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Abstract

In the evolving landscape of Neural Machine001
Translation (NMT), the pretrain-then-finetune002
paradigm has yielded impressive results. How-003
ever, the persistent challenge of Catastrophic004
Forgetting (CF) remains a hurdle. While pre-005
vious work has introduced Continual Learn-006
ing (CL) methods to address CF, these ap-007
proaches grapple with the delicate balance be-008
tween avoiding forgetting and maintaining sys-009
tem extensibility. To address this, we pro-010
pose a CL method, named F-MALLOC (Feed-011
forward Memory ALLOCation). F-MALLOC012
is inspired by recent insights highlighting that013
feed-forward layers emulate neural memories014
and encapsulate crucial translation knowledge.015
It decomposes feed-forward layers into discrete016
memory cells and allocates these memories to017
different tasks. By learning to allocate and018
safeguard these memories, our method effec-019
tively alleviates CF while ensuring robust ex-020
tendability. Besides, we propose a comprehen-021
sive assessment protocol for multi-stage CL of022
NMT systems. Experiments conducted follow-023
ing this new protocol showcase the superior per-024
formance of F-MALLOC, evidenced by higher025
BLEU scores and almost zero forgetting.1026

1 Introduction027

In the pursuit of achieving state-of-the-art results028

in Neural Machine Translation (NMT), the reliance029

on large-scale parallel corpora has been pivotal030

(Bahdanau et al., 2015; Vaswani et al., 2017). How-031

ever, practical application scenarios often present032

challenges, especially when translation is neces-033

sitated for specific domains with limited data re-034

sources (Chu and Wang, 2018; Saunders, 2022).035

Typically, the prevalent paradigm involves the ini-036

tial pretraining of models on expansive general do-037

main corpus, followed by finetuning for the target038

1The code and data for this work will be made publicly
available after the completion of the review process.

domain (Freitag and Al-Onaizan, 2016; Chu and 039

Dabre, 2019). 040

Despite the efficacy of this pretrain-then-finetune 041

paradigm, it has been demonstrated that fine-tuning 042

on the target domain can result in significant per- 043

formance degradation in the general domain, a phe- 044

nomenon known as Catastrophic Forgetting (CF) 045

(French, 1993). In response to this challenge, var- 046

ious Continual Learning (CL) approaches have 047

emerged to address CF in NMT systems. Exist- 048

ing efforts primarily rely on regularization-based 049

techniques to constrain the divergence of model 050

parameters from their previous values (Khayrallah 051

et al., 2018; Saunders et al., 2019; Cao et al., 2021). 052

While these methods are mathematically elegant, 053

they still face challenges related to forgetting. Al- 054

ternatively, some approaches take an architecture- 055

based framework, isolating parameters specific to 056

different tasks to prevent forgetting (Gu et al., 2021; 057

Liang et al., 2021; Huang et al., 2023). However, 058

they require prior information on task numbers to 059

allocate parameters and rely on external storage of 060

model or mask matrices, limiting its extendibility 061

and applicability. 062

In summary, the demand for a CL method for 063

NMT systems that is both extendable and effective 064

in preventing forgetting is pressing. To this end, we 065

introduce a new CL method termed F-MALLOC 066

(Feed-forward Memory ALLOCation), which is 067

inspired by recent insights that feed-forward layers 068

emulate neural memories and encapsulate crucial 069

translation knowledge (Geva et al., 2021; Huang 070

et al., 2023). Therefore, we facilitate new knowl- 071

edge learning and mitigate CF by allocating and 072

protecting these memories. F-MALLOC first lever- 073

ages a structural pruning method to trim the feed- 074

forward layers of a pretrained NMT model, pre- 075

serving memories that encapsulate crucial general 076

domain knowledge. Subsequently, F-MALLOC 077

proceeds to learn a set of non-exclusive task masks, 078

automatically allocating the ‘writable’ memory ca- 079
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pacity to upcoming tasks. The memories allocated080

in this manner are then designated as ’read-only.’081

F-MALLOC strategically blocks gradient flows082

through these ’read-only’ memories, effectively083

mitigating the risk of forgetting.084

Meanwhile, conventional CL evaluation proto-085

cols in the NMT area typically focus on a single086

stage of training, lacking a holistic perspective over087

multiple stages. Therefore, we introduce a com-088

prehensive evaluation protocol for multi-stage CL089

in the NMT scenario. Our protocol incorporates090

metrics assessing forgetting mitigation and adap-091

tation to novel tasks. To enhance robustness, we092

conduct tests with random task sequences, reducing093

biases from specific orders. This protocol provides094

a nuanced understanding of F-MALLOC and com-095

peting methods’ performance over time in NMT.096

Experiments conducted following the proposed097

protocol highlight the superior performance of F-098

MALLOC with high robustness. Additional anal-099

ysis of F-MALLOC’s memory allocation strategy100

reveals its effective utilization of task information,101

such as inherent difficulty or inter-task similarities,102

resulting in enhanced performance.103

In summary, the contributions of this paper are104

as follows:105

• We propose F-MALLOC, a multi-stage CL106

method that prevents forgetting and promotes107

new knowledge acquisition through feed-108

forward memory allocation. It requires no109

prior task information and minimal storage110

overhead.111

• Through a tailored evaluation protocol for112

multi-stage CL in NMT systems, we enhance113

the understanding of system performance on114

both stability and plasticity.115

• Further analysis of F-MALLOC’s adaptive116

memory allocation strategy demonstrates its117

effectiveness in leveraging task difficulty and118

inter-task similarities to optimize capacity us-119

age and encourage knowledge transfer.120

2 Background121

2.1 Feed-forward Layers Emulate Memory122

Networks123

Feed-forward Layer. The prevalent architec-124

ture in NMT is the encoder-decoder Transform-125

ers(Vaswani et al., 2017), which is made of inter-126

twined multi-head attention (MHA) and point-wise127

feed-forward layers. Our specific focus lies in the 128

feed-forward layer, formally defined as: 129

FF(x) = W (2) · σ(W (1) · x) (1) 130

where W (1),W (2) represent learnable parameters 131

(bias term omitted for simplification), and σ typ- 132

ically denotes the activation function, commonly 133

ReLU. 134

Feed-forward layer as neural memory of knowl- 135

edge. Recent research has explored the inter- 136

pretability of feed-forward structures, noting a 137

significant resemblance between the feed-forward 138

layer and neural memory (Sukhbaatar et al., 2015). 139

Treating parameter matrices W (1) and W (2) as 140

keys and values respectively, the feed-forward layer 141

can be seen as an unnormalized key-value memory 142

(Sukhbaatar et al., 2019). Studies have delved into 143

this similarity, with Geva et al. (2021) revealing 144

that in feed-forward layers, each key correlates with 145

textual patterns in training examples, while each 146

value induces a distribution over the output vocabu- 147

lary. In the context of Neural Machine Translation, 148

Huang et al. (2023) demonstrates that feed-forward 149

layers encapsulate crucial translation knowledge 150

and can facilitate knowledge transfer between mod- 151

els. 152

3 Methods 153

3.1 Overview 154

Building upon prior research that characterizes 155

feed-forward layers as neural memory repositories 156

of knowledge, we posit a hypothesis that effec- 157

tive allocation and protection of these memories 158

within feed-forward layers can facilitate both the 159

acquisition of new knowledge and the prevention 160

of forgetting. Our proposed method, F-MALLOC, 161

is devised on the premise of this hypothesis. 162

F-MALLOC is specifically tailored to the feed- 163

forward structure, with all other parameters held 164

constant throughout the process. To preserve criti- 165

cal general domain knowledge while allowing flex- 166

ibility for future task learning, we initiate the pro- 167

cess with a structured pruning method (3.2). This 168

method aids in eliminating unimportant memo- 169

ries, making them ‘writable’. Subsequently, we 170

introduce learnable task masks to manage these 171

free memories (3.3). These task masks, acquired 172

through learning, play a vital role in memory al- 173

location for new tasks, designating them as ’read- 174

only’ to prevent alterations. For an overview of our 175

method, please refer to Fig.1. 176
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Figure 1: Illustration of F-MALLOC. For simplification, we depict a decomposed feed-forward layer. (a) The
Original General Domain Model: Highlighting the general domain task in green. (b) Pruned General Domain
Model: Post-pruning, pruned memories are ‘writable’ (depicted in white), while others are designated as ’read-only.’
(c) Learning a New Task: The model learns to allocate some memories to the new task and mark them ‘read-only’
(depicted in yellow). ‘read-only’ memories remain available for future tasks’ forward propagation. However,
backward propagation through them is prohibited. (d) Multi-task Model: After learning all tasks, each task
occupies a share of memory capacity. The forward pass of the last task is shown.

3.2 Preserving General Domain Knowledge177

Pruning has demonstrated effectiveness in retaining178

essential parameters while eliminating unnecessary179

ones in neural networks. In this context, we adopt180

a structured pruning method, which is designed to181

preserve general domain knowledge. The pruning182

process calculates an importance score for each183

memory cell in the feed-forward layer, retaining184

only the most crucial ones.185

Importance-based memory pruning. The prun-186

ing problem can be seen as finding an optimal187

mask under a sparsity constraint. To formalize188

this, we decompose the feed-forward layer into189

N key-value pairs, which we call a memory cell2.190

Subsequently, a mask is introduced to control the191

activation of them:192

FF(x,m) =
N∑
i=1

mi ⊙W
(2)
:,i · σ(W (1)

i,: · x) (2)193

Here, N denotes the hidden dimension of the feed-194

forward layer, m ∈ {0, 1}N represents the mask195

vector and ⊙ denotes the Hadamard product.196

A common approach to select unnecessary mem-197

ory is to estimate the importance of different mem-198

ories with gradient (Michel et al., 2019) or Fisher199

information (Liu et al., 2021). The precise calcula-200

tion of the importance score typically demands the201

2We use memory and memory cell interchangeably.

use of the same data and loss functions employed 202

during model training, which is often impractical 203

in CL scenarios where obtaining the training data 204

of a pretrained model may be unfeasible. 205

To address this challenge, we propose an alter- 206

native approach employing Jensen–Shannon (JS) 207

divergence. The method draws inspiration from 208

the stochastic dropout mechanism (Hinton et al., 209

2012), which introduces randomness by eliminat- 210

ing a portion of units in each layer during training, 211

mitigating co-adaptation and overfitting. In our 212

approach, dropout is applied to the feed-forward 213

layer, generating unique memory activations and 214

distinct outputs during each forward pass. By com- 215

paring these outputs and computing the gradient of 216

the divergence, we derive a novel importance score 217

for memories. 218

Specifically, we perform two forward passes of 219

the input data x through the network, generating 220

two distributions of model predictions, denoted as 221

P1(y|x) and P2(y|x). We then calculate the JS 222

divergence between these predictions: 223

LJS(x) =
1

2
(KL(P1(y|x),P2(y|x))

+ KL(P2(y|x),P1(y|x)))
(3) 224

where KL(·, ·) denotes the Kullback–Leibler (KL) 225

divergence. In practice, we adopt an external 226

dataset D and estimate the average gradient of 227
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JS divergence, serving as an empirical importance228

score:229

Ik = Ex∈D

∣∣∣∣∂LJS(x)

∂mk

∣∣∣∣ (4)230

Following the derivation of the importance score,231

a binary mask is generated through a binarization232

function utilizing the s quantile of the importance233

score, denoted as qs(I), as the threshold:234

mG
k =

{
1, if Ik ≥ qs(I)

0, if Ik < qs(I)
(5)235

where s is the desired sparsity. Substituting this236

mask mG into Formula 2 accomplishes the prun-237

ing.238

3.3 Learning New Domain Continually239

After the structure pruning stage, wherein specific240

feed-forward memories are pruned and marked241

‘writable’ for future learning, we introduce a task242

mask mechanism to manage memory. Through-243

out the forward pass, these task masks govern the244

activation of feed-forward memory, conditioning245

the model for specific tasks. In the backward pass,246

the task masks are employed to suppress gradient247

updates to the ‘read-only’ memories, effectively248

preventing CF. Fig.2 provides an overview of this249

procedure.250

FC2

FC1

FC2

FC1

Figure 2: Illustration of new domain learning: forward
(the left) and backward (the right) propagation. Here,
we show the inner structure of the feed-forward layer.

Learning task mask to allocate ‘writable’ mem-251

ory. To adapt to a new task t, a task mask mt
l252

is learned. This task mask serves to conditionally253

activate the memories in the l-th feed-forward layer.254

We adopt the task-based hard attention mechanism255

proposed by Serrà et al. (2018) to train the mask.256

For each task t, a learnable task embedding etl is257

introduced for each layer. The task mask mt
l is258

defined as a gated version of the embedding vector259

etl :260

mt
l = σ(

etl
τ
) (6)261

where σ represents a gate function, and τ is a 262

temperature variable. We wish to learn a binary 263

task mask that could be employed to allocate feed- 264

forward memory in the same format as described 265

in Eq.2. 266

To facilitate the efficient learning of task masks, 267

we employ a sigmoid function with a temperature 268

scalar to create a differentiable pseudo-gate func- 269

tion. The temperature scalar regulates the polar- 270

ization or ‘hardness’ of the pseudo-step function. 271

As τ → 0, the values of mt
l,i tend towards either 272

0 or 1, compelling the model to exploit allocated 273

memories. Conversely, as τ → ∞, the values of 274

mt
l,i approach 0.5, allowing the model to freely ex- 275

plore memories. Throughout the training process, 276

we implement temperature annealing, transition- 277

ing from 1
τmax

to τmax. This dynamic adjustment 278

aids the model in cyclically exploring memories 279

while simultaneously exploiting activated memo- 280

ries. During the training process, the mask under- 281

goes a gradual polarization, resulting in the occu- 282

pation of useful memories. The embedding is ini- 283

tialized with αmG − |N (0, 1)|. This initialization 284

set the extra capacity usage to zero at the beginning 285

of training, promoting low capacity usage. Upon 286

model convergence, we archive the acquired mask 287

for future utilization. 288

Applying task mask to safeguard ‘read-only’ 289

memory. To tackle the challenge of CF, our ap- 290

proach involves leveraging task masks acquired 291

from previous tasks to influence the gradient. Be- 292

fore learning a new task, denoted as t, we aggre- 293

gate all task masks from preceding tasks using an 294

element-wise max (EMAX) operation and subse- 295

quently binarize the result with a threshold λ, as 296

expressed by the following equation: 297

m<t
l = Iλ(EMAXj<t{mj

l }) (7) 298

Here, the subscript l denotes the layer index. In 299

this specific context, task 0 corresponds to the gen- 300

eral domain translation task, and the associated 301

mask derived from structural pruning for the gen- 302

eral domain is denoted as m0. The aggregated 303

binary mask m<t
l encapsulates critical memories 304

designated as ‘read-only’ by previous tasks. The 305

primary objective is to safeguard the parameters in 306

these memories, preserving their functionality for 307

previous tasks. To achieve this, we utilize the mask 308

to adjust the gradient during the training of task t, 309

as articulated in the following equation: 310

g
′t
l = gtl ⊙ (1−m<t

l ) (8) 311
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where ⊙ denotes the Hadamard product. This312

modification guarantees that memories crucial for313

previous tasks (entries with a value of 1 in m<t
l )314

will have near zero gradients, thereby ensuring315

their preservation during the training of subsequent316

tasks.317

4 Experiments318

In our multi-stage CL experiments for NMT sys-319

tems, we finetune a pretrained general domain320

model on T new domains successively3. The pre-321

trained model is based on the WMT’19 German-322

English news translation task winner (Ng et al.,323

2019). To neutralize the impact of task order, we324

randomly generate five task order sequences and325

report the average result.326

4.1 Data Preparation327

In the context of structure pruning, we employ328

the WMT14 de-en translation data4 as the exter-329

nal dataset. Additionally, we combine the WMT330

newstest datasets from 2019 to 20215 to form a331

comprehensive general domain test set. For the332

continual domain adaptation experiments, we uti-333

lize the OPUS multi-domains dataset (Koehn and334

Knowles, 2017), which has been re-split by Aha-335

roni and Goldberg (2020). It includes German-336

English parallel data in five domains: Medical,337

Law, IT, Koran and Subtitles.338

The details of all datasets mentioned above are339

shown in Appendix A.340

4.2 Baseline and Implementation Details341

We incorporate eight competitive methods for com-342

parison in our experiments, which can be catego-343

rized into two groups: Non-Continual Learning344

(Non-CL) methods and CL methods. In the Non-345

CL category, (1) Single-domain and (2) Mixed-346

domain directly finetune the pretrained model on347

single or mixed domain data, achieving the upper348

bound performance. (3) Adapter (Bapna and Fi-349

rat, 2019) inserts Adapters on each transformer350

block of the general domain model. In the CL cate-351

gory, we have (4) Sequential Fine-tuning contin-352

ual finetunes the pretrained model sequentially; (5)353

EWC (Thompson et al., 2019; Saunders et al.,354

2019) adds elastic weight consolidation term to355

regularize loss; (6) KD(Khayrallah et al., 2018;356

3In our experiments, a task is a domain. Hence, we use
task and domain interchangeably.

4https://www.statmt.org/wmt14/translation-task.html
5https://www.statmt.org/

Dakwale and Monz, 2017) use knowledge distilla- 357

tion to transfer knowledge; (7) Dynamic-KD(Cao 358

et al., 2021) involves dynamic adjustments to the 359

weight of KD loss. (8) PTE(Gu et al., 2021) prune 360

the general domain model and learn target domain 361

with free parameters. We have extended the base- 362

line method designed for a single stage to multiple 363

stages. Further details on these methods can be 364

found in Appendix B. 365

In our proposed method, we configure the prun- 366

ing sparsity to 0.2 and set the temperature hyperpa- 367

rameter τmax to 400. For embedding initialization, 368

we employ α = 5.0, and the binarize threshold λ 369

in Eq. 7 is set to 0.5. For more Implementation 370

Details please refer to Appendix C. 371

4.3 Metrics 372

We adopt the BLEU score to evaluate the transla- 373

tion performance. Recognizing that post-training 374

BLEU may not sufficiently capture the nuances in 375

multi-stage CL, we introduce two additional met- 376

rics: Forgetting Ratio (FR) and Saturation Ratio 377

(SR). 378

• Inspired by (Liu et al., 2020), FR is defined 379

as: 380

FRt =
1

t− 1

t−1∑
i=1

ai
i − at

i

ai
i

(9) 381

where aji , ∀i ≤ j represents the BLEU on the 382

i-th domain after learning of j-th domain6. 383

This metric is employed to quantify the stabil- 384

ity (the ability to prevent forgetting). 385

• SR is defined as: 386

SRt = 1− at
t

aM
t

(10) 387

where, aMi represents the BLEU of i-th do- 388

main in a mixed-domain training fashion, 389

commonly regarded as the upper bound of 390

CL methods. The saturation rate highlights 391

the system’s plasticity (learning ability) when 392

encountering a new task, with a higher rate 393

indicating lower plasticity. 394

5 Results and Analysis 395

Table 1 presents the post-training performances 396

of all nine systems across six domains. No- 397

tably, F-MALLOC consistently outperforms all 398

6This definition calculates the average proportion of per-
formance degradation over all previously learned domains,
excluding the latest one as it experiences no forgetting.
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Category Domain General IT Koran Law Medical Subtitles Average FR[%] Additional storage
Method BLEU

Non-CL
Single-domain 38.00 48.80 22.90 57.15 55.93 32.01 42.47 - T ·M
Mixed-domain 21.24 46.17 22.97 60.35 55.98 29.87 39.43 - 0
Adapter 38.00 44.09 22.48 53.31 51.23 32.05 40.19 - T ·A

CL

Seq-finetune 15.81 29.29 12.16 23.90 26.50 20.76 21.40 47.80 0
EWC 24.57 36.93 17.61 46.14 43.92 25.01 32.36 11.47 2M
KD 22.80 34.49 13.93 36.33 38.00 24.88 28.41 32.79 M
Dynamic-KD 27.88 31.84 14.33 40.05 39.78 23.53 29.57 15.33 M
PTE 37.00 42.82 23.06 52.65 49.59 31.69 39.47 - T ·M [bit]
F-MALLOC(Ours) 39.54 44.33 23.02 53.77 51.62 31.16 40.57 0.71 T · E

Table 1: BLEU and FR for all domains post-training. The results are averages of 5 different task sequences (Non-CL
baselines are independent of task order). The best results are highlighted in bold. The best CL results are highlighted
with an underline. ‘-’ indicates the corresponding methods have no forgetting. The specital tokens denote number of
seen tasks(T ), adapter size(A), model parameter size(M ), binary mask size(M [bit]) and task embedding size(E).
Note that M ≫ M [bit] > A ≫ E.

Domain Genearl IT Koran Law Medical Subtitles Average FR[%]
Method BLEU

Seq-finetune 21.02 23.15 11.80 31.33 36.83 30.65 25.80 37.40
EWC 22.86 45.81 18.96 43.37 39.18 26.16 32.72 10.10
KD 25.91 29.52 13.40 40.31 44.68 31.61 30.91 27.14
Dynamic-KD 30.35 33.83 15.56 41.65 40.90 24.62 31.15 12.22
PTE 37.00 43.28 22.98 52.94 49.42 31.87 39.58 -
F-MALLOC(Ours) 39.54 44.19 22.81 53.64 51.21 31.93 40.55 0.24

Table 2: BLEU and FR of CL methods for all domains post-training using task sequence 0 (the domain training
order corresponds to the sequence in the first row). The best results are highlighted in bold.

CL baselines on average, with an impressively399

low forgetting rate of 0.71%. In comparison400

with regularization-based baselines, F-MALLOC401

demonstrates a better ability to alleviate forget-402

ting and acquire new knowledge. When compared403

with the SOTA architecture-based method, PTE,404

F-MALLOC attains higher performance with min-405

imal storage overhead and no prior information406

about task numbers.407

Regrading the Non-CL baselines, although still408

trailing behind the upper bound performance, F-409

MALLOC demonstrates comparable performance410

to the strong baseline method, Adapter. These411

results collectively underscore the effectiveness412

of F-MALLOC in Continual Learning scenarios413

for Transformer-based Neural Machine Translation414

(NMT) systems.415

For a more comprehensive analysis and compar-416

ison of various CL methods, the following subsec-417

tions will use task sequence 0: IT → Koran → Law418

→ Medical → Subtitles as a reference.419

5.1 Comparison with CL methods420

Table 2 presents the results for task sequence 0.421

Notably, among the prior CL methods, PTE stands422

out with the best performance, achieving a BLEU423

score of 39.58 and zero forgetting. In contrast, 424

regularization-based methods exhibit inferior per- 425

formance. The suboptimal results of KD-based ap- 426

proaches (KD and Dynamic-KD) can be attributed 427

to the absence of sample replay in our experimen- 428

tal setting. Without a sample cache from previous 429

tasks, KD struggles to effectively transfer knowl- 430

edge from the preceding model to subsequent ones. 431

Importantly, F-MALLOC surpasses all CL base- 432

lines, delivering the best results in both the BLEU 433

score and forgetting rate. 434

Robustness against domain order. A horizon- 435

tal comparison between Table 1 and Table 2 436

for the same method’s performance reveals that 437

regularization-base methods such as EWC and KD 438

are sensitive to domain order, resulting in imbal- 439

anced performance on the initial and final tasks. In 440

contrast, F-MALLOC exhibits notable resilience to 441

variations in domain order, as evidenced by the bal- 442

anced performance across different domain orders. 443

This robustness is further substantiated by the low 444

standard deviations presented in Appendix D. 445

Trade-off between stability and plasticity. As 446

depicted in Fig.3, both EWC and Dynamic-KD 447
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Figure 3: Forgetting rate and saturation rate across dif-
ferent training stages.

exhibit robust abilities to mitigate forgetting. How-448

ever, they also demonstrate a high saturation rate,449

suggesting a compromise in their potential to adapt450

to additional tasks. In contrast, KD achieves a low451

saturation rate akin to Seq-finetune, but its forget-452

ting rate is notably higher. This observation sheds453

light on the struggle of regularization-based meth-454

ods to balance stability and plasticity. Crucially,455

F-MALLOC excels in both objectives, achieving a456

harmonious equilibrium between mitigating forget-457

ting and maintaining adaptability.458

5.2 Hyperparameter459

Temp BLEU FR[%] Sparsity BLEU FR[%]

τmax = 50 36.83 10.81 s = 0.05 39.09 0.40
τmax = 100 38.33 6.89 s = 0.1 39.87 0.15
τmax = 200 40.22 2.37 s = 0.2 40.55 0.24
τmax = 400 40.55 0.24 s = 0.3 40.01 0.85
τmax = 800 40.60 0.10 s = 0.4 39.88 2.02

Table 3: The effect of max temperature τmax (left) and
sparsity s (right). The value used in our experiments is
highlighted in bold.

We explored the impact of annealing temper-460

ature τmax and prune sparsity s. As outlined in461

Table 3, a small temperature results in a ’soft’ mask462

value, contributing to increased FR. Good results463

were observed when τmax ≥ 400. Continually464

increasing the temperature renders the annealing465

strategy ineffective, resulting in a slower conver-466

gence speed.467

In terms of prune sparsity, low sparsity restricts468

the available capacity for subsequent tasks, while469

high sparsity adversely affects general domain per- 470

formance, both contributing to diminished overall 471

performance. Notably, the performance gap across 472

varying prune sparsity levels is relatively small, 473

highlighting the robustness of F-MALLOC. 474

5.3 Analyzing Memory Capacity Allocation 475
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Figure 4: Feed-forward memory capacity usage in the
training process of task sequence 0. Vertical dash lines
indicate task switches.

F-MALLOC employs a task mask mechanism 476

for the dynamic allocation of feed-forward memo- 477

ries to different tasks. Therefore, by computing the 478

accumulated task mask m<t+1 and subsequently 479

binarizing it, we can assess the proportion of allo- 480

cated memories. As depicted in Fig.4, the capacity 481

usage undergoes rapid growth in the initial training 482

stage for all tasks, gradually converging at a stable 483

rate thereafter. 484

Upon comparing different tasks, we observed 485

a positive correlation between the usage and the 486

volume of data across diverse domains. However, 487

the capacity usages are not strictly proportional to 488

the dataset size, and with an increasing number 489

of learning tasks, there is a trend of reduced occu- 490

pancy for new tasks. These phenomena suggest that 491

our proposed method has learned a rational and ef- 492

ficient memory allocation strategy, which leverages 493

the inherent complexity of the tasks. Towards the 494

conclusion of the entire training process, approx- 495

imately 40% of the feed-forward memory is still 496

‘writable’. However, the best-performing baseline, 497

PTE, has already exhausted model capacity. This 498

emphasizes the potential of our proposed method 499

to effectively accommodate additional tasks. 500

5.4 Knowledge Transfer and Domain 501

Similarity from Memory Reusing 502

In our proposed method, we employ non-exclusive 503

task masks, allowing feed-forward memories allo- 504

cated to previous tasks to be reused by subsequent 505
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Figure 5: Percentage of memory reuse across tasks.

tasks. To investigate the inter-task relationship re-506

garding the allocation of memories, we visually507

represent the overlap rate among task masks for508

different tasks. Specifically, we utilize the Jac-509

card similarity coefficient, defined as |mi∩mj |
|mi∪mj | , to510

assess the memory reuse between task ti and tj ,511

i < j. The results, depicted in Fig.5, reveal a512

substantial proportion of memory reuse between513

different tasks. This observation underscores the514

effectiveness of our non-exclusive masking strategy515

in facilitating knowledge transfer between tasks.516

We further conducted a comparative analysis517

with the unsupervised domain clustering approach518

proposed by Aharoni and Goldberg (2020). The519

observed memory reuse rate aligns consistently520

with domain similarity. For instance, the memory521

reuse rate of ‘Koran’ is notably lower than in other522

domains, reflecting its isolated nature with mini-523

mal intersection with other domains. In contrast,524

the ‘IT’ domain exhibits a nearly uniform memory525

reuse rate among ‘Law’, ‘Medical’, and ‘Subti-526

tles’, consistent with the observation that it shares527

commonalities with these three domains accord-528

ing to the domain cluster result. This alignment529

highlights the effectiveness of our approach in cap-530

turing and leveraging task similarities for improved531

knowledge transfer.532

6 Related Work533

CL for NMT. Recent work on CL of NMT can be534

divided into two categories: regularization-based535

and architecture-based. Regularization-based tech-536

niques address forgetting by incorporating penalty537

terms to constrain the divergence of model param-538

eters from their previous values. Prominent meth-539

ods, including Elastic Weight Consolidation (EWC)540

(Thompson et al., 2019; Saunders et al., 2019) and541

knowledge distillation (Dakwale and Monz, 2017;542

Khayrallah et al., 2018; Zhao et al., 2022; Cao 543

et al., 2021), are widely acknowledged for their 544

effectiveness in the fine-tuning process. Gu et al. 545

(2022) introduced a hard Low Forgetting Risk re- 546

striction on all parameters. In contrast to these 547

approaches, our method effectively mitigates for- 548

getting by blocking gradients, showcasing a more 549

efficient strategy. 550

Architecture-based methods involve dividing the 551

model into disjoint task-specific components. For 552

instance, Gu et al. (2021) prune the general domain 553

model and subsequently finetune free parameters 554

to adapt to the target domain. Another approach, 555

as demonstrated by Liang et al. (2021), involves 556

freezing Lottery Ticket Subnetworks to prevent for- 557

getting. Additionally, Huang et al. (2023) propose 558

utilizing external models’ feed-forward layers and 559

embeddings as a plug-in for knowledge transfer. In 560

comparison to these methods, our approach stands 561

out as it requires no pre-specification of task num- 562

bers or space allocation. Moreover, it avoids the 563

need to store an external model or a mask matrix. 564

Unstructured Pruning for Transformers. For 565

coarse-grained unstructured pruning of Trans- 566

former models, attention-head pruning (Voita et al., 567

2019; Michel et al., 2019), layer-dropping (Fan 568

et al., 2020) and block pruning (Lagunas et al., 569

2021) have been popularly used. Our proposed 570

pruning method shares similarities with the ap- 571

proach presented by Kwon et al. (2022), although 572

it differs in the estimation of importance and the 573

selection of modules slated for pruning. 574

7 Conclusion 575

This paper introduces F-MALLOC, a pioneering 576

method for CL in NMT systems. By decomposing 577

feed-forward layers into memory cells and imple- 578

menting a strategic memory allocation approach, 579

F-MALLOC proves effective in simultaneously 580

enhancing new knowledge acquisition and alle- 581

viating forgetting. Evaluation with a specialized 582

protocol for CL in NMT, positions F-MALLOC 583

as a superior performer, showcasing substantial 584

improvements, robustness, and extensibility com- 585

pared to existing approaches. The method’s ability 586

to leverage task difficulty and inter-task similari- 587

ties for enhanced performance represents a signif- 588

icant advancement not seen in previous methods. 589

F-MALLOC not only contribute to the field of CL 590

in NMT but also pave the way for more efficient 591

and adaptable neural network architectures. 592
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8 Limitations593

Although our proposed F-MALLOC can effectively594

alleviate forgetting and exhibits high robustness595

and extensibility, there are several limitations in596

our current study: On the one hand, F-MALLOC597

utilizes a fixed-capacity Transformer, which may598

limit its capability to adapt to an unrestricted num-599

ber of tasks. On the other hand, F-MALLOC is600

designed for domain incremental training. Thus,601

adding a new language can not be directly solved.602

We leave these problems for future research.603
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A Dataset Details 840

Dataset Train Dev. Test

WMT17 3.9M - -

General
Newstest2019 - - 2000
Newstest2020 - - 1000
Newstest2021 - - 785

IT 223K

2000 2000
Koran 17K
Law 467K

Medical 248K
Subtitles 500K

Table 4: Dataset statistics.

Here, we present detailed statistics for the 841

datasets used in our experiments in Table 4, fo- 842

cusing on the translation direction EN → DE. We 843

employ Moses scripts7 for sentence tokenization 844

and truecasing. Additionally, we utilize FastBPE8 845

to apply Byte Pair Encoding (BPE)(Sennrich et al., 846

2016) to the tokenized data. The dictionary 847

and BPE codes are sourced from the Fairseq 848

WMT19 German-English news translation pre- 849

trained model(Ng et al., 2019). 850

B Baseline Details 851

Non-Continual Learning Methods. Each of 852

these baselines constructs a distinct model (or mod- 853

ule) for each task independently. Consequently, 854

they do not encounter CF and lack knowledge trans- 855

fer between tasks. 856

• Single-domain continues to train the general 857

domain model on target domain data, respec- 858

tively. 859

• Mixed-domain trains the general domain 860

model on combined multi-domain data, which 861

is considered the upper bound of CL meth- 862

ods. 863

• Adapter (Bapna and Firat, 2019) inserts 864

adapters on each transformer block of the gen- 865

eral domain model as proposed by Bapna and 866

Firat (2019). We set the bottleneck dimension 867

to 64 and only finetune the adapters. 868

7http://www.statmt.org/moses/
8https://github.com/glample/fastBPE
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Method Domain

General IT Koran Law Medical Subtitles

Seq-finetune 6.28 17.62 6.35 12.91 11.69 9.20
EWC 5.23 5.64 1.55 4.70 6.12 5.46
KD 3.97 12.85 4.91 8.69 5.74 6.16
Dynamic-KD 2.59 1.81 0.87 1.85 1.49 0.76
PTE 0.00 0.60 0.23 0.33 0.24 0.40
F-MALLOC(Ours) 0.00 0.71 0.27 0.62 0.61 0.57

Table 5: Standard deviation of BLEU score of the proposed F-MALLOC and CL baselines over 5 random task
sequences.

Domain order EWC PTE F-MALLOC

BLEU FR[%] BLEU FR[%] BLEU FR[%]

IT→Koran→Law→Medical→Subtitles 32.72 10.10 39.58 - 40.55 0.24
Koran→Medical→IT→Law→Subtitles 32.78 12.11 39.36 - 40.70 0.32
Law→IT→Medical→Subtitles→Koran 29.94 16.40 39.55 - 40.76 1.12
Subtitles→Law→Koran→Medical→IT 35.21 5.15 39.48 - 40.39 0.69
Medical→Law→Koran→Subtitles→IT 31.16 13.59 39.37 - 40.47 1.17

Table 6: Result in different domain orders. The best-performing regularization-based baseline, EWC, and
architecture-based baseline, PTE, were chosen for comparison.

Continual Learning Methods:869

• Sequential Fine-tuning continues to train the870

general domain model on target domains se-871

quentially, without incorporating any mecha-872

nism to address CF.873

• Elastic Weight Consolidation (EWC)874

(Thompson et al., 2019; Saunders et al.,875

2019) is a popular regularization-based876

CL method that adopts elastic weights877

consolidation to introduce L2 regularization,878

penalizing parameter changes. The training879

objective is:880

LEWC(θ) = LCE(θ) + α
∑
i

Fi(θi − θGi )
2881

In this equation, θ represents the model pa-882

rameters, F is the diagnosis of the Fisher in-883

formation matrix, and α is a hyperparameter884

controlling the strength of regularization. To885

extend this method to a multi-stage scenario,886

we adopt the accumulated Fisher information,887

as proposed by Huszár (2017).888

• Knowledge Distillation (KD) (Khayrallah889

et al., 2018; Dakwale and Monz, 2017) in-890

troduces a regularization (reg) term into the891

training objective. The reg term is formulated 892

in the spirit of knowledge distillation, mini- 893

mizing the cross-entropy between the original 894

(teacher) model’s output distribution and that 895

of the new (student) model. A hyperparameter 896

α is introduced to interpolate the reg term and 897

the NLL loss. 898

LEWC(θ) = LCE(θ) + αLKD(θ) 899

In our experiments, the weight of the KD term 900

is set to 0.1. 901

• Dynamic Knowledge Distillation (Dynamic- 902

KD) (Cao et al., 2021) propose dynamically 903

adjusting the weight of KD loss to better al- 904

leviate CF in a multi-stage CL scenario. The 905

bias correction module is omitted due to its 906

incompatibility with the pretrained model. 907

• Prune Then Expand (PTE) (Gu et al., 2021) 908

employs unstructured pruning to trim the gen- 909

eral domain model, followed by training the 910

pruned parameters for the target domain. In 911

the context of multi-stage CL, we uniformly 912

distribute the pruned parameters across all sub- 913

sequent tasks. 914
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C Implementation Details915

pretrained Model. All methods are implemented916

with the Fairseq toolkit (Ott et al., 2019). We917

adopt the WMT’19 German-English news trans-918

lation task winner (Ng et al., 2019) as the pre-919

trained general domain model. It is a Transformer920

encoder-decoder model (Vaswani et al., 2017) with921

6 layers, 1,024-dimensional representations, 8,192-922

dimensional feed-forward layers, and 8 attention923

heads. Apart from WMT’19 training data, this924

model is trained on over 10 billion tokens of back-925

translation data and finetuned on the Newstest test926

sets from years before 2018. In our experiments,927

we do not use ensembles or n-best reranking.928

Hyper-parameters. Unless explicitly stated oth-929

erwise, consistent hyperparameters are applied930

across all experiments. We utilize the Adam opti-931

mizer (Kingma and Ba, 2015) with the same learn-932

ing rate scheduler as detailed in Vaswani et al.933

(2017). The learning rate is set to 1e-4 for all sys-934

tems during the fine-tuning process. Training is935

stopped when there is no performance improve-936

ment for 5 consecutive validation steps.937

In our proposed method, we exclusively finetune938

the Feed-forward layers in Transformers, keeping939

all other modules frozen throughout the procedure.940

During the structure pruning stage, we set the prun-941

ing sparsity to 0.2 for subsequent CL experiments942

(the same pruning sparsity is also used in PTE for943

fair comparison).944

In the CL stage, the temperature hyperparameter945

τmax is set to 400, following previous work (Serrà946

et al., 2018). We use α = 5.0 in the embedding947

initialization. The binarize threshold λ in Eq.7 is948

set to 0.5. For inference, we employ beam search949

with a beam size of 5 for all systems. The default950

parameter of BLEU is utilized in evaluation.951

All experiments are done on 8 NVIDIA RTX952

3090 GPUs.953

D Standare Deviations954

This section reports the standard deviations of the955

results in Table 1. We only include the CL base-956

lines here, since Non-CL baselines‘ performance957

is independent of the domain order. As shown in958

Table 5, F-MALLOC achieves the lowest standard959

deviations, indicating its robustness.960

E Result in Different Domain Orders 961

Table 6 shows the performance of F-MALLOC 962

along with two strong baselines, EWC and PTE, 963

in other domain orders. F-MALLOC outperforms 964

both EWC and PTE, highlighting its efficacy across 965

different domain order scenarios. 966
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