accounted for in Theorem 3. To put this in context, the
higher-order GNNs based on tensors or k-WL would operate on tensors of order nτ+1.

Table 1: Time complexity of various models. ∆ is the max-
degree, and ’−’ means the complexity is not polynomial in n.

Model worst-case ∆ = no(1) ∆ = O(log(n)) ∆ = O(1)

LRP − − − O(n)
k−WL nk nk nk nk

RNP nk n1+o(1) Õ(n) O(n)

The above results show that when us-
ing RNP-GNNs with sparse graphs,
we can represent functions of sub-
structures with k nodes without re-
quiring k−order tensors. LRPs also
encode neighborhoods of distance r1

around nodes. In particular, all c! per-
mutations of the nodes in a neighbor-
hood of size c are considered to ob-
tain the representation. As a result, LRP networks only have polynomial complexity if c =
o(log(n)). Thus, RNP-GNNs can provide an exponential improvement in terms of the tolerable
size c of neighborhoods with distance r1 in the graph.

Moreover, Theorem 3 suggests to aim for small r1. The other ri’s may be larger than r1, as shown
in Figure 2, but do not affect the upper bound on the complexity.

6 AN INFORMATION-THEORETIC LOWER BOUND

In this section, we provide a general information-theoretic lower bound for graph representations
that encode a given graph G by first encoding a number of (possibly small) graphs G1, G2, . . . , Gt
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and then aggregating the resulting representations. The sequence of graphs G1, G2, . . . , Gt may be
obtained in an arbitrary way from G. For example, in an MPNN, Gi can be the computation tree
(rooted tree) at node i. As another example, in LRP, Gi is the local neighborhood around node i.

Formally, consider a graph representation f(.; θ) : Gn → Rd as

f(G; θ) = AGGREGATE({{ψ(Gi) : i ∈ [t]}}), [t] = {1, . . . , t} (12)

for any G ∈ Gn, where AGGREGATE is a multi-set function, (G1, G2, . . . , Gt) = Ξ(G) where
Ξ(.) : Gn →

(⋃∞
m=1 Gm

)t
is a function from one graph to t graphs, and ψ :

⋃∞
m=1 Gm → [s] is a

function on graphs taking s values. In short, we encode t graphs, and each encoding takes one of s
values. We call this graph representation function an (s, t)-good graph representation.

Theorem 4. Consider a parametrized class of (s, t)−good representations f(.; θ) : Gn → Rd
that is able to count any (not necessarily induced4) substructure with k vertices. More precisely,
for any graph H with k vertices, there exists f(.; θ) such that if C(G1;H) 6= C(G2;H), then
f(G1; θ) 6= f(G2; θ). Then5 t = Ω̃(n

k
s−1 ).

In particular, for any (s, t)−good graph representation with s = 2, i.e., binary encoding functions,
we need Ω̃(nk) encoded graphs. This implies that, for s = 2, enumerating all subgraphs and
deciding for each whether it equals H is near optimal. Moreover, if s ≤ k, then t = Θ(n) small
graphs would not suffice to enable counting.

More interestingly, if k, s = O(1), then it is impossible to perform the substructure counting task
with t = O(log(n)). As a result, in this case, considering n encoded graphs (as is done in GNNs or
LRP networks) cannot be exponentially improved.

The lower bound in this section is information-theoretic and hence applies to any algorithm. It may
be possible to strengthen it by considering computational complexity, too. For binary encodings, i.e.,
s = 2, however, we know that the bound cannot be improved since manual counting of subgraphs
matches the lower bound.

7 TIME COMPLEXITY LOWER BOUNDS FOR COUNTING SUBGRAPHS

In this section, we put our results in the context of known hardness results for subgraph counting.
In general, the subgraph isomorphism problem is known to be NP-complete. Going further, the
Exponential Time Hypothesis (ETH) is a conjecture in complexity theory (Impagliazzo & Paturi,
2001), and states that several NP-complete problems cannot be solved in sub-exponential time.
ETH, as a stronger version of the P 6= NP problem, is widely believed to hold. Assuming that
ETH holds, the k−clique detection problem requires at least nΩ(k) time (Chen et al., 2005). This
means that if a graph representation can count any subgraph H of size k, then computing it requires
at least nΩ(k) time.

Corollary 1. Assuming the ETH conjecture holds, any graph representation that can count any
substructure H on k vertices with appropriate parametrization needs nΩ(k) time to compute.

The above bound matches the O(nk) complexity of the higher-order GNNs. Comparing with The-
orem 4 above, Corollary 1 is more general, while Theorem 4 has fewer assumptions and offers a
refined result for aggregation-based graph representations.

Given that Corollary 1 is a worst-case bound, a natural question is whether we can do better for
subclasses of graphs. Regarding H , even if H is a random Erdös-Rényi graph, it can only be
counted in nΩ(k/ log k) time (Dalirrooyfard et al., 2019).

Regarding the input graph in which we count, consider two classes of sparse graphs: strongly sparse
graphs have maximum degree ∆ = O(1), and weakly sparse graphs have average degree ∆̄ = O(1).
We argued in Theorem 3 that RNP-GNNs achieve almost linear complexity for the class of strongly
sparse graphs. For weakly sparse graphs, in contrast, the complexity of RNP-GNNs is generally not
linear, but still polynomial, and can be much better than O(nk). One may ask whether it is possible

4The theorem also holds for induced subgraphs, with/without node attributes.
5Ω̃(m) is Ω(m) up to poly-logarithmic factors.
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to achieve a learnable graph representation such that its complexity for weakly sparse graphs is still
linear. Recent results in complexity theory imply that this is impossible:

Corollary 2 (Gishboliner et al. (2020); Bera et al. (2019; 2020)). There is no graph representation
algorithm that runs in linear time on weakly sparse graphs and is able to count any substructure H
on k vertices (with appropriate parametrization).

Hence, RNP-GNNs are close to optimal for several cases of counting substructures with
parametrized learnable functions.

8 EXPERIMENTS

In this section, we validate our theoretical findings via numerical experiments. Here, we briefly
describe our experimental setup and results — further experimental details are given in Appendix H.

Table 2: Numerical results for counting induced triangles
and non-induced 3-stars, following the setup of Chen et al.
(2020). We report the test MSE divided by variance of the
true counts of each substructure (lower is better). The best
three models for each task are bolded.

Erdős-Renyi Random Regular

triangle 3-star triangle 3-star

GCN 6.78E-1 4.36E-1 1.82 2.63
GIN 1.23E-1 1.62E-4 4.70E-1 3.73E-4
GraphSAGE 1.31E-1 2.40E-10 3.62E-1 8.70E-8
sGNN 9.25E-2 2.36E-3 3.92E-1 2.37E-2
2-IGN 9.83E-2 5.40E-4 2.62E-1 1.19E-2
PPGN 5.08E-8 4.00E-5 1.40E-6 8.49E-5
LRP-1-3 1.56E-4 2.17E-5 2.47E-4 1.88E-6
Deep LRP-1-3 2.81E-5 1.12E-5 1.30E-6 2.07E-6
RNP-GNN 1.39E-5 1.39E-5 2.38E-6 1.50E-4

Table 3: Test accuracy on the EXP dataset
with setup as in Abboud et al. (2021). Re-
sults for baselines taken from Abboud et al.
(2021). ∗Reported PPGN performance dif-
fers in other work (Balcilar et al., 2021).

Model Accuracy (%)

GCN-RNI 98.0 ± 1.85
PPGN∗ 50.0
1-2-3-GCN-L 50.0
3-GCN 99.7 ± 0.004
RNP-GNN (r1 = 1) 50.0
RNP-GNN (r1 = 2) 99.8 ± 0.005

Counting substructures. First, we follow the experimental setup of Chen et al. (2020) on tasks for
counting substructures. In Table 2, we report results for learning induced subgraph count of triangles
and non-induced subgraph count of 3-stars. We test on two datasets of 5000 graphs each: one of
Erdős-Renyi graphs and one of random regular graphs. Our RNP-GNN model is consistently within
the best performing models for these counting tasks, thus validating our theoretical results. Based on
the baseline results taken from (Chen et al., 2020), RNP-GNN tends to widely outperform MPNNs
(GCN (Kipf & Welling, 2017), GIN (Xu et al., 2019), GraphSAGE (Hamilton et al., 2017)), and
other models not tailored for counting: spectral GNN (Chen et al., 2018), and 2-IGN (Maron et al.,
2018). Also, RNP-GNN often beats higher-order GNNs: PPGN (Maron et al., 2019a) and LRP-1-
3 (Chen et al., 2020). RNP-GNN is mostly comparable to Deep LRP-1-3, though Deep LRP-1-3
outperforms it in a few cases. Recall that Deep LRP-1-3 is a practical version of LRP — we leave
further developments of practical variants of RNP-GNN to future work. The best r parameters for
RNP-GNN were: r = (1, 1, 1, 1) for triangles on Erdős-Renyi, r = (1, 1) for stars on Erdős-Renyi,
r = (1, 1) for triangles on random regular and r = (1, 1, 1) for stars on random regular.

Satisfiability of propositional formulas. Second, we test the expressiveness of our model in dis-
tinguishing non-isomorphic graphs that 1-WL cannot distinguish. The EXP dataset of 600 graphs
(Abboud et al., 2021) for classifying whether certain propositional formulas are satisfiable requires
higher than 1-WL expressive power to achieve better than random accuracy. As shown in Table 3,
while our RNP-GNN with r1 = 1 is unable to achieve better than random accuracy, our RNP-GNN
with r1 = 2 (we use r = (2, 1) achieves near perfect accuracy — beating all other models based on
results taken from (Abboud et al., 2021). These other models include universal models with random
node identifiers (GCN-RNI (Abboud et al., 2021)), GNNs with 3-WL power (PPGN (Maron et al.,
2019a)), and GNNs that imitate some (possibly weaker) version of 3-WL (1-2-3-GCN-L (Morris
et al., 2019), 3-GCN (Abboud et al., 2021)). Thus, our architecture, which is not developed within
common frameworks for achieving k-WL expressiveness, is in fact powerful at distinguishing non-
isomorphic graphs.
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A PROOF OF THEOREM 1

A.1 PRELIMINARIES

Let us first state a few definitions about the graph functions. Note that for any graph function
f : Gn → Rd, we have f(G) = f(H) for any G ∼= H .
Definition 5. Given two graph functions f, g : Gn → Rd, we write f w g, if and only if for any
G1, G2 ∈ Gn,

∀G1, G2 ∈ Gn : g(G1) 6= g(G2) =⇒ f(G1) 6= f(G2), (13)
or, equivalently,

∀G1, G2 ∈ Gn : f(G1) = f(G2) =⇒ g(G1) = g(G2). (14)

Proposition 1. Consider graph functions f, g, h : Gn → Rd such that f w g and g w h. Then,
f w h. In other words, w is transitive.

Proof. The proposition holds by definition.

Proposition 2. Consider graph functions f, g : Gn → Rd such that f w g. Then, there is a function
ξ : Rd → Rd such that ξ ◦ f = g.

Proof. Let Gn = ti∈NFi be the partitioning induced by the equality relation with respect to the
function f on Gn. Similarly define Gi, i ∈ N for g. Note that due to the definition, {Fi : i ∈ N} is a
refinement for {Gi : i ∈ N}. Define ξ to be the unique mapping from {Fi : i ∈ N} to {Gi : i ∈ N}
which respects the equality relation. One can observe that such ξ satisfies the requirement in the
proposition.

Definition 6. An RNP-GNN is called maximally expressive, if and only if

• all the aggregate functions are injective as mappings from a multi-set on a countable
ground set to their codomain.

• all the combine functions are injective mappings.
Proposition 3. Consider two RNP-GNNs f, g with the same recursion parameters r =
(r1, r2, . . . , rτ ) where f is maximally expressive. Then, f w g.

Proof. The proposition holds by definition.

Proposition 4. Consider a sequence of graph functions f, g1, . . . , gk. If f w gi for all i ∈ [k], then

f w
k∑
i=1

cigi, (15)

for any ci ∈ R, i ∈ N.

Proof. Since f w gi, we have
∀G1, G2 ∈ Gn : f(G1) = f(G2) =⇒ gi(G1) = gi(G2), (16)

for all i ∈ [k]. This means that for any G1, G2 ∈ Gn if f(G1) = f(G2) then gi(G1) = gi(G2),
i ∈ [k], and consequently

∑k
i=1 cigi(G1) =

∑k
i=1 cigi(G2). Therefore, from the definition we

conclude f w∑k
i=1 cigi. Note that the same proof also holds in the case of countable summations

as long as the summation is bounded.
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Definition 7. Let H = (VH , EH , XH) be a attributed connected simple graph with k nodes. For
any attributed graph G = (VG, EG, XG) ∈ Gn, the induced subgraph count function C(G;H) is
defined as

C(G;H) :=
∑
S⊆[n]

1{G(S) ∼= H}. (17)

Also, let C̄(G;H) denote the number of non-induced subgraphs of G which are isomorphic to H . It
can be defined with the homomorphisms from H to G. Formally, if n > k define

C̄(G;H) :=
∑
S⊆[n]
|S|=k

C̄(G(S);H). (18)

Otherwise, n = k, and we define

C̄(G;H) :=
∑

H̃∈H̃(H)

cH̃,H × 1{G ∼= H̃}, (19)

where

H̃(H) := {H̃ ∈ Gk : H̃ c H
}
, (20)

is defined with respect to the graph isomorphism, and cH̃,H ∈ N denotes the number of subgraphs
in H identical to H̃ . Note that H̃(H) is a finite set and c denotes being a (not necessarily induced)
subgraph.

Proposition 5. LetH be a family of graphs. If for any H ∈ H, there is an RNP-GNN fH(.; θ) with
recursion parameters (r1, r2, . . . , rτ ) such that fH w C(G;H), then there exists an RNP-GNN
f(.; θ) with recursion parameters (r1, r2, . . . , rτ ) such that f w∑H∈H C(G;H).

Proof. Let f(.; θ) be a maximally expressive RNP-GNN. Note that by the definition f w fH for any
H ∈ H. Since w is transitive, f w C(G;H) for all H ∈ H, and using Proposition 4, we conclude
that f w∑H∈H C(G;H).

The following proposition shows that it is sufficient to address counting attributed graphs.

Proposition 6. Let H0 be an unattributed connected graph. Assume that for any attributed graph
H , which is constructed by adding arbitrary attributes to H0, there exists an RNP-GNN fH(.; θH)
such that fH w C(G;H), then for its unattributed counterpartH0, there exists an RNP-GNN f(.; θ)
with the same recursion parameters as fH(.; θH) such that f w C(G;H0).

Proof. If there exists an RNP-GNN fH(.; θH) such that fH w C(G;H), then for a maximally
expressive RNP-GNN f(.; θ) with the same recursion parameters as fH we also have f w C(G;H).
Let H be the set of all attributed graphs H = (V, E , X) ∈ Gk up to graph isomorphism, where
X ∈ X k for a countable set X . Note thatH = {H1, H2, . . .} is a countable set. Now we write

C(G;H0) =
∑
S⊆[n]
|S|=k

1{G(S) ∼= H0} (21)

=
∑
S⊆[n]
|S|=k

∑
i∈N

1{G(S) ∼= Hi} (22)

=
∑
i∈N

∑
S⊆[n]
|S|=k

1{G(S) ∼= Hi} (23)

=
∑
i∈N

C(G;Hi). (24)

(25)

Now using Proposition 4 we conclude that f w C(G;H0) since C(G;H0) is always finite.
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Definition 8. Let H be a (possibly attributed) simple connected graph. For any S ⊆ VH and
v ∈ VH , define

d̄H(v;S) := max
u∈S

d(u, v). (26)

Definition 9. Let H be a (possibly attributed) connected simple graph with k = τ + 1 vertices.
A permutation of vertices, such as (v1, v2, . . . , vτ+1), is called a vertex covering sequence, with
respect to a sequence r = (r1, r2, . . . , rτ ) ∈ Nτ , called a covering sequence, if and only if

d̄H′i(vi;Si) ≤ ri, (27)

for i ∈ [τ + 1], where H ′i = H(Si) and Si = {vi, vi+1, . . . , vτ+1}. Let CH(r) denote the set of all
vertex covering sequences with respect to the covering sequence r for H .

Proposition 7. For any G,H ∈ Gk, if G c H (non-induced subgraph), then

CH(r) ⊆ CG(r), (28)

for any sequence r.

Proof. The proposition follows from the fact that the function d̄ is decreasing with introducing new
edges.

Proposition 8. Assume that Theorem 1 holds for induced-subgraph count functions. Then, it also
holds for the non-induced subgraph count functions.

Proof. Assume that for a connected (attributed or unattributed) graph H , there exists an RNP-GNN
with appropriate recursion parameters fH(.; θH) such that fH w C(G;H), then we prove there
exists an RNP-GNN f(.; θ) with the same recursion parameters as fH such that f w C̄(G;H).

If there exists an RNP-GNN fH(.; θH) such that fH w C(G;H), then for a maximally expressive
RNP-GNN f(.; θ) with the same recursion parameters as fH we also have f w C(G;H). Note that

C̄(G,H) =
∑
S⊆[n]
|S|=k

C̄(G(S);H) (29)

=
∑
S⊆[n]
|S|=k

∑
H̃∈H̃(H)

cH̃,H × 1{G(S) ∼= H̃} (30)

=
∑

H̃∈H̃(H)

cH̃,H

∑
S⊆[n]
|S|=k

1{G(S) ∼= H̃} (31)

=
∑
i∈N

cHi,H × C(G,Hi), (32)

where H̃(H) = {H1, H2, . . .}.
Claim 1. f w C(G,Hi) for any i.

Using Proposition 4 and Claim 1 we conclude that f w C̄(G;H) since C̄(G;H) is finite and
f w C(G,Hi) for any i, and the proof is complete. The missing part which we must show here
is that for any Hi the sequence (r1, r2, . . . , rt) which covers H also covers Hi. This follows from
Proposition 7. We are done.

At the end of this part, let us introduce an important notation. For any attributed connected simple
graph on k vertices G = (V, E , X), let G∗v be the resulting induced graph obtained after removing
v ∈ V from G with the new attributes defined as

X∗u := (Xu,1{(u, v) ∈ E}), (33)

for each u ∈ V \ {v}. We may also use X∗vu for more clarification.
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A.2 PROOF OF THEOREM 1

We utilize an inductive proof on τ , which is the length of the covering sequence of H . Equivalently,
due to the definition, τ = k − 1, where k is the number of vertices in H . First, we note that due
to Proposition 8, without loss of generality, we can assume that H is a simple connected attributed
graph and the goal is to achieve the induced-subgraph count function via an RNP-GNN with appro-
priate recursion parameters. We also consider only maximally expressive networks here to prove the
desired result.

Induction base. For the induction base, i.e., τ = 1,H is a two-node graph. This means that we only
need to count the number of a specific (attributed) edge in the given graph G. Note that in this case
we apply an RNP-GNN with recursion parameter r1 ≥ 1. Denote the two attributes of the vertices
in H by XH

1 , X
H
2 ∈ X . The output of an RNP-GNN f(.; θ) is

f(G; θ) = φ({{ψ(XG
v , ϕ({{X∗vu : u ∈ Nr1(v)}})) : v ∈ [n]}}), (34)

where we assume that f(.; θ) is maximally expressive. The goal is to show that f w C(G;H).
Using the transitivity of w, we only need to choose appropriate φ, ψ, ϕ to achieve f̂ = C(G;H) as
the final representation. Let

φ({{zv : v ∈ [n]}}) :=
1

2 + 2× 1{XH
1 = XH

2 }

n∑
i=1

zi (35)

ψ(X, (z, z′)) := z × 1{X = XH
1 }+ z′ × 1{X = XH

2 } (36)

ϕ({{zu : u ∈ [n′]}}) :=
( n′∑
i=1

1{zu = (XH
2 , 1)},

n′∑
i=1

1{zu = (XH
1 , 1)

)
. (37)

Then, a simple computation shows that

f̂(G; θ) = φ({{ψ(XG
v , ϕ({{X∗vu : u ∈ Nr1(v)}})) : v ∈ [n]}}), (38)

= C(G;H). (39)

Since f̂(.; θ) is an RNP-GNN with recursion parameter r1 and for any maximally expressive RNP-
GNN f(.; θ) with the same recursion parameter as f̂ we have f w f̂ and f̂ w C(G;H), we conclude
that f w C(G;H) and this completes the proof.

Induction step. Assume that the desired result holds for τ − 1 (τ ≥ 2). We show that it also holds
for τ . Let us first define

H∗ := {H∗v1 : ∃v2, . . . , vτ ∈ [k] : (v1, v2, . . . , vτ ) ∈ CH(r)} (40)

c∗(H0) := 1{H0 ∈ H∗} ×#{v ∈ [k] : H∗v
∼= H0}, (41)

where H∗v means the induced subgraph after removing a node, with new attributes (see A.1). Note
thatH∗ 6= ∅ by the assumption. Let

‖H∗‖ :=
∑

H0∈H∗
c∗(H0). (42)

For all H0 ∈ H∗, using the induction hypothesis, there is a (universal) RNP-GNN f̂(.; θ̂) with
recursion parameters (r2, r3, . . . , rτ ) such that f̂ w C(G;H0). Using Proposition 4 we conclude

f̂ w
∑

u∈[k]:H∗u∈H∗
C(G;H∗u). (43)

Define a maximally expressive RNP-GNN with the recursion parameters (r1, r2, . . . , rτ ) as follows:

f(G; θ) = φ({{ψ(XG
v , f̂(G∗(Nr1(v)); θ̂)) : v ∈ [n]}}). (44)

Similar to the proof for τ = 1, here we only need to propose a (not necessarily maximally expressive)
RNP-GNN which achieves the function C(G;H).
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Let us define

fH∗u(G; θ) := φ({{ψH∗u(XG
v , ξ ◦ f̂(G∗(Nr1(v)); θ̂)) : v ∈ [n]}}), (45)

where

φ({{zv : v ∈ [n]}}) :=
1

‖H∗‖
n∑
i=1

zi (46)

ψH∗u(X, z) := z × 1{X = XH
u }, (47)

(48)

and ξ ◦ f̂ = C(G;H∗u). Note that the existence of such function ξ is guaranteed due to Proposition
2. Now we write

‖H∗‖ × C(G;H) = ‖H∗‖
∑
S⊆[n]

1{G(S) ∼= H} (49)

=
∑
S⊆[n]

∑
v∈S

1{∃u ∈ [k] : (G(S \ {v}))∗v ∼= H∗u ∈ H∗ ∧XG
v = XH

u } (50)

=
∑
v∈[n]

∑
v∈S⊆[n]

1{∃u ∈ [k] : (G(S \ {v}))∗v ∼= H∗u ∈ H∗ ∧XG
v = XH

u } (51)

=
∑
v∈[n]

∑
v∈S⊆Nr1

(v)

1{∃u ∈ [k] : (G(S \ {v}))∗v ∼= H∗u ∈ H∗ ∧XG
v = XH

u }

(52)

=
∑
v∈[n]

∑
v∈S⊆Nr1

(v)

∑
u∈[k]:H∗u∈H∗

1{(G(S \ {v}))∗v ∼= H∗u}1{XG
v = XH

u } (53)

=
∑
v∈[n]

∑
u∈[k]:H∗u∈H∗

C(G∗(Nr1(v));H∗u)× 1{XG
v = XH

u }, (54)

which means that ∑
u∈[k]:H∗u∈H∗

fH∗u(G; θ) w C(G;H). (55)

However, for a maximally expressive RNP-GNN f(.; θ) we know that f w fH∗u for all H∗u ∈ H and
this means that f w C(G;H). The proof is thus complete.

B PROOF OF THEOREM 2

For any attributed graph H on r nodes (not necessarily connected) we claim that RNP-GNNs can
count them.
Claim 2. Let f(.; θ) : Gn → Rd be a maximally expressive RNP-GNN with recursion parameters
(r − 1, r − 2, . . . , 1). Then, f w C(G;H).

Now consider the function

`(G) = φ({{ψ(G(S)) : S ⊆ V, |S| ≤ r}}). (56)

We claim that f w ` (f is defined in the previous claim) and this completes the proof according to
Proposition 2.

To prove the claim, assume that f(G1) = f(G2). Then, we conclude that C(G1;H) = C(G2;H)
for any attributed H (not necessarily connected) with r vertices. Now, we have

`(G) = φ({{ψ(G(S)) : S ⊆ V, |S| ≤ r}}) (57)
= φ({{ψ(H) : H ∈ Gr, the multiplicity of H is C(G;H)}}), (58)

which shows that `(G1) = `(G2).
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Proof of Claim 2. To prove the claim, we use an induction on the number of connected components
cH of graph H . If H is connected, i.e., cH = 1, then according to Theorem 1, we know that
f w C(G;H).

Now assume that the claim holds for cH = c − 1 ≥ 1. We show that it also holds for cH = c. Let
H1, H2, . . . ,Hc denote the connected components of H . Also assume that Hi 6∼= Hj for all i 6= j.
We will relax this assumption later. Let us define

AG := {(S1,S2, . . . ,Sc) : ∀i ∈ [c] : Si ⊆ [n];G(Si) ∼= Hi}. (59)

Note that we can write

|AG| =
c∏
i=1

C(G;Hi) (60)

= C(G;H) +

∞∑
j=1

c′jC(G;H ′j), (61)

where H ′1, H
′
2, . . . are all non-isomorphic graphs obtained by adding edges (at least one edge) be-

tween c graphs H1, H2, . . . ,Hc, or contracting a number of vertices of them. The constants c′j
are just used to remove the effect of multiple counting due to the symmetry. Now, since for any
Hi, H ′j the number of connected components is strictly less that c, using the induction, we have
f w C(G;Hi) and f w C(G;H ′j) for all j and all i ∈ [c]. According to Proposition 4, we
conclude that f w C(G;H) and this completes the proof. Also, if Hi, i ∈ [c], are not pairwise
non-isomorphic, then we can use αC(G;H) in above equation instead of C(G;H), where α > 0
removes the effect of multiple counting by symmetry. The proof is thus complete.

Remark 1. As we explained in the above proof, one can modify Theorem 1 to hold for disconnected
graphs. To this end, we need to generalize the notion of covering sequence to hold for this class of
graphs. Since this special case is out of scope of this paper, we only restrict to a special, but more
insightful case.

C PROOF OF THEOREM 3

To prove Theorem 3, we need to bound the number of node updates required for an RNP-GNN with
recursion parameters (r1, r2, . . . , rt). First of all, we have n variables used for the final represen-
tations of vertices. For each vertex v1 ∈ V , we explore the local neighborhood Nr1(v1) and apply
a new RNP-GNN network to that neighborhood. In other words, for the second step we need to
update |Nr1(v1)| nodes. Similarly, for the ith step of the algorithm we have at most

λi := max
v1∈[n]

max
vj+1∈Nrj

(vj)

∀j∈[i−1]

|Nr1(v1) ∩Nr2(v2) ∩Nr3(v3) . . . ∩Nri(vi)|, (62)

updates. Therefore, we can bound the number of node updates as

n×
τ∏
i=1

λi. (63)

Since λi is decreasing in i, the desired result holds.

D PROOF OF THEOREM 4

Let Kk denote the complete graph on k vertices.

Claim 3. For any k, n ∈ N, such that n is sufficiently large,∣∣∣{C(G;Kk) : G ∈ Gn}
∣∣∣ ≥ (cn/(k log(n/k))− k)k

k!
= Ω̃(nk), (64)

where c is a constant which does not depend on k, n.
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In particular, we claim that the number of different values that C(G;Kk) can take is nk, up to
poly-logarithmic factors.

To prove the theorem, we use the above claim. Consider a class of (s, t)−good graph representations
f(.; θ) which can count any substructure on k vertices. As a result, f w C(G;Kk) for an appropriate
parametrization θ. By the definition, f(.) must take at least

∣∣∣{C(G;Kk) : G ∈ Gn}
∣∣∣ different

values, i.e., ∣∣∣{f(G; θ) : G ∈ Gn}
∣∣∣ ≥ ∣∣∣{C(G;Kk) : G ∈ Gn}

∣∣∣. (65)

Also, ∣∣∣{f(G; θ) : G ∈ Gn}
∣∣∣ ≤ ∣∣∣{{{ψ(Gi) : i ∈ [t]}} : G ∈ Gn

}∣∣∣, (66)

where (G1, G2, . . . , Gt) = Ξ(G). But, ψ can take only s values. Therefore, we have∣∣∣{C(G;Kk) : G ∈ Gn}
∣∣∣ ≤ ∣∣∣{f(G; θ) : G ∈ Gn}

∣∣∣ (67)

≤
∣∣∣{{{ψ(Gi) : i ∈ [t]}} : G ∈ Gn

}∣∣∣ (68)

≤
∣∣∣{{{αi : i ∈ [t]}} : ∀i ∈ [t] : αi ∈ [s]}

∣∣∣ (69)

≤ (t+ 1)s−1. (70)

As a result, (t+ 1)s−1 = Ω̃(nk) or t = Ω̃(n
k

s−1 ). To complete the proof, we only need to prove the
claim.

Proof of Claim 3. Let p1, p2, . . . , pm be distinct prime numbers less than n/k. Using the prime
number theorem, we know that limn→∞

m
n/(k log(n/k)) = 1. In particular, we can choose n large

enough to ensure cn/(k log(n/k)) < m for any constant c < 1.

For any B = {b1, b2, . . . , bk} ⊆ [m], define GB as a graph on n vertices such that VGB = V0 t
(ti∈[k]Vi), and |Vi| = pbi . Also,

e = (u, v) ∈ GB ⇐⇒ ∃ i, j ∈ [m], i 6= j : u ∈ Vi & v ∈ Vj . (71)

The graph GB is well-defined since
∑k
i=1 pbi ≤ k × n/k = n. Note that C(GB;Kk) =

∏k
i=1 pbi .

Also, since pi, i ∈ [m], are prime numbers, there is a unique bijection

B ϕ←→ C(GB;Kk). (72)
Therefore, ∣∣∣{C(G;Kk) : G ∈ Gn}

∣∣∣ ≥ ∣∣∣{C(GB;Kk) : B ⊆ [m], |B| = k}
∣∣∣ (73)

=

(
m

k

)
(74)

≥ (m− k)k

k!
(75)

≥ (cn/(k log(n/k))− k)k

k!
. (76)

E RELATIONSHIP TO THE RECONSTRUCTION CONJECTURE

Theorem 2 provides a universality result for RNP-GNNs. Here, we note that the proposed method is
closely related to the reconstruction conjecture, an old open problem in graph theory. This motivates
us to explain their relationship/differences. First, we need a definition for unattributed graphs.
Definition 10. Let Fn ⊆ Gn be a set of graphs and let Gv = G(V \ {v}) for any finite simple
graph G = (V, E), and any v ∈ V . Then, we say the set F is reconstructible if and only if there is a
bijection

{{Gv : v ∈ V}} Φ←→ G, (77)
for any G ∈ Fn. In other words, Fn is reconstructible, if and only if the multi-set {{Gv : v ∈ V}}
fully identifies G for any G ∈ Fn.
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It is known that the class of disconnected graphs, trees, regular graphs, are reconstructible (Kelly,
1957; McKay, 1997). The general case is still open; however it is widely believed that it is true.

Conjecture 1 (Kelly (1957)). Gn is reconstructible.

For RNP-GNNs, the reconstruction from the subgraphs G∗v , v ∈ [n] is possible, since we relabel
any subgraph (in the definition of X∗) and this preserves the critical information for the recursion
to the original graph. In the reconstruction conjecture, this part of information is missing, and this
makes the problem difficult. Nonetheless, since in RNP-GNNs we preserve the original node’s
information in the subgraphs with relabeling, the reconstruction conjecture is not required to hold to
show the universality results for RNP-GNNs, although that conjecture is a motivation for this paper.
Moreover, if it can be shown that the reconstruction conjecture it true, it may be also possible to find
a simple encoding of subgraphs to an original graph and this may lead to more powerful but less
complex new GNNs.

F THE RNP-GNN ALGORITHM

In this section, we provide pseudocode for RNP-GNNs. The algorithm below computes node rep-
resentations. In the algorithms, we frequently use MLP modules with ReLU activation. For a graph
representation, we can aggregate them with a common readout, e.g., hG ← MLP

(∑
v∈V h

(k)
v

)
.

Following (Xu et al., 2019), we use sum pooling here, to ensure that we can represent injective
aggregation functions.

Algorithm 1 Recursive Neighborhood Pooling-GNN (RNP-GNN)

Input: G = (V, E , {xv}v∈V) where V = [n], recursion parameters r1, r2, . . . , rτ ∈ N, ε(i) ∈ R,
i ∈ [τ ], node features {xv}v∈V .

Output: hv for all v ∈ V
hin
v ← xv for all v ∈ V

if τ = 1 then

hv ← MLP(τ,1)
(

(1 + ε(1))hin
v +

∑
u∈Nr1

(v)\{v}

MLP(τ,2)(hin
u ,1(u, v) ∈ E)

)
,

for all v ∈ V .
else

for all v ∈ V do
G′v ← G(Nr1(v) \ {v}), which has node attributes {(hin

u ,1(u, v) ∈ E)′}u∈Nr1
(v)\{v}

{ĥv,u}u∈G′v ← RNP-GNN(G′v, (r2, r3, . . . , rτ ), (ε(2), . . . , ε(τ)))

hv ← MLP(τ)
(

(1 + ε(τ))hin
v +

∑
u∈G′v

ĥu,v

)
.

end for
end if
return {hv}v∈V

With this algorithm, one can achieve the expressive power of RNP-GNNs if high dimensional MLPs
are allowed (Xu et al., 2019; Hornik et al., 1989; Hornik, 1991). That said, in practice, smaller
MLPs may be acceptable (Xu et al., 2019).

G COMPUTING A COVERING SEQUENCE

As we explained in the context of Theorem 1, we need a covering sequence (or an upper bound to
that) to design an RNP-GNN network that can count a given substructure. A covering sequence can
be constructed from a spanning tree of the graph.

For reducing complexity, it is desirable to have a covering sequence with minimum r1 (Theorem
3). Here, we suggest an algorithm for obtaining such a covering sequence, shown in Algorithm 2.
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For obtaining merely an aribtrary covering sequence, one can compute any minimum spanning tree
(MST), and then proceed as with the MST in Algorithm 2.

Given an MST, we build a vertex covering sequence by iteratively removing a leaf vi from the tree
and adding the respective node vi to the sequence. This ensures that, at any point, the remaining
graph is connected. At position i corresponding to vi, the covering sequence contains the maximum
distance ri of vi to any node in the remaining graph, or an upper bound on that. For efficiency, an
upper bound on the distance can be computed in the tree.

To minimize r1 = maxu∈V d(u, v1), we need to ensure that a node in arg minv∈V maxu∈V d(u, v)
is a leaf in the spanning tree. Hence, we first compute maxu∈V d(u, v) for all nodes v, e.g., by
running All-Pairs-Shortest-Paths (APSP) (Kleinberg & Tardos, 2006), and sort them in increasing
order by this distance. Going down this list, we try whether it is possible to use the respective node
as v1, and stop when we find one.

Say v∗ is the current node in the list. To compute a spanning tree where v∗ is a leaf, we assign a
large weight to all the edges adjacent to v∗, and a very low weight to all other edges. If there exists
such a tree, running an MST with the assigned weights will find one. Then, we use v∗ as v1 in the
vertex covering sequence. This algorithm runs in polynomial time.

Algorithm 2 Computing a covering sequence with minimum r1

Input: H = (V, E , X) where V = [τ + 1]
Output: A minimal covering sequence (r1, r2 . . . , rτ ), and its corresponding vertex covering se-

quence (v1, v2, . . . , vτ+1)
For any u, v ∈ V , compute d(u, v) using APSP
(u1, u2, . . . , uτ+1)← all the vertices sorted increasingly in s(v) := maxu∈V d(u, v)
for i = 1 to τ + 1 do

Set edge weights w(u, v) = 1 + τ × 1{u = ui ∨ v = ui} for all (u, v) ∈ E
HT ← the MST of H with weights w
if ui is a leaf in HT then
v1 ← ui
r1 ← s(ui)
break

end if
end for
for i = 2 to τ + 1 do
vi ← one of the leaves of HT

ri ← maxu∈VHT
d(u, vi)

HT ← HT after removing vi
end for
return (r1, r2, . . . , rτ ) and (v1, v2, . . . , vτ+1)

H EXPERIMENTAL DETAILS

Table 4: Runtime (in seconds) averaged over 10 epochs of training on the synthetic triangle counting
experiments on Erdős-Renyi graphs. Times do not include LRP preprocessing (which takes several
minutes for this dataset).

Model Parameters Runtime (s)

RNP-GNN, r = (1, 1) 10210 153.13
RNP-GNN, r = (1, 1, 1) 10834 199.49
RNP-GNN, r = (2, 1) 10210 370.38
RNP-GNN, r = (2, 1, 1) 10834 835.77
GIN 10186 .88
Deep-LRP 10231 24.43
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H.1 DATASET AND TASK DETAILS

For the counting experiments, we follow the setup of Chen et al. (2020). There are two datasets:
one consisting of 5000 Erdős-Renyi graphs (Erdos et al., 1960) and one consisting of 5000 noisy
random regular graphs (Steger & Wormald, 1999). Each Erdős-Renyi graph has 10 nodes, and each
random regular graph has either 10, 15, 20, or 30 nodes. Also, n random edges are deleted from
each random regular graph, where n is the number of nodes.

For the experiments on distinguishing non-isomorphic graphs, we use the EXP dataset (Abboud
et al., 2021). This dataset consists of 600 pairs of graphs (so 1200 graphs in total), where each pair
is 1-WL equivalent but distinguishable by 3-WL, and each pair contains one graph that represents a
satisfiable formula and one graph that represents an unsatisfiable formula. On average, each graph
contains about 44 nodes and 110 edges (Balcilar et al., 2021). We report the mean and standard
deviation across 10 cross-validation folds. Additionally, we report the runtimes in Table 4 for the
counting experiments.

H.2 RNP-GNN IMPLEMENTATION DETAILS

Here, we detail some specific design choices we make in implementing our RNP-GNN model. Most
embeddings are computed in Rd for some fixed hidden dimension d. The input node features are
first embedded in Rd by an initial linear layer. Then RNP layers are applied to compute node
representations. Finally, a sum pooling across nodes followed by a final MLP is used to compute a
graph-level output.

An RNP layer for r = (r1, . . . , rτ ) is implemented as follows. Note that the input node features to
this layer are in Rd due to our initial linear layer. Also, note that we concatenate an extra feature
dimension due to the augmented indicator feature at each recursion step. To align these feature
dimensions, for l ∈ [τ ], we parameterize the l-th GIN (Xu et al., 2019) by a feedforward neural
network MLP(l) : Rd+l → Rd+l−1. For instance, the last GIN has a feedforward network MLP(τ) :
Rd+τ → Rd+τ−1, because after τ levels of recursion we have augmented τ features. Dropout and
nonlinear activation functions are only applied in the MLPs.

H.3 HYPERPARAMETERS

For all baseline models, we take the results from other papers. Thus, for the counting experiments the
configurations for the baseline models are from Chen et al. (2020), while for the EXP experiments
the configurations for the baseline models are from Abboud et al. (2021).

RNP-GNN hyperparameters. For all experiments we ran random search over hyperparameters. In
all cases we used the Adam optimizer with initial learning rate in {.01, .001, .0001, .0005}. We train
for 100 epochs with a batch size in {16, 32, 128}. The number of stacked RNP-GNNs for computing
node representations is in {1, 2}. We use a dropout ratio in {0, .1, .5}. The recursion parameters
used varies for each task. We used two layers for each MLP used in the aggregation function. Also,
the graph-level output obtained after sum-pooling across nodes is computed by a two layer MLP.

Specifically for the counting experiments, the number of hidden dimensions is searched in
{16, 32, 64}. For all tasks we used r1 = 1. In particular, the optimal r parameters for RNP-GNN
were: r = (1, 1, 1, 1) for triangles on Erdős-Renyi, r = (1, 1) for stars on Erdős-Renyi, r = (1, 1)
for triangles on random regular and r = (1, 1, 1) for stars on random regular. We use ReLU activa-
tions in the MLPs. We either decay the learning rate by half every 25, 50, or∞ epochs (where∞
means never decaying).

For the EXP experiments, the number of hidden dimensions is searched in {8, 16, 32, 64}. We use
either ELU or ReLU activations in the MLPs. We decay the learning rate by half at the 50th epoch.
The recursion parameters are r = (2, 1).
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I MORE FIGURES

Figure 3: MPNNs cannot count substructures with three nodes or more (Chen et al., 2020). For
example, the graph with black center vertex on the left cannot be counted, since the two graphs on
the left result in the same node representations as the graph on the right.

v2v1 v3

v5v4 v6v5v4 v6 v5v4 v6

v2v1 v3 v2v1 v3

Figure 4: Example of a covering sequence computed for the graph on the left. For this
graph, (v6, v1, v4, v5, v3, v2) is a vertex covering sequence with respect to the covering sequence
(3, 3, 3, 2, 1). The first two computations to obtain this covering sequence are depicted in the middle
and on the right.
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