
Under review as a conference paper at ICLR 2021

INTERPRETABLE META-REINFORCEMENT LEARNING
WITH ACTOR-CRITIC METHOD

Anonymous authors
Paper under double-blind review

ABSTRACT

Meta-reinforcement learning (meta-RL) algorithms have successfully trained
agent systems to perform well on different tasks within only few updates. How-
ever, in gradient-based meta-RL algorithms, the Q-function at adaptation step is
mainly estimated by the return of few trajectories, which can lead to high variance
in Q-value and biased meta-gradient estimation, and the adaptation uses a large
number of batched trajectories. To address these challenges, we propose a new
meta-RL algorithm that can reduce the variance and bias of the meta-gradient es-
timation and perform few-shot task data sampling, which makes the meta-policy
more interpretable. We reformulate the meta-RL objective, and introduce con-
textual Q-function as a meta-policy critic during task adaptation step and learn
the Q-function under a soft actor-critic (SAC) framework. The experimental re-
sults on 2D navigation task and meta-RL benchmarks show that our approach can
learn an more interpretable meta-policy to explore unknown environment and the
performance are comparable to previous gradient-based algorithms.

1 INTRODUCTION

Reinforcement learning problems have been studied for a long time and there are many impressive
works that achieved human-level control in real world tasks (Mnih et al., 2013; Silver et al., 2017;
Vinyals et al., 2019; Schrittwieser et al., 2019). These agents are trained separately on each task
and may require huge sampled data and millions of trails. However, in a many real world tasks,
the cost of sampling data is not negligible, thus we cannot give agent a large number of trails in
environment. In contrast, human can laverage past experiences and learn new tasks quickly in few
trails, which is very efficient. Many tasks in fact share similar structures that can be extracted as prior
knowledge, e.g., shooting games aims to eliminate enemies with weapons in different environments,
which can help agent generalize quickly through different tasks. Meta-learn (Thrun & Pratt, 2012)
reinforcement learning tasks can be a suitable chioce.

Meta-reinforcement learning (meta-RL) aims to learn a policy that can adapt to the unknown en-
vironment within few interactions with environment. Meta-policy can be seen as a policy that can
derive new a policy maximizes the performance in the new environment. Gradient-based algorithms
in meta-RL (Finn et al., 2017; Stadie et al., 2018; Rothfuss et al., 2018; Liu et al., 2019) showed
that a meta-policy can be obtained by reinforcement learning a policy adapted by few reinforcement
learning steps. The experiment results suggests that gradient-based methods can learn to sample and
utilize sampled data in some extent. Nevertheless, the learning style and learned meta-policy are still
far from human. Human learns a new task by interacting with the task sequentially and efficiently.
With the obtaining of environment data, human gradually understanding where to sampling data
and how to utilize the sampled data to adjust the policy, while gradient-based algorithms use parallel
sampling neglecting the relations between data. Sampling independently is not data-efficient, usu-
ally needs a number of stochastic trajectories to do plicy adaptation. This causes the agent relying
on the stochasticity to sample and only learns how to utilize data.

Inspired by the human behavior, we propose a K-shot meta-RL problem that constrains on the data
amount accessed by agent, e.g., adapting policy within only two trails. Low resource environment
simulates the real world tasks that have high costs on data obtaining, therefore, requires agent to
learn a stable strategy to explore environment. To address the K-shot problem, we also propose a
contextual gradient-based algorithm using actor-critic method. The adptation step uses a trail buffer

1

Under review as a conference paper at ICLR 2021

D to store all the transitions in K-shot sampling and optimizes expected value for the states in D.
The meta-learning step optimizes the expected return performed by adapted policy while learning
the value functions and context encoder using soft actor-critic (Haarnoja et al., 2018) objectives. We
learn the policy with reparameterized objective that derives an unbiased meta-gradient estimation
and reduces the estimation variance for Q-value. Our contribution can be summarized as follows:

• We reformulate and propose the K-shot meta-RL problem to simulate the real world envi-
ronment.

• We propose a new gradient-based objective to address the K-shot problem.

• We introduce context based policy and value functions to perform efficient data sampling.

• We use actor-critic method to reduce the variance and bias of estimation in Q-value and
meta-gradien.

2 RELATED WORK

Meta-reinforce learning algorithms mainly have three different categories: gradient-based motheds
(Finn et al., 2017; Stadie et al., 2018; Rothfuss et al., 2018; Liu et al., 2019; Nichol et al., 2018),
recurrent meta-learners (Wang et al., 2016; Duan et al., 2016), multi-task learners (Fakoor et al.,
2019; Rakelly et al., 2019). Gradient-based algorithms like MAML (Finn et al., 2017) optimizing
the policy updated by one step reinforcement learning, aiming at learning a good initialization of
the policy weights. E-MAML (Stadie et al., 2018) considered the impact that the data obtained
by meta-policy can influence the adapted policy’s performance and assigned credit for meta-policy.
While ProMP (Rothfuss et al., 2018) modified the adaptation gradient estimator to be low variance
on second-order gradient. Recurrent meta-learners (Wang et al., 2016; Duan et al., 2016) use RNN
as a meta-learner that can learn new task from environment data while exploring. The RNN learn-
ers are optimized with sequentially performed episodes end-to-end, which is more similar to the
learning process of human and more interpretable in meta-policy. Multi-task learners (Fakoor et al.,
2019; Rakelly et al., 2019) aim at learning multi-task objective to solve meta-learning problems.
They argue that meta-learning can be done by explicitly resuing the learned features through context
variable. MQL (Fakoor et al., 2019) can even perform well without adaptation. PEARL (Rakelly
et al., 2019) constructs context encoder to infer the latent task variable and also learns a multi-task
objective. The trained policy can perform structured exploration by inferring the task while inter-
acting with environment.Our approach is related closely to the gradient-based researches which also
tries to reduce the estimation variance and bias of the second-order gradient, however, we estimate
the second-order gardient with value functions, and we still want perform structured exploration in
data expensive environments.

3 BACKGROUND

This section focuses on the problem definition and notation of reinforcement learning and meta-
reinforcement learning problems.

3.1 REINFORCEMENT LEARNING

Reinforcement learning (RL) problems aim to maximize the expectation of episode returns

Eτ∼P (τ |θ)[R(τ)] = Eτ∼P (τ |θ)[
∑
t

γtr(st, at)] (1)

with single task and agent, where τ = {s0, a0, r0, . . . } is the trajectory performed by the agent,
s0 ∼ ρ0 is the initial state, at ∼ πθ(at|st) is the action sampled from the policy π that parame-
terized by θ, st+1 ∼ P (st+1|at, st) is the state at timestep t, and P (st+1|at, st) is the transition
probability. The problem can be represented by a Markov Desicion Process (MDP) with tuple
M = (S,A,P,R, ρ0, γ,H), where S ⊆ Rn is the set of states, A ⊆ Rm is the set of actions,
P(s′|s, a) ∈ R+ is the system transition probability,R(s, a) ∈ R is the reward function of the task,
and H is the horizon.

2

Under review as a conference paper at ICLR 2021

Optimizing (1) usually uses gradient descent and the gradient is estimated using vanilla policy gra-
dient (VPG) estimator (Williams, 1992)

∇θEτ∼P (τ |θ)[R(τ)] = Eτ∼P (τ |θ)[∇θ log π(τ)R(τ)]

≈ 1

N

∑
i

∑
t

∇θ log πθ(ai,t|si,t)(
H∑
t′=t

R(si,t′ , ai,t′))
(2)

3.2 GRADIENT-BASED META-REINFORCEMENT LEARNING

Meta-reinforcement learning (meta-RL) aims to learn a fast adaptation procedure that can leverage
the learned prior knowledge from training tasks and adapt to new tasks with few steps. A task T in
meta-RL can also be defined by an MDPMT = (S,A,PT ,RT , ρ0, γ,H). The task is drawn from
a distribution T ∼ P (T), for simplicity, we only consider tasks with different reward functions or
system transitions but the same state and action space.

Gradient-based meta-RL algorithms (Finn et al., 2017; Stadie et al., 2018) are mainly based on the
basic meta-objective (Rothfuss et al., 2018)

J(θ) = ET∼P (T)[Eτ ′∼PT (τ ′|θ′)[R(τ
′)]], θ′ = U(θ, T) = θ + α∇θEτ∼PT (τ |θ)[R(τ)], (3)

where θ is the weights of meta-policy, and θ′ is the adapted weights after one step gradient descent.
The meta-objective J(θ) optimizes the expectation of episode return sampled from the adapted
policy πθ′ . The meta-gradient can be written as

∇θJ(θ) = ET∼P (T)[Eτ ′∼PT (τ ′|θ′)[∇θ′ logPT (τ ′|θ′)R(τ ′)∇θθ′]]
∇θθ′ = I + α∇2

θEτ∼PT (τ |θ)[R(τ)]
(4)

4 METHOD

4.1 REFORMULATE META-REINFORCEMENT LEARNING PROBLEM

Different tasks have different features in MDP, a task can be inferred from few important states and
transitions in the environment, e.g., different friction coefficients on floor, different rewards for the
same state and action, or some states only exists in certain environments. We name these states
and transitions the feature points of the environment. Humans usually learn a task sequentially and
efficiently since they can easily recognize the feature points in an environment. The exploration
policy of a human changes significantly after obtaining data from the envioronment, thus they can
decide where to explore and learn a task quickly. However, as formula (3), fast adaptation U(θ, T)
usually refers to few gradient descent steps in initial weights θ, and unlike humans, the updating is
performed in a batched style as normal reinforcement learning. Batched sampling usually contains
a large number of trajectories in parallel, which can be inefficient for inferring the task. E-MAML
(Stadie et al., 2018) also tried to improve the sampling efficiency of meta-policy by accounting for
the fact that samples drawn from meta-policy will impact the adapted policy. Inspired by the learning
procedure of human, we reformulate the meta-RL problem as K-shot meta-reinforcement learning.

Definition. Given a task T ∼ P (T), the agent samples data in trail phase and perform good policy
in test phase. In trail phase, the agent can only sequentially sample K trajectories in total to adjust
its policy, with each trajectory of H length. In test phase, the agent is required to perform only one
trajectory and make the return as high as possible.

K-shot meta-RL problem defined above constrains the amount of data that can be accessed by agent,
and is more similar to the real world meta-RL problem, e.g., super mario maker. In K-shot setting,
meta-policy can still be updated using U(θ, T) with batched trajectories, since they can be seen
as sampled independently in sequence. However, the variance of the gradient estimation grows as
K descends, which means the performance becomes more unstable. To optimize the problem, we
propose a new meta-objective

JK−shot(θ) = ET∼P (T)[Eτ ′∼PT (τ ′|θ′)[R(τ
′)]],

θ′ = U(θ,D)

= θ + α∇θEs∼D[V π(s|c)]
(5)

3

Under review as a conference paper at ICLR 2021

Figure 1: Left: The whole computation graph for K-shot meta-RL, where θ is the meta-policy
parameter, D is the trail buffer storing transitions and context in trail phase, T is the task sample
from task distribution P (T), V π is the value function evaluating policy π. Straight lines represent
for forward path and curved lines are backward path. K-shot Meta-RL optimizes the average return
after policy adaptation using trail buffer. Right: The LSTM context encoder structure. A transition
is first embeded by a linear layer and fed through LSTM to form context ct at timestep t. The hidden
state will be kept between different episodes.

for the K-shot setting. Here D is the state buffer sampled by meta-policy in trail phase, and V π(s|c)
is the expected return of policy π at state s under context c (see 4.2 for details). The state buffer D
contains K ∗H states as described in definition, which means the agent can only use few states to
update its policy. Due to the constraint on availble environment information, the agent is encouraged
to learn to explore more important states that can help performing well in test phase.

4.2 INTRODUCING CONTEXT

In meta-RL, the task T sampled from the task distribution is not given to the agent and can be
thought of a latent variable of the task MDP. The latent variable can be inferred and has a strong
correlation with the context variable c which is encoded by the experience (st, at, rt, st+1) collected
until time step t. The context variable contains the information of two aspects. First, the experience
is one step of transition and reward that represents the system dynamics and reward function of
the environment. Second, the decision history {(st, at)}n represents the agent policy in the current
environment. Q-function uses the state action tuple (st, at) to evaluate the future discounted return
of the policy at state st taking action at, which also need the same two-aspect information about
policy and dynamics. Therefore, we introduce a contextual Q-function Q(s, a|c) that can evaluate
policy in unknown environment. To encourage the agent to learn how to sample efficiently and
infer the task from the unknown environment, the agent should also use a context depended policy
πθ(a|s, c) to memorize past states.

Encoding the context variable c uses a Long Short Term Memory (LSTM) (Hochreiter & Schmid-
huber, 1997). The context encoder takes as input the history experience so far and output a context
variable c deterministicly. LSTM encoder has an advantage of dealing with sequential data like his-
tory transitions, thus can give a good representation of context. Addationally, LSTM context can
represent for the same current state with different history states, which helps agent to explore more
states and Q-function to evaluate the discounted return correctly.

We follow the setting in (Duan et al., 2016) to design the context encoding. Transitions are continu-
ously fed into LSTM encoder while agent performing trajectories. The initial context is a zero vector
and the context will not be reset after episode ends. This means agent can keep the information be-
tween episodes and decide how to explore in next steps. With setting, the adaptation procedure is
divided into two parts. First, the agent samples important states for itself in environment according
to the data collected so far. Second, the agent uses all data available in buffer D to adapt policy.
Through this process, agent can learn how to explore environment and how to utilize the transition
data, which is a more structured learning scheme.

4

Under review as a conference paper at ICLR 2021

4.3 LEARNING WITH ACTOR-CRITIC METHOD

Solving the K-shot problem in 4.1 requires value functions to evaluate the future expected return of
policy π, therefore, training the agent in an actor-critic style can be a good choice. The adaptation
step in (3) uses reward term to estimate the Q-value. Even it is an unbiased point estimation of
Q(st, at), the variance have can be very high (Konda & Tsitsiklis, 2000), and may lead to an unstable
learning process. Actor-critic algorithms can trade-off between variance and bias of the estimation
and the learned value functions can be used to do adaptation.

To learn the value functions, we use soft actor-critic (SAC) (Haarnoja et al., 2018) framework. SAC
is an off-policy RL algorithm that tries to learn a policy with maximized entropy, thus the agent can
trad-off between exploration and expolitation. We modified the SAC objective as

JSAC(θ) = Es∼D[V π(s|c)]
= Es∼D,a∼πθ(a|s,c)[Q

π(s, a|c)− α log πθ(a|s, c)]

= −Es∼D[DKL(πθ(·|s, c) ‖ exp(
Qπ(s, ·|c)

α
))],

(6)

adding context dependency to value functions and policy, and the value functions also satisfies Bell-
man equation

Qπ(st, at|ct) = R(st, at) + Est+1∼P (st+1|st,at)[V
π(st+1|ct+1)] (7)

and
V π(st|ct) = Eat∼πθ(at|st,ct)[Q

π(st, at|ct)− α log πθ(at|st, ct)] (8)

where ct+1 = enc(st, at, rt|ct) and enc is the LSTM context encoder mentioned in 4.2.

Learning Q-function, V-function and LSTM encoder requires minimizing loss

LQ = E(s,a,s′)∼D[(Q
π(s, a|enc(τ1:t−1))− (r(s, a) + γV̂ π(s′|enc(τ1:t))))2] (9)

and
LV = Es∼D[(V π(s|c)− Ea∼πθ(a|s,c)[Q(s, a|c)− α log πθ(a|s, c)])2] (10)

where D is the replay buffer (Mnih et al., 2015) storing the transitions experienced by agent, s is
the state, a is the action taken at state s, s′ is the next state given state and action (s, a), r(s, a) is
the reward at state s after taking action a, τ1:t−1 and τ1:t represents the trajectory before state s and
including state s, and V̂ is the target value function to stable value iteration.

Substitue the adaptation objective in (5) with (6), we have

U(θ,D) = θ + α∇θEs∼D,a∼πθ(a|s,c)[Q
π(s, a|c)− α log πθ(a|s, c)], (11)

where c refers to the context at state s. The gradient estimation in second term using VPG estimator
is

∇θEs∼D,a∼πθ(a|s,c)[Q
π(s, a|c)− α log πθ(a|s, c)]

≈ 1

N

∑
i

∇θ log πθ(a|s, c)(Qπ(s, a|c)− α log πθ(a|s, c))⊥
(12)

Here ⊥ means stop gradient. However, the second-order gradient of the analytical form and the
Monte Carlo approximation form are not the same, which are

Es∼D,a∼πθ(a|s,c)[(∇
2
θ log πθ(a|s, c) +∇θ log πθ(a|s, c)

2
)(Qπ(s, a|c)− α log πθ(a|s, c))] (13)

and
1

N

∑
i

∇2
θ log πθ(a|s, c)(Qπ(s, a|c)− α log πθ(a|s, c))⊥. (14)

This will cause a biased estimation in meta-gradient. Suppose policy πθ is a Gaussian distribution,
the action can be rewritten as a deterministic form a = µθ(ε; s|c), where ε ∼ N(0; 1), and the
gradient term in (11) can be reparameterized as

∇θEs∼D,ε∼N(0;1)[Q
π(s, µθ(ε; s|c)|c)− α log πθ(µθ(ε; s|c)|s, c)] (15)

5

Under review as a conference paper at ICLR 2021

Algorithm 1 K-shot Meta-Reinforcement Learning
Require: trials K, horizon H , task distribution P (T), learning rates α, β, δ

Initialize trail buffer D̂i and replay buffer Di for each training task
Initialize weights of µθ, encφ, Qψ , Vη , V̂η′

1: while not done do
2: for i=1,2,. . . ,N do
3: Clear trial buffer D̂i

4: Sample Ti from P (T)
5: Sample K trajectories from Ti with µθ while encoding experiences,

and add to D̂i and Di

6: Compute adapted policy using θ′ = U(θ, D̂i) in (17)
7: Run adapted policy θ′ for several turns to estimate average return R(τ ′),
8: Compute meta-gradient∇θJK−shoti (θ)
9: Sample a batch of transitions in Di

10: Compute gradients∇φLQi ,∇ψLQi ,∇ηLVi using sampled batch
11: end for
12: θ ← θ + β 1

N

∑
i∇θJ

K−shot
i (θ)

13: ψ ← ψ + β 1
N

∑
i∇ψL

Q
i

14: η ← η + β 1
N

∑
i∇ηLVi

15: φ← φ+ β 1
N

∑
i∇φL

Q
i

16: Soft update target η′ ← (1− δ)η′ + δη
17: end while

Thus the second-order gradient of Monte Carlo approximation

1

N

∑
i

(∇2
aQ(s, a|c)∇θµθ(εi; s|c)2 +∇aQ(s, a|c)∇2

θµθ(εi; s|c)

−α(∇2
a log πθ(a|s, c)∇θµθ(εi; s|c)

2
+∇a log πθ(a|s, c)∇2

θµθ(εi; s|c)))
(16)

is an unbiased estimation of the analytical form, and from (4) we know that meta-gradient estimation
can be unbiased using this adaption form. To utilize all the available data in D, we use deterministic
form for adaptation step in (5) and rewrite K-shot meta-objective as

JK−shot(θ) = ET∼P (T)[Eτ ′∼PT (τ ′|θ′)[R(τ
′)]],

θ′ = U(θ,D)

= θ + α∇θ
1

N

|D|∑
i=1

(Qπ(si, µθ(εi; si|ci)|ci)− α log πθ(µθ(εi; si|ci)|si, ci))
(17)

where si, εi, ci are the ith data in replay buffer collected at trail phase. The meta-RL problem
proposed in 4.1 can be directly optimized by (17) while learning value functions with (9) and (10).

5 EXPERIMENTS

To evaluate our algorithm proposed above, we implemented our approach in several different meta-
reinforcement learning environments, including 2d navigation task from (Rothfuss et al., 2018) and
meta-RL benchmarks previously used by (Rakelly et al., 2019) in mujoco (Todorov et al., 2012).

5.1 ENVIRONMENT SETUP

First we introduce the 2d navigation task. This task requires the agent to explore a sparse reward
environment, infer the goal point in an unbounded 2d plane. The plane is divided into four parts with
each goal in one part. The agent starts from center of the plane and tries to obtain task data in trail
phase and reach the goal in test phase. The observation to be received is its coordinate concatenating
the remained available steps. The reward is sparse and set to be the difference between the distances

6

Under review as a conference paper at ICLR 2021

Figure 2: The 2d navigation task result. The policy converged, and the performance is close to max
score in task.

to the goal within two steps when near the goal, otherwise is set to zero. We use this environment to
test whether the agent can learn to sample different states and use these states to adapt to the right
policy. Second, we describe the mujoco benchmarks. Mujoco tasks are environments for controlling
robot in simulated physical world to learn task adaptation. We tested three mujoco environments:
HalfCheetahForwardBack, AntRandDir, HalfCheetahRandVel. HalfCheetahForwardBack requires
the agent to run forward or backward as fast as possible, AntRandDir requires agent to run in two
random selected directions as fast as possible, and HalfCheetahRandVel requires agent to run with
certain speeds.

5.2 RESULTS

In this section we will show the experiment results of our approach. In 2d navigation task, the meta-
policy learning curve converged easily in early training steps and the trained meta-policy is shown
in figure 3. The agent have three trails on each task, then perform a apdated policy for testing. In
each trail, the agent perform 100 steps and total 300 steps in trail phase. This means our approach
uses less steps to figure out the task than it is in Rothfuss et al. (2018) which used 2000 steps. As
is shown in figure 3, agent chose very different states to explore. Each trail the agent will visit the
states that have not been explored, and states are separated in plane with clear bounds. These states
helps the agent to infer the task efficiently, and the meta-policy can be performed in data expensive
environments.

Figure 3: meta-policy and adaptation in 2d navigation, where pink circles are the goals green circle
is zero reward area. Agent not in the right part corresponding the current goal or in green circle will
get zero reward. In each task agent has three trails to collect data, then perform the test phase.

We also evaluated our algorithm in mujoco meta-RL environments. The results1 are showed in
figure 4. The performances of our algorithm are slightly higher than the previous gradient-based
algorithms. The data amount we sampled at trail phase are also less than it is in MAML, ProMP and
even in PEARL (Rakelly et al., 2019). Each trail we sampled 200 steps for total 2 trails, the data
used to do adaptation in our algorithm is 10% of in PEARL and 5% in ProMP.

1The MAML and ProMP results are obtained from published results in Rakelly et al. (2019)

7

Under review as a conference paper at ICLR 2021

Figure 4: meta-policy and adaptation in mujoco environments. The performance is compared with
previous gradient-based algorithms. The performance is better than the previous algorithms.

6 CONCLUSION

In this paper, we proposed a new meta-RL problem that contrains the data amount utilized by agent,
and have given a new meta-RL algorithm that optimizing with contextual policy and actor-critic
framework. Our approach can estimate unbiased meta-gradient and reduce the estimation variance
of Q-function. From the experiments, we demonstrated that contextual policy can sample efficiently
in data constrained environments. Finally, the experiments on mujoco environments suggested that
our algorithm can have competitive performance with other gradient-based algorithms. Human
behavior can usually bring us inspiration on designing the intelligent system and maybe is a key to
AGI.

REFERENCES

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl2: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

Rasool Fakoor, Pratik Chaudhari, Stefano Soatto, and Alexander J Smola. Meta-q-learning. arXiv
preprint arXiv:1910.00125, 2019.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. arXiv preprint arXiv:1703.03400, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. arXiv preprint
arXiv:1801.01290, 2018.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances in neural information
processing systems, pp. 1008–1014, 2000.

Hao Liu, Richard Socher, and Caiming Xiong. Taming maml: Efficient unbiased meta-
reinforcement learning. In International Conference on Machine Learning, pp. 4061–4071, 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. arXiv
preprint arXiv:1803.02999, 2018.

Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy
meta-reinforcement learning via probabilistic context variables. In International conference on
machine learning, pp. 5331–5340, 2019.

8

Under review as a conference paper at ICLR 2021

Jonas Rothfuss, Dennis Lee, Ignasi Clavera, Tamim Asfour, and Pieter Abbeel. Promp: Proximal
meta-policy search. arXiv preprint arXiv:1810.06784, 2018.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. arXiv preprint arXiv:1911.08265, 2019.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354–359, 2017.

Bradly C Stadie, Ge Yang, Rein Houthooft, Xi Chen, Yan Duan, Yuhuai Wu, Pieter Abbeel, and Ilya
Sutskever. Some considerations on learning to explore via meta-reinforcement learning. arXiv
preprint arXiv:1803.01118, 2018.

Sebastian Thrun and Lorien Pratt. Learning to learn. Springer Science & Business Media, 2012.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn.
arXiv preprint arXiv:1611.05763, 2016.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

9

	Introduction
	Related Work
	Background
	Reinforcement Learning
	Gradient-based Meta-Reinforcement Learning

	Method
	Reformulate Meta-Reinforcement Learning Problem
	Introducing Context
	Learning with Actor-Critic Method

	Experiments
	Environment Setup
	Results

	Conclusion

