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Emergence of local and global synaptic
organization on cortical dendrites
Jan H. Kirchner 1,2 & Julijana Gjorgjieva 1,2✉

Synaptic inputs on cortical dendrites are organized with remarkable subcellular precision at

the micron level. This organization emerges during early postnatal development through

patterned spontaneous activity and manifests both locally where nearby synapses are sig-

nificantly correlated, and globally with distance to the soma. We propose a biophysically

motivated synaptic plasticity model to dissect the mechanistic origins of this organization

during development and elucidate synaptic clustering of different stimulus features in the

adult. Our model captures local clustering of orientation in ferret and receptive field overlap in

mouse visual cortex based on the receptive field diameter and the cortical magnification of

visual space. Including action potential back-propagation explains branch clustering hetero-

geneity in the ferret and produces a global retinotopy gradient from soma to dendrite in the

mouse. Therefore, by combining activity-dependent synaptic competition and species-

specific receptive fields, our framework explains different aspects of synaptic organization

regarding stimulus features and spatial scales.
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Neurons in the developing brain become precisely con-
nected before sensory organs mature. Spontaneous
activity plays a major role in refining circuit connectivity

to mature levels at the scale of single neurons and networks1.
During visual system development, for example, synaptic con-
nections are established by matching molecular gradients and
axonal targeting2. Spatiotemporal correlations in spontaneous
activity then instruct the development of various receptive field
properties and visual feature maps, which are further fine-tuned
by sensory activity3. In addition to refining developing networks
at cellular precision, spontaneous activity can also establish fine-
scale organization of individual synapses within the dendritic
arborizations of single neurons4,5. One striking example of such
fine-scale organization is functional synaptic clustering: synapses
onto dendrites of pyramidal neurons that receive correlated input
or encode a common sensory feature are spatially grouped.
Synaptic clustering has been observed across brain regions,
developmental ages, and diverse species from rodent to
primate4–12, and has multiple functional benefits; it compart-
mentalizes the dendrites of single neurons, enables supralinear
integration of inputs, shapes memory formation13, and can
explain translation-invariance of complex cells in the visual
cortex14. However, the mechanistic origins of synaptic clustering
dependent on spontaneous activity during early postnatal devel-
opment, and its relation to functional organization in the adult,
remain elusive.

During development, recent experiments identified a molecular
mechanism for the emergence of synaptic clustering based on the
antagonistic interaction of brain-derived neurotrophic factor
(BDNF) and its immature form, proBDNF. By binding to their
corresponding receptors, BDNF and proBDNF can respectively
promote synaptic potentiation and the survival of neurons, and
synaptic depression and the apoptosis of axons and neurons15.
While proBDNF is more prevalent than BDNF during early
development16, the protease matrix metallopeptidase 9 (MMP9)
controls the relative amounts of proBDNF and BDNF at a given
synapse in an activity-dependent manner, and therefore regulates
the plasticity of that synapse. This sets up a promising mechan-
istic implementation for the developmental formation of synaptic
clusters based on neurotrophin interactions, yet the key compu-
tational properties that lead to the activity-dependent cooperation
and competition of multiple synapses innervating a dendritic
branch are unknown.

In the adult, several in vivo studies have reported clustering of
different stimulus features in different species (but see refs. 17–20).
For example, dendritic branches in the ferret visual cortex exhibit
local clustering of orientation selectivity but do not exhibit global
organization of inputs according to spatial location and receptive
field properties7,9. In contrast, synaptic inputs in the mouse visual
cortex do not cluster locally by orientation, but only by receptive
field overlap, and exhibit a global retinotopic organization along
the proximal-distal axis8. We presently do not understand the
factors that underlie these scale- and species-specific differences
and how they emerge during development.

Here we propose a computational framework to reconcile
experimental findings about the fine-scale and global synaptic
organization observed in the adult, and to make predictions about
the key factors driving the emergence of this organization during
development. We built a biophysically inspired model of synaptic
plasticity based on the molecular mechanism of interacting
neurotrophins required for synaptic clustering during
development6,10. We identified two important ingredients
necessary to generate clustering with this model: timing-
dependent cooperation and distance-dependent competition.
Generalizing this neurotrophin model to an analytically tractable
framework with these two characteristics enables us to study the

emergence of synaptic organization independent of the specific
mechanistic implementation. When stimulated with spontaneous
retinal waves in a realistic scenario of visual system development,
the model generates clustering by orientation in the adult ferret
visual cortex and clustering by receptive field overlap in the adult
mouse visual cortex. Two key parameters determine the type of
clustering: the diameter of receptive fields and the spread of
receptive field centers in visual space, which depends on the
cortical magnification factor of visual space. By introducing a
backpropagating action potential to a reconstructed dendritic
tree, the same model generates global organization across the
entire tree. Therefore, a single computational framework moti-
vated by molecular interactions in development can explain how
circuits wire with the remarkable subcellular precision observed
in adulthood, integrating many different facets of organization at
the local and global scale.

Results
Distance- and timing-dependent synaptic plasticity in an
activity-dependent neurotrophin model. To identify the driving
factors for fine-scale dendritic organization of synaptic inputs, we
formulated a computational model based on a local molecular
mechanism implicated in the emergence of clustering during
development. The mechanism implements an activity-dependent
interaction between two signaling molecules: proBDNF and
BDNF, and the conversion factor between them, MMP9 (Fig. 1a
and Methods). Upon activation, a synapse in our model evokes
the postsynaptic release of proBDNF and BDNF through the
opening of voltage-gated calcium channels and the subsequent
influx of calcium10, which spreads postsynaptically in the devel-
oping brain21. Through the lateral spread of calcium, the acti-
vated synapse can exert a direct effect on a different nearby
synapse by triggering neurotrophin release independent of pre-
synaptic stimulation of that synapse. MMP9 release is also cou-
pled to neural activity22, but instead of spreading
postsynaptically, it is co-localized with glutamatergic receptors in
excitatory synapses23. Therefore, we modeled MMP9 and calcium
as synapse-specific and shared accumulators of neural activity,
respectively (see Methods).

Analyzing the molecular interactions in the neurotrophin
model revealed two prominent properties for sorting dendritic
synaptic inputs into local clusters: timing-dependent cooperation
and distance-dependent competition. Distance-dependent com-
petition arises when considering the plasticity of two nearby
synaptic inputs as a function of the distance between them and
the stimulation frequency upon stimulating one of them
(Fig. 1b–d). Driving one synapse with bursts, the units of
information transmission during development6,24, shifts the
balance between proBDNF and BDNF25 in favor of BDNF due
to the activity-dependent release of MMP9 (Fig. 1b, c). Thus, the
stimulated synapse potentiates. In contrast, the unstimulated
synapse depresses by an amount depending on the distance
between synapses, as it remains dominated by proBDNF due to
the absence of MMP9 (Fig. 1d and Methods). Plasticity of an
unstimulated synapse following the stimulation of another
synapse is called heterosynaptic and can stabilize the positive
feedback of Hebbian plasticity26.

In addition to this distance-dependent heterosynaptic depres-
sion, the neurotrophin model exhibits timing-dependent coop-
eration by potentiating nearby coactive synapses. This can be best
seen when implementing a classical plasticity induction paradigm
where we quantified synaptic strength as a function of the timing
between pre- and postsynaptic events (Fig. 1e). Using bursts as
the natural activity patterns in development6,24, we found that
pre- and postsynaptic bursts with temporal offsets below 1 s yield
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synaptic potentiation due to the relative dominance of BDNF
over proBDNF-induced signaling, while longer offsets lead to
depression (Fig. 1f, g). This type of plasticity in the neurotrophin
model can be matched to a timing-dependent Hebbian learning
rule described in the developing visual system, burst-timing-
dependent plasticity (BTDP)27. According to this rule, synaptic
change is sensitive to the overlap between pre- and postsynaptic
bursts on the timescale of several hundred milliseconds.
Remarkably, the dependence of the neurotrophin model on
burst-timing as in the BTDP rule is robust to perturbations in
most parameters of the model except for the proBDNF/BDNF
ratio, which can shift the BTDP curve into depression and
eliminate synaptic competition (Supplementary Fig. 1).

In summary, the proposed neurotrophin model provides a
mechanistic implementation for (1) the distance-dependent
competition between differentially stimulated synapses and (2)
the timing-dependent potentiation when pre- and postsynaptic
activity overlap over developmentally relevant timescales of
several hundred milliseconds. Identifying these two ingredients
provides a key step towards a general framework for establishing

synaptic organization in development6,10 and reconciling differ-
ent aspects of synaptic organization observed in the adult7–9.

A generalized neurotrophin-inspired model captures out-of-
sync-lose-your-link plasticity. To establish a framework for
synaptic organization, we generalized the neurotrophin model to
a local dendritic learning rule independent from a specific bio-
physical implementation. The generalized model derives directly
from neurotrophin interactions, and hence retains the two key
properties of timing- and distance-dependent plasticity (Supple-
mentary Fig. 2). Synaptic efficacy change depends on the accu-
mulated presynaptic (pre) and postsynaptic (post) activity and a
constant heterosynaptic offset related to the initial ratio of
proBDNF to BDNF in the absence of extracellular conversion
through MMP9 (see Methods),

change in synaptic efficacy ¼ post ´ ðpre� offsetÞ ð1Þ

This generalized neurotrophin-inspired model has the advan-
tage that it can be analyzed mathematically, can be flexibly
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Fig. 1 Distance- and timing-dependent synaptic competition in the neurotrophin model. a Model schematic: interactions between neurotrophins (BDNF
and proBDNF), neurotrophin receptors (TrkB and P75NTR), and cleaving protease (MMP9). b Outcome of synaptic stimulation where two synapses
separated by a distance d innervate the same dendrite: I. The left synapse is stimulated with a burst of action potentials. II. Presynaptic activation causes
the local release of MMP9 (yellow). III. Signal transduction into the postsynapse results in the spatially extended influx of calcium (purple shading).
Calcium triggers the exocytosis of proBDNF (orange) and BDNF (green) into extracellular space. IV. MMP9 differentially cleaves proBDNF into BDNF at
the stimulated synapse. V. Repeating this pattern of stimulation potentiates the stimulated synapse and depresses the unstimulated synapse (arrows).
Symbols as in a. c Variables (all unitless, see Methods) in a upon stimulation of one synapse only; the unstimulated synapse is distance d away, as in b. Δ
neurotrophin is the difference between BDNF and proBDNF. Scale bar is 1 s. d Percentage change in synaptic efficacy (of baseline) of the stimulated
synapse (top) and the unstimulated synapse (bottom) as a function of input rate (in bursts per minute, after 1 min of continuous stimulation) and distance
d. The analytical solution follows from a linearized version of the model (see Methods). e A burst-timing-dependent plasticity induction protocol where the
temporal offset between pre- and postsynaptic bursts is varied27. A single synapse innervates the dendrite. Purple shading indicates either pre- (left) or
postsynaptic (right) activation. f Accumulator and neurotrophin variables under the burst pairing protocol with temporal offsets −1.5 s (left), 0.05 s
(middle), and 1.5 s (right). Scale bar is 0.5 s. We assumed that the calcium from direct postsynaptic stimulation is stronger than that released by
stimulation of a synapse (compare to c and see Methods). g Percentage change in synaptic efficacy (of baseline) as a function of temporal offset (data
repesent change in EPSP size from developing mouse LGN reproduced from ref. 27). The arrows mark the temporal offsets displayed in f.
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implemented to apply to other signaling molecules, and hence, a
broader cast of synaptic organization scenarios. This is especially
important since the role of neurotrophins in the emergence of
clustering of different stimulus features, as well as their
interaction with plasticity-related proteins involved in tag-and-
capture and synaptic crosstalk28–32 in adulthood, is unknown.

To determine how distance- and timing-dependent plasticity
might drive the emergence of synaptic organization with respect
to different stimulus features, we next investigated the con-
sequences of these two model characteristics on the organization
of multiple randomly distributed synaptic inputs on a linear
dendritic branch. Under the assumption that synaptic efficacy
changes on a much slower timescale than neural activity, the
average change in synaptic efficacy can be expressed as a function
of the synaptic input correlation (Eq. 11 in Methods). Therefore,
the timing-dependent plasticity of synaptic inputs represented by
the BTDP rule in our model translates into local plasticity that
depends on input correlations33. To investigate distance-
dependent competition of multiple randomly distributed synaptic
inputs on a dendritic branch, we varied the synaptic density.
Locally, low synaptic density implies that pairs of synaptic inputs
are on average far away from each other, while high synaptic
density implies that pairs of synaptic inputs are on average near
each other. Hence, local density relates to synaptic distance.

We derived the average change in synaptic efficacy as a
function of two parameters: the input correlation and the synaptic
density on the dendritic branch (Fig. 2a, b and Supplementary

Fig. 2). We identified three regimes: (i) at any synaptic density, if
the synaptic input correlation is higher than a critical amount
(Methods) then synapses stabilize (Fig. 2c, diamond), (ii) at low
synaptic density, if the input correlation is lower than the same
critical amount then synapses also stabilize (Fig. 2c, star), and (iii)
at high synaptic density, if the input correlation is lower than the
critical amount then synapses compete (Fig. 2c, triangle). Note
that in regime (iii), synapses compete until a random subset is
silenced, which reduces the effective density of the remaining
synapses and eventually stabilizes them (Fig. 2b). The proposed
generalization of the neurotrophin model thus implements
Hebbian correlation-based plasticity at the single synapse34

where synaptic efficacy is modulated by the local density of
synaptic inputs on the dendrite, just like the implementation with
interacting neurotrophins (Supplementary Fig. 2).

The generalized neurotrophin-inspired model for clustering
enabled us to dissect how specific neurotrophin interactions influence
the functional dependence of synaptic efficacy on input correlation
and synaptic density. In particular, it is well established that BDNF
can increase, while proBDNF can decrease the synaptic density on
developing dendrites15. Applying those same perturbations to our
model produces similar neurotrophin-induced changes in synaptic
density, since the ratio of BDNF to proBDNF determines the
synaptic density at which potentiation and depression are balanced
through the heterosynaptic offset (Supplementary Fig. 3).

Additionally, the generalized model remains relevant for the
emergence of synaptic organization in development. Key
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properties that are accounted for are the slow timescales of the
pre- and postsynaptic accumulators that respectively correspond
to the time constants of MMP9 and postsynaptic calcium and
give rise to the developmental BTDP plasticity rule (Supplemen-
tary Fig. 2). Additionally, the model implements the lateral
postsynaptic spread of calcium, consistent with developmentally
prevalent shaft synapses which can interact over long distances
more easily than adult spine synapses35.

As a result, the synaptic competition in our model (Fig. 2b, c)
resembles a local out-of-sync-lose-your-link plasticity rule under-
lying the emergence of clustering in the developing visual cortex
and hippocampus6. According to this rule, synaptic inputs on
developing pyramidal dendrites either increase or decrease the
success rate of synaptic transmission depending on their syn-
chrony with their nearby, but not distant, neighbors (Fig. 2d, left).
To directly compare our model to this experimental data, we
visualized the synaptic efficacy as a measure of synaptic transmis-
sion success at two different densities (Fig. 2b): a high density of 0.5
μm−1 (a synapse every 2 μm), which corresponds to local synapses
in the data (<12 μm), and a low density of 0.05 μm−1 (a synapse
every 20 μm), which corresponds to distant synapses in the data
(12–24 μm). Our model generates a similar out-of-sync-lose-your-
link rule where local synaptic inputs (high density) are depressed if
weakly correlated and potentiated if strongly correlated. In contrast,
distant synaptic inputs (low density) are stabilized independent of
correlation (Fig. 2d, right). A similar out-of-sync-lose-your-link
structural plasticity, without the local postsynaptic component, has
also been studied previously to solve more abstract classification
tasks36–38.

Taken together, our generalized model based on neurotrophin
interactions with properties of timing- and distance-dependent
competition provides a general framework to study the
emergence of synaptic organization on dendritic branches
innervated by multiple synaptic inputs. The model relates
synaptic efficacy change to synaptic input correlation and local
density and can capture the depression of weakly correlated
neighboring inputs embodying out-of-sync-lose-your-link plasti-
city, implicated in the emergence of functional synaptic clustering
during development.

Retinal wave input and synaptic turnover drive synaptic
orientation clustering in a model of the ferret visual cortex. We
next tested the potential of the above-developed model inspired
by neurotrophin interactions to organize synaptic inputs in the
developing visual cortex driven by spontaneous activity propa-
gated from the sensory periphery39,40. We simulated retinal
waves41 and converted them to cortical synaptic input via a two-
stage linear-nonlinear (LN) model (Fig. 3a and Methods). For the
linear filter we used a spatially oriented Gabor with positive and
negative elongated subregions based on receptive field measure-
ments of individual spines on pyramidal neurons in the adult
mouse visual cortex8. Each Gabor receptive field is characterized
by three parameters: center, described in polar coordinates, dia-
meter, and orientation, with a value between 0° and 360° (Fig. 3a).
We inferred the receptive field diameter and center distribution
for the visual cortex of two species, mouse and ferret (see
Methods). An exponential nonlinearity converts the linearly fil-
tered retinal waves into instantaneous firing rates from which
activity is generated via a Poisson process (see Methods). Thus, in
the LN model, a synapse probabilistically receives bursts of action
potentials when the Gabor filter is stimulated by a retinal wave
traveling in the direction that matches the filter orientation
(Fig. 3a). Since activation of a synapse depends on the appropriate
stimulation of its associated receptive field, synapses with nearby
receptive field centers in visual space and a small difference in

orientation experience correlated input (Fig. 3b). White noise
stimulation does not produce correlations for any orientation
difference due to the lack of spatiotemporal structure to con-
sistently activate nearby receptive fields (Fig. 3b).

Using a receptive field diameter and a center distribution from
the ferret visual cortex9, we placed synaptic inputs with randomly
oriented receptive fields on a non-branching, linear dendrite—as
a model of small, approximately linear portions of real dendritic
trees —and stimulated them with retinal waves41 filtered through
an LN model. Neighboring synapses with mismatched orienta-
tions receive uncorrelated input as they are rarely activated by the
same retinal wave and consequently depress. To prevent their
irrevocable elimination, we modeled an activity-dependent
mechanism of structural plasticity, which preserves the total
number of synaptic inputs on a dendritic branch42,43 (Fig. 3c).
Upon the removal of a synapse, a new synapse is placed at a
random position on the dendritic branch with a randomly
oriented receptive field and center in visual space sampled from
the experimentally measured distribution in the ferret visual
cortex9 (see Methods).

Throughout the simulation, synapses compete and are either
stabilized or eliminated and turned over until nearby synapses
share a similarly oriented receptive field (Fig. 3d). The number of
turnovers per day decreases rapidly, with all remaining turnovers
due to a small fraction of synapses (Fig. 3e). Despite substantial
turnover during the first three days of the simulation, ~60% of
synapses present at the beginning of the simulation do not
experience any turnover and form a scaffold around which the
remaining synapses stabilize (Fig. 3e, inset). Synapses that do not
experience any turnover throughout the entire simulation tend to
have a smaller-than-chance orientation difference from
each other.

We found that all nearby synapses in the stable state share
similarly oriented receptive fields, a type of clustering that we call
orientation clustering (Fig. 3d right, f). Orientation clustering has
been found in layer 2/3 of the adult ferret visual cortex in vivo7,9.
This orientation clustering further generates functional synaptic
clustering in our simulations, where correlations between pairs of
synapses trained with retinal wave input decay with distance at
the same rate as during spontaneous activity in layer 2/3 of the
adult ferret visual cortex (Fig. 3g). When using this relationship to
characterize the size of the formed clusters, we found that cluster
size strongly depends on the spatial spread constant of
postsynaptic calcium (Fig. 3h and Supplementary Fig. 4).
Therefore, we suggest that the different sizes of orientation
clusters found in different species9,12, variability across different
cells of the same animal9, as well as potential differences in
development vs. adulthood, could be the result of different
amounts of postsynaptic calcium spread. Orientation clustering
also emerges when we implement the full complement of
neurotrophin interactions in our model (Supplementary Fig. 2).
While we do not know whether neurotrophins directly drive the
orientation clustering observed in the adult brain, our results
show that slow developmental timescales of plasticity and input
correlations together with timing- and distance-dependent
synaptic competition are sufficient.

Orientation and functional clustering do not emerge with white
noise stimulation (Fig. 3f), nor with a spike-timing-based
plasticity (STDP) rule that induces synaptic change based on
precise spike timing (Supplementary Fig. 5), due to the mismatch
of timescales between the input patterns and the induction of
plasticity24,27,33. Including a dendritic nonlinearity preserves
clustering and decreases the average nearest neighbor distance
(Supplementary Fig. 6). Similarly, when requiring the synchro-
nous activation of multiple neighboring synapses for the
induction of plasticity26,34, clustering persists when the timing
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and spacing thresholds for such cooperative plasticity are
consistently satisfied by the developmental slow timescales of
activity and low synaptic density (Supplementary Fig. 6).

Otherwise, clustering is remarkably stable against perturbations
of most model parameters (Supplementary Fig. 1). Clustering is,
however, sensitive to changes in the heterosynaptic offset, which
can shift plasticity into an exclusively potentiating or depressing
regime (Supplementary Fig. 1). Since our model is based on
neurotrophin interactions, we can interpret perturbations to the
heterosynaptic offset as perturbations in the balance between
BDNF and proBDNF signaling (Supplementary Fig. 3). For

instance, exogenous application of either proBDNF or BDNF can
abolish clustering in vitro within minutes10. Our model also
makes predictions for how additional perturbations to the
conversion between the two neurotrophins, or the receptors to
which they bind, might affect synaptic efficacy and clustering
(Supplementary Fig. 3).

In summary, with a synaptic receptive field diameter and a
center distribution from the ferret visual cortex, our model
generates local clusters of similarly oriented and, therefore,
functionally correlated synaptic inputs on a dendritic branch
based on correlated input from retinal waves. Therefore, a
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neurotrophin-inspired model for clustering supports the emer-
gence of local synaptic organization in the ferret cortex.

Clustering of different stimulus features in mouse and ferret.
In contrast to the ferret, nearby synapses on pyramidal neuron
dendrites in the mature mouse visual cortex do not share a
preference for the same orientation8,19,20,44. However, nearby
synapses in the mouse visual cortex still exhibit correlated activity
during development6, and hence are functionally clustered. We
next investigated whether our modeling framework can also
generate the functional clustering observed in the mouse.

One striking difference between mouse and ferret is the size of
their retina and visual cortex, with each being about two vs. five
times smaller in the mouse than in the ferret, respectively45

(Fig. 4a). Consequently, the average receptive field diameter in the
mouse visual cortex is about twice as large, and the cortical
magnification of visual space about five times smaller than in the
ferret9 (Fig. 4b, c). Consistent with these anatomical differences, a
pyramidal neuron in the mouse visual cortex receives inputs from
a considerably larger region of visual space than in the ferret9

(Fig. 4c, middle). The difference in the sampled region of visual
space can be captured by the relative broadness of the distribution
of receptive field centers characterized experimentally in the two
species8,9, a parameter that we call the receptive field center
spread (Fig. 4c, right). We implemented our neurotrophin-
inspired model for clustering using a larger receptive field
diameter and center spread as measured in the mouse visual
cortex8 to determine the synaptic organization driven by retinal
waves (Fig. 4d). We observed functional synaptic clustering
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during spontaneous activity, as measured during development6

(Fig. 4e). Interestingly, this functional organization is the result of
synaptic clustering for receptive field overlap, rather than
orientation (Fig. 4d–g). Such clustering of synapses with
overlapping receptive fields is consistent with recent measure-
ments in the adult mouse visual cortex8. We refer to this type of
clustering as overlap clustering to contrast it with the orientation
clustering observed in the ferret. Adding irregularities to the
Gabor synaptic filters further improves the match between model
and data (Supplementary Fig. 7).

To understand the principal factors that determine the type of
clustering, we computed the correlations of synaptic activity
resulting from the overlap of simulated synaptic receptive fields—
that are either orientation clustered or overlap clustered—upon
perturbing the spread of their centers on the dendritic branch
(Fig. 4h). The orientation clustered receptive fields produce the
highest correlations when the receptive field center spread is small
(~5°, as in the ferret). With increasing spread, the overlap
between the positive and negative components of the Gabor filter
increases, which decreases correlations (Fig. 4h; green). Con-
versely, the receptive fields clustered by overlap produce the
highest correlations when receptive field center spread is larger
(~15–20°, as in the mouse) (Fig. 4h; purple).

Next, we determined the prevalence of orientation vs. overlap
clustering by simultaneously varying the two anatomical para-
meters, the center spread, and the diameter of Gabor receptive
fields in the visual cortex, and without modeling other differences
in morphology, dendritic arborization, or synaptic density
(Fig. 4i). Interestingly, for a very small receptive field diameter,
only small receptive field center spread yields orientation
clustering in our framework. Consistent with this, in the macaque
visual cortex, which has a small receptive field diameter and
receptive field center spread, orientation clustering has recently
been reported12. Therefore, our model explains the emergence of
synaptic clustering with respect to different stimulus features in
the mouse and ferret. Without modeling other differences in the
visual systems, we find that clustering emerges from maximizing
the amount of correlation as a function of the geometric
arrangement of synaptic receptive fields in the different species
(Fig. 4j).

Backpropagating action potentials establish global orientation
clustering on ferret dendrites. We next asked whether the local
organization of synaptic inputs achieved by our model also

supports the emergence of global organization of synaptic inputs
on the dendritic tree. To probe interactions between the soma and
synapses on different dendritic branches in a biologically realistic
framework beyond the linear dendrites considered so far, we
implemented our plasticity model on a morphologically realistic
layer 2/3 pyramidal neuron (Fig. 5a). We modeled a somatic
signal that affects the dendrite in the form of a backpropagating
action potential (bAP) whenever the linearly summed input over
all synapses exceeds a fixed threshold. The bAP results in a cal-
cium influx into the proximal and distal dendritic branches that
attenuates with distance from the soma (Fig. 5b, c)47. As a result,
the calcium signal at proximal synapses in our model neuron is
dominated by somatic activity, while distal synapses are almost
independent of the soma (Fig. 5c) as found experimentally48.

Since bAPs are known to induce the release of neurotrophins49,
we investigated how an attenuating bAP affects the correlation-
and distance-dependent competition when implementing the full
complement of neurotrophin interactions. We found that a bAP
naturally extends both mechanisms over larger spatial scales, so
that synapses near the soma experience stronger depression than
those farther away from the soma when they are activated
asynchronously to the soma, and stronger potentiation when
activated in synchrony with the soma (Supplementary Fig. 8).
Therefore, the addition of a bAP should not affect local synaptic
organization on branches far away from the soma, but reinforce it
near the soma.

Using a small receptive field diameter and center spread for the
ferret visual cortex, our model generates local orientation clusters
along the entire dendritic tree just like on the linear dendrite
(Fig. 5d, e and Supplementary Fig. 9). By including bAPs, global
organization on the entire dendritic tree also emerges. Synaptic
inputs on proximal dendritic branches acquire orientation
preferences similar to the soma due to the weak decay of bAP
signaling, while inputs on distal dendrites have orientation
preferences that are independent of the soma due to the strong
bAP attenuation (Fig. 5e). Therefore, including bAPs homo-
genizes proximal dendritic branches to the orientation preference
of the soma while leaving distal synapses unconstrained (Fig. 5e,
inset), and hence variable across individual simulations (Supple-
mentary Fig. 9). We characterized the degree of branch
heterogeneity by computing the circular dispersion, i.e., the
difference between the orientation preference of individual
synapses and the soma (Fig. 5d and Methods). We found that
bAP attenuation controls the extent of cluster homogeneity along
the dendritic tree, with weaker bAP attenuation leading to larger

Fig. 4 Overlap clustering, but not orientation clustering, emerges on a dendritic branch in a model of the mouse visual cortex. a–c Schematic of the
anatomical argument for two qualitatively different types of clustering in mouse and ferret. Note that we depict ferret cortex as a scaled-version of mouse
cortex. a Comparison of cortex and retina size in mouse and ferret (measures from ref. 45). b Schematic linking retina size (left) to receptive field diameter
in the cortex (right). c Schematic linking cortex size to receptive field center spread. 1 mm of visual cortex spans a larger region of the total visual space
(left, blue lines represent iso-contours at ~7° 46) in the mouse than in the ferret. Since the dendritic trees of pyramidal neurons (triangles) in the two
species are comparable in size, a target neuron (gray) pools input from a smaller region of visual space in ferret (top middle) than in mouse (bottom
middle). The synaptic receptive fields on the dendritic tree of the target neuron are distributed in a small (ferret, top right) or large (mouse, bottom right)
region in visual space. The receptive field spread is quantified by the standard deviation of the distribution of their centers (5.3° for ferret and 26° for
mouse, data reproduced from refs. 8,9). d Example demonstrating lack of orientation clustering on a linear dendrite using mouse cortex receptive field
spread and diameter with retinal waves over 2 simulated weeks. Scale bar is 20 μm. e Correlation between pairs of synaptic inputs in the model driven by
retinal waves, and correlation between calcium signals of spontaneous synaptic activity (data from developing mouse visual cortex reproduced from ref. 6)
as a function of distance. f Receptive field overlap for pairs of synaptic inputs as a function of distance in the model and experiments (data from adult
mouse visual cortex reproduced from ref. 8). g Orientation difference between pairs of synapses as a function of distance in the model and experiments
(data from adult mouse visual cortex reproduced from ref. 8). h Average correlation between nearby synapses as a function of receptive field center spread
for simulated synaptic receptive fields that are either orientation clustered (green) or overlap clustered (purple). i Varying receptive field center spread and
diameter in our model dichotomizes the area in which orientation clustering (green) or overlap clustering (purple) produces higher average correlation (see
Methods). j Schematic showing how orientation (top) and overlap (bottom) clustering emerge from a combination of receptive field diameter and center
spread.
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homogeneous portions of the tree near the soma (Fig. 5f).
Increasing bAP frequency controls the degree of homogeneity of
the proximal tree (Supplementary Fig. 10). Consistent with
experimental reports9, our model does not produce global
organization of receptive field offsets, which are randomly
distributed for synapses along the entire dendritic tree (Fig. 5g
and Supplementary Fig. 9).

Different degrees of heterogeneity of synaptic orientation
preference have been reported in the ferret visual cortex7, where
experiments distinguished between homogeneous branches, with
a mean circular dispersion below 15°, and heterogeneous
branches, with a mean circular dispersion above 30°. We
compared the cumulative distribution functions of the homo-
geneous and the heterogeneous branches to proximal (less than

two times the attenuation factor) and distal (more than two times
the attenuation factor) synapses in our model, respectively, and
found good quantitative agreement (Fig. 5h). Computing the
distribution of circular dispersions of spines on branches with
mean circular dispersion between 15° and 30° in our model
revealed branches with intermediate heterogeneity (Fig. 5i).
While from the experiments it is not clear whether homogeneous
(heterogeneous) branches tend to be more proximal (distal) to the
soma, our results predict the global organization of orientation
selectivity and suggest that bAP attenuation in different neurons
may underlie branch orientation heterogeneity.

In summary, the same modeling framework that produces local
orientation clustering of synaptic inputs predicts global synaptic
organization on a morphologically realistic model of a layer 2/3
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Fig. 5 A backpropagating somatic signal drives heterogeneously and homogeneously clustered dendritic branches in a model of the ferret visual
cortex. a Illustration of a reconstructed pyramidal cell from layer 2/3 (Allen Cell Type database, ID 502269786). Triangle indicates soma. Circles indicate
synaptic sites. Scale bar is 50 μm. b Strength of backpropagating action potentials (bAPs) for different attenuation factors as a function of path distance
from the soma. c Top: Sample trace of somatic activation under retinal wave stimulation after five simulated days. Asterisks indicate the initiation of
multiple global somatic signals in the form of a burst of bAPs after threshold crossing (dashed line). Middle, Bottom: Postsynaptic calcium traces of a distal
(middle) and a proximal (bottom) synapse (indicated in a). d Schematic to illustrate circular dispersion and receptive field offset (see Methods).
e Emergence of global organization of orientation preference on the reconstructed pyramidal cell using ferret cortex receptive field spread and diameter.
Color of synapses indicates the orientation preference of the associated receptive field. Inset shows the circular dispersion averaged over 62 simulations
for the three different attenuation factors in (b). f, g Circular dispersion (f) and receptive field offset (g) between synapse and soma for the three different
bAP attenuation factors in (b) and as a function of path distance from the soma. Shaded areas indicate 95% confidence interval around the mean.
h Cumulative fraction of circular dispersion for one bAP attenuation factor (75 μm) in the model, and different types of clustered branches in experiments
(data from adult ferret visual cortex reproduced from ref. 7). i Same as h for branches with low (<15°), intermediate (15°–30°), and high (>30°) mean
circular dispersion in the model.
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pyramidal neuron with synapses on proximal dendrites sharing
similar orientation preference with the soma. We suggest that an
attenuating somatic signal is the main factor behind homogenizing
some branches of the tree to the same orientation preference as
the soma while leaving other branches more heterogeneous and
uncorrelated to the soma as observed in the ferret visual cortex7.

Backpropagating action potentials establish visual topography
of receptive field centers on mouse dendrites. To study emer-
gent global organization in our model of a mouse pyramidal
neuron, we considered a larger receptive field diameter and center
spread as measured in the mouse (Fig. 4a) and investigated the

influence of a somatic bAP signal. Synaptic inputs on the
reconstructed pyramidal neuron do not exhibit local orientation
clustering, nor global homogenization of orientation preference
except for a small bias, as observed experimentally8,19,20,44

(Fig. 6b and Supplementary Fig. 9). Synaptic inputs, however, do
exhibit local overlap clustering as without a bAP, as well as global
organization on the dendritic tree in the presence of a bAP, with
synapses close to the soma having overlapping receptive fields
with many other synapses close to the soma (Supplementary Fig.
9). As expected from the role of bAPs in reinforcing potentiation
and depression near the soma (Supplementary Fig. 8), bAPs
homogenize receptive field overlap close to the soma where the
bAP influence is the strongest.
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In the presence of a bAP, proximal synapses stabilize only if
their receptive fields overlap with the somatic receptive field
constraining their resulting receptive field offset to be small.
Hence, the bAP brings receptive fields of proximal synapses to be
on average centered closer to the somatic receptive field
compared to the receptive fields of distal synapses (Fig. 6a, c).
Distal synapses do not have this constraint, resulting in large cell-
to-cell variability at distal branches (Supplementary Fig. 9). This
relationship is modulated by bAP attenuation, with weak
attenuation increasing the number of synapses centered near
the somatic receptive field (Fig. 6c). We refer to this global
organization as a dendritic map of visual space. Indeed, in
pyramidal neurons of the mouse visual cortex, proximal vs. distal
synapses respectively have a tendency to respond to more central
vs. peripheral regions of visual space relative to the somatic
receptive field center8,50. This result is in contrast to the ferret9;
also in our model, a bAP does not generate a dendritic map of
visual space (Fig. 5g) because receptive fields of synaptic inputs
proximal to the soma already overlap significantly due to their
similar orientation preference to the soma. Hence, shifting their
centers toward the somatic center does not increase their overlap
and correlation as much as changing their orientation preference
(Fig. 4h).

As a result of the global organization of receptive field overlap
and dendritic maps generated in our model with bAPs of mouse
visual cortex, synapses with nearby receptive field centers in
visual space have a similarly oriented receptive field (Fig. 6d). We
consequently observed that the distribution of receptive field
orientations in different regions of visual space generated in the
model has an interesting structure. In particular, synaptic
receptive fields positioned along or close to the axis of the
somatic receptive field, i.e., in the coaxial space8,51, appear to have
a similar orientation to the soma (Fig. 6e, left). This mirrors the
distribution of circular dispersions in the coaxial region of visual
space in the mouse visual cortex8 (Fig. 6f, left). The functionally
specific organization in coaxial space agrees with the over-
representation of edges with the same orientation along a
common axis found in natural images called colinearity and
could be used for the detection of elongated edges8,52,53.
Interestingly, in our model, synapses in the remaining region of
visual space, called the orthogonal space8, are more likely to be
oriented orthogonally to the soma (Fig. 6e, right). This over-
representation of large circular dispersions compared to experi-
mental data8 (Fig. 6f, right) is, however, consistent with another
property found in natural images, called cocircularity, where two
segments with different orientation have a tendency to be tangent
to the same circle, and which could be used for the detection of
continuous and smooth object boundaries52,53. We believe that
the discrepancy between experiments8 and our model might stem
from undersampling in the experiments or from additional
pruning of connections between cells with large orientation
differences after eye opening54. These results suggest that, even
before the onset of vision, spontaneous activity contains sufficient
spatiotemporal information to organize synaptic receptive fields
into the orthogonal and coaxial portions of visual space for the
detection of elongated edges or continuous boundaries in natural
images. This has strong implications for the computational
strategies of these neurons and their integration into local
microcircuits.

Taken together, our model generates global, in addition to
local, organization of synaptic inputs on the dendrites of cortical
neurons in the mouse for different features than in the ferret by
only including anatomical differences in their visual cortices in
terms of the spread and diameter of synaptic receptive fields. In
our framework, both the emergence of a retinotopic gradient
along the dendritic tree, as well as the accumulation of co-aligned

(orthogonally-oriented) synapses in the coaxial (orthogonal)
portion of visual space, can be explained through the homo-
genizing influence of bAPs. Therefore, our model explains the
emergence of synaptic organization across scales and in two
different species with respect to different stimulus features.

Discussion
Dendritic compartmentalization of synaptic inputs achieved by
clustering has been postulated to enhance the computational
capacity of neurons37. Yet, direct experimental evidence of clus-
tering during development4–6,10 and with respect to different
stimulus features in different species in the adult8,9,12 has only
recently emerged. At the same time, recent work has revealed
disparate results regarding the global order of synaptic inputs on
the entire dendritic tree8,9. To reconcile these findings, we
developed a computational framework supported by a specific
biophysical implementation based on neurotrophins for the
emergence of both local and global synaptic input organization
on cortical dendrites in two different species. Combining devel-
opmentally inspired synaptic plasticity with retinal wave input
and species-specific features of synaptic receptive fields, our fra-
mework supports the establishment of local functional clustering
for orientation in the adult ferret vs. receptive field overlap in the
adult mouse visual cortex8,9,12. Including an attenuating somatic
signal generates global organization of different features in the
ferret and mouse cortex, establishing soma-to-dendrite maps of
orientation selectivity and visual topography, respectively. We
found that the interaction between two parameters, the cortical
magnification factor of visual space and the receptive field dia-
meter, drives these species-specific differences. Interestingly, these
parameters can also explain the population-level (columnar
vs. salt-and-pepper) organization in the ferret vs. mouse visual
cortex45, indicating that the same universal developmental pro-
cess modulated by variations of cortex and retina size can pro-
duce both dendritic and population-level organization.

Relationship to previous modeling studies on clustering. While
our work focuses on the establishment of stimulus feature tuning
and its organization, previous modeling studies investigated other
aspects of synaptic clustering. These include the robust and effi-
cient encoding of memories through activity-dependent plasticity
operating over hours37,38, the increase of a cell’s computational
capacity55, and the linking of multiple memories across extended
periods56. An alternative normative approach proposed the
generation of synaptic clusters as the Bayes-optimal solution to a
classical conditioning task with unreliable synaptic
transmission57. However, this model lacked a mechanism for
clustering of correlated inputs from different axons. To our
knowledge, our framework is the first to explain the emergence of
activity-dependent synaptic organization of different stimulus
features in a developmental setting and relate it to that in
the adult.

Generality of our modeling framework. Since neurotrophins,
calcium, and MMP9 have been implicated in the emergence of
functional synaptic clustering during development6,10, we based
our model for clustering on interactions between these molecules,
although additional signaling pathways are likely to be involved
in synaptic organization58–60. A generalization of this model that
derives directly from neurotrophin interactions can be flexibly
implemented to apply to other signaling molecules. Possible
alternative mechanisms include synaptic tag-and-capture, where
plasticity-related-proteins mediate activity-dependent coopera-
tion and competition28–30, synaptic crosstalk through the inter-
action of Rho-family GTPase-mediated proteins, which are in fact
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modulated by BDNF and involved in structural plasticity31,32, or
the NMDAR-mediated amplification of calcium signals21,34. For
the local heterosynaptic depression of unstimulated synapses,
alternatives to the neurotrophin mechanism include the activa-
tion of calcineurin, IP3Rs, and group I mGluRs26 or Arc-targeting
of inactive synapses50,61. Similarly, the functional roles of MMP9
and calcium could equivalently be filled by postsynaptic depo-
larization, NMDAR activation, endocannabinoid or nitric oxide
signaling, or by more complex diffusible plasticity-related
products62. Thus, our predictions regarding the organization of
synapses are not contingent on a specific biophysical imple-
mentation of our model, as long as it implements distance- and
timing-dependent competition between synapses, and integrates
slow developmental activity patterns matched to the timescales of
plasticity.

Origin of clustered synaptic input. A prominent source of
excitatory inputs to layer 2/3 pyramidal neurons comes from
layer 4 neurons51, which likely obtain their orientation selectivity
by combining On and Off center-surround receptive fields of
thalamic feedforward inputs63. Our modeling framework also
supports the concurrent emergence and clustering of orientation
selectivity in the cortex through the clustering of On and Off
thalamocortical synapses (Supplementary Fig. 11). Also, pyr-
amidal cells in the mouse and ferret visual cortex are already
orientation-selective at54 and before64,65 eye opening, providing
another likely source of the synaptic Gabor receptive fields in
our model.

Relationship between developing and mature cortex. Several
factors make our model appropriate for the establishment of
synaptic organization in development: the high turnover of
synapses, the ability of synaptic inputs to interact over long dis-
tances, and the slow timescale of spontaneous activity and neu-
rotrophin interactions. Therefore, in this developmental setting,
STDP rules that operate on fast timescales involving several
milliseconds do not generate clustering (Supplementary Fig. 5), in
agreement with other studies of developmental plasticity24,27,33.
While early development is a particularly opportune time for the
emergence of synaptic organization4–6,10, it is currently unknown
how clusters formed during development relate to those observed
in the adult animal. Given the continued turnover of synapses in
the adult brain43 and the formation of new clusters following
altered sensory experience58 and learning59,60, it is a priori
unclear whether the clusters formed during early development
persist into adulthood. Our developmentally inspired model for
synaptic competition combined with correlated activity from
retinal waves is sufficient to produce functional and feature-
specific clustering as in the adult and can provide a backbone for
clustering even when the density of synapses increases dramati-
cally. Already-established clusters in our model can be preserved
by decreasing the postsynaptic spread in calcium21 (Supplemen-
tary Fig. 12), although other changes (such as the onset of inhi-
bition, postsynaptic thresholding through a nonlinearity, or a
decrease in proBDNF level) would be equally suited. This sup-
ports an interpretation where development equips dendrites with
basic building blocks such as feature selectivity from which other
functional properties are derived in adulthood. It would be
interesting to investigate whether context-specific clustering as in
the retrosplenial60 or the motor59 cortex occur alongside (rather
than in competition with) clusters formed during development, as
described in the auditory system of the juvenile barnowl58, and
how our proposed plasticity mechanism might interact with
STDP rules relevant in the adult66.

Functional role of clustered synapses. We propose three situa-
tions where synaptic input clustering may be beneficial for a
neuron. (1) The transient, precise synchronization of even a small
group of synapses (the exact number of synapses required in vivo
is unknown34) can result in the nonlinear summation of synaptic
activity67, enhancing a neuron’s computational capacity37. These
nonlinearities can furthermore counteract location-dependent
gradients of conductances across synapses, effectively establishing
a synaptic democracy11,68. (2) Since synaptic transmission is
highly variable69, multiple synapses encoding a similar signal (in
combination with local supralinear integration) increase tolerance
for different types of noise, some of which cannot be removed by
averaging70. (3) Furthermore, since the translation of proteins is
localized to individual dendritic compartments where nearby
synapses share available proteins, synaptic clustering is also
beneficial from the perspective of resource-preservation, con-
sistent with the sharing of plasticity-related proteins in models
like synaptic tag-and-capture29,71,72.

Inhibitory synapses could form a backbone for excitatory
clustering. Our modeling framework focused on the emergence
of fine-scale organization of excitatory (glutamatergic) inputs,
primarily due to lack of experimental data on the role of inhi-
bitory (GABAergic) synapses on clustering. We speculate, how-
ever, that inhibitory synapses might shape the clustering of
excitatory synapses on the dendritic tree. Indeed, while not being
clustered themselves, GABAergic synapses can constrain the
orientation preference of nearby excitatory clusters in our model
(Supplementary Fig. 13). Since GABA might be excitatory early in
postnatal development73,74, we considered two scenarios in our
model with GABA switching from excitatory to inhibitory or
being inhibitory the entire time. The resulting excitatory clusters
are tuned to the same orientation relative to nearby inhibitory
synapses in the former case or tend to prefer the orthogonal
orientation in the latter case (Supplementary Fig. 13). Thus, we
predict that GABAergic synapses might be co-clustered with
excitatory synapses. Provided that GABAergic synapses fire in
synchrony with glutamatergic synapses, this co-clustering could
allow them to dynamically switch a given cluster on or off75.
Additionally, since inhibitory synapses can cancel the effect of
backpropagating action potentials76, we expect that inhibitory
synapses synchronized with somatic activation would be able to
protect a cluster from the homogenizing effect of back-
propagating somatic signals77.

In summary, starting from several ingredients, including a
species-specific receptive field model based on anatomical
considerations, retinal wave input, and a developmentally
inspired plasticity based on neurotrophins, our modeling frame-
work generates species-specific outcomes regarding the emer-
gence of local and global organization of dendritic synaptic
inputs. These outcomes combine several experimental studies
from the last decade on the emergence of functional synaptic
organization across scales, and with respect to different stimulus
features in two species. Therefore, our framework can explain
how circuits wire up with subcellular precision, with paramount
implications on the computational properties of cortical neurons
and networks.

Methods
Neurotrophin model. We based the neurotrophin plasticity model on interactions
between signaling molecules shown to drive the emergence of synaptic clustering
during development4–6,10: BDNF ðBÞ, its immature form, proBDNF (P), the
cleaving protease MMP9 (M), and postsynaptic calcium (Y). Wk is the synaptic
efficacy of a synapse with hard bounds at zero and one, and initial efficacy of 0.5.
For a pair of synapses k and l separated by dkl along the branch, we defined the
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proximity variables skl ¼ e
�d2

kl
2σ2s , where σs determines the spatial postsynaptic cal-

cium spread constant.
Since the mechanism that produces synaptic clusters is activity-dependent, we

modeled presynaptic and postsynaptic accumulators of synaptic activity. We
modeled the presynaptic accumulator MMP9 as a synapse-specific leaky
accumulator22 with dynamics

τM
dMk

dt
¼ �MkðtÞ þ ϕxkðtÞ ð2Þ

Here,

xkðtÞ ¼
Z 1

0
∑f δðs� sfkÞðHðt � sÞ �Hðt � xdur � sÞÞds ð3Þ

is the input event train to the k-th synapse with events at times tfk and where the
Heaviside step function HðtÞ is 0 when t is less than 0 and 1 when t is greater than
or equal 0, so that events have duration xdur. ϕ is an MMP9 efficiency constant that
determines how efficiently MMP9 converts proBDNF into BDNF per unit of time.
The postsynaptic accumulator was modeled by the local calcium variable Y that
integrates activity from nearby synapses21, weighted by their efficacies Wl and the
distance-dependent factor skl ,

τY
dYk

dt
¼ �YkðtÞ þ ∑

N

l¼1
sklWlðtÞxlðtÞ ð4Þ

The lateral spread of calcium might be passive (during development many
excitatory synapses form on the dendritic shaft78 where calcium is less
compartmentalized) or active (such as the calcium-induced calcium release
characterized in the developing hippocampus21). Following experimental data10,31,
we coupled extracellular proBDNF and BDNF to postsynaptic calcium and let
MMP9 convert proBDNF to an equal amount of BDNF,

τP
dPk

dt
¼ �PkðtÞ þ ð1� ηÞYðtÞ � MkðtÞPkðtÞ ð5Þ

τB
dBk

dt
¼ �BkðtÞ þ ηYðtÞ þMkðtÞPkðtÞ: ð6Þ

Here, the scaling factors ð1� ηÞ and η ensure that without MMP9 the ratio of
BDNF to proBDNF remains close to the constitutive ratio η25 which is dominated
by proBDNF (Table 1). By coupling the neurotrophin level to the local calcium
level, inactive synapses experience an increase in extracellular neurotrophin
following the activation of nearby activated synapses. While there is indirect
evidence that activity-dependent BDNF release is not restricted to the activated
synapse79 and that stimulation of a synapse increases BDNF-receptor activation at
another synapse31, much less is known about the activity-dependent release of
proBDNF. For our model, we assumed that both BDNF and proBDNF release

depend only on an influx of postsynaptic calcium and can therefore also occur at
unstimulated synapses when other nearby synapses are stimulated. According to
the Yin-Yang hypothesis of neurotrophin action15, binding of BDNF to its receptor
TrkB (tropomyosin receptor kinase B) leads to synaptic potentiation, while binding
of proBDNF to p75NTR receptor leads to depression. We assumed that the binding
affinities of BDNF (α) and proBDNF (β), and corresponding magnitudes of
induced plasticity are balanced, so that the synaptic efficacy can be written as the
difference between BDNF and proBDNF,

τW
dWk

dt
¼ αBkðtÞ � βPkðtÞ; ð7Þ

with α= β= 1 for all simulations except in Supplementary Fig. 3. τ always denotes
the time constant for the variable in the corresponding subscript. Despite the
model’s biophysical motivation, in agreement with other modeling studies,56,80 all
modeled variables are unitless, therefore, they are to be interpreted relative to
each other.

Generalized neurotrophin-inspired model. We reduced the above neurotrophin
model to a generalized model for clustering which is analytically tractable,
assuming a tight coupling of proBDNF and BDNF to the postsynaptic calcium. We
note, however, that this assumption is not critical (see Supplementary Fig. 1). We
made a steady-state approximation of Pk and Bk in Eqs. (5) and (6), inserted these
expressions into Eq. (7) for Wk and then linearized the resulting function around
Mk ¼ 0 to obtain the generalized model (see Supplementary Note 1 for details).
We note that this linearization strips away some higher-order terms that have an
attenuating effect on MMP9 in the full model (Supplementary Note 1). Hence, the
effect of the presynaptic accumulation (a proxy for MMP9) in the generalized
model is slightly amplified, shifting the system into a more potentiation driven
regime. As a consequence, the generalized model experiences slightly less depres-
sion and competition compared to the full neurotrophin model, which results in
fewer synaptic turnovers and slightly weaker clustering of synapses (Supplementary
Fig. 2).

While we used upper case letters for the variables in the full neurotrophin
model, we used lower case letters for the generalized model. The model consists of
a synapse-specific presynaptic accumulator vk (from now on we use the dot
notation to denote the derivative, _vk ¼ dvk

dt ),

τv _vk ¼ �vkðtÞ þ ϕxkðtÞ; ð8Þ
and a postsynaptic accumulator uk that averages over nearby synapses in a
weighted and distance-dependent manner,

τu _uk ¼ �ukðtÞ þ ∑
N

l¼1
sklwlðtÞxlðtÞ: ð9Þ

The efficacy equation (Eq. 7) turns into a Hebbian equation that directly
combines the pre- and postsynaptic accumulator with an additional offset constant
ρ,

τw _wk ¼ ukðtÞðvkðtÞ þ ρÞ; ð10Þ
with ρ ¼ ðαþ βÞη� β

ðαþ βÞð1� ηÞ and τw ¼ τW
1

ðαþ βÞð1� ηÞ. This model cannot be reduced further

without losing either the dependence on correlation through the link to the BTDP
rule, or the dependence on distance.

Steady-state analysis of the generalized neurotrophin-inspired model. Com-
bining the equations for the accumulators and the efficacy dynamics (Eqs. 8–10),
taking the expected value over neurons (denoted by 〈⋅〉) and over time (denoted by

limT!1
1
T

R T
0 � dt), we can write the expected change in synaptic efficacy as (see

Supplementary Note 2 for full derivation)

lim
T!1

τw
T

R T
0 h _wkidt ¼ ϕ∑

l
sklwl

R1
�1�γklðsÞΓðsÞdsþ μkμl

� �þ ρ∑
l
sklwlμl : ð11Þ

Here, μk ¼ limT!1
1
T

R T
0 xkðtÞdt denotes the mean firing rate of the k-th input

xk , �γklðtÞ ¼ limT!1
1
T

R T
0 ðxkðsÞ � μkÞðxlðs� tÞ � μlÞds denotes the covariance

between inputs k and l at lag t and the kernel is given by ΓðtÞ ¼ 1
τuþτv

e�
jtj
τu :

When only one input is activated with burst events of duration xdur and rate μ,
we simplified Eq. (11) to write the change in synaptic efficacy for this input as
h _w1i ¼ K1μþ K2μ

2, while the change in efficacy for a second inactive input at a

distance d12 is h _w2i ¼ K3μe
�d2

12
2σ2s , with constants K1;K2, and K3 (see Supplementary

Note 3 for details), as shown in Fig. 1d.
We considered the case with identical inputs on a linear dendrite with density ν,

equal efficacies wk ¼ w and rates μk ¼ μ for all k, and identical correlation ckl ¼ c
for all pairs k≠ l. In this setting, from Eq. (11) we derived the critical correlation c*
at which the system switches from the depression-dominated into the potentiation-
dominated regime, h _wiðc*Þ ¼ 0, as c* ¼ κS�1

S�1 where Sk ¼ ∑l skl �
ffiffiffiffiffi
2π

p
σcν, which

is the same for all inputs k, thus S ¼ Sk , and κ ¼ ð� ρ
ϕ � μÞðτu þ τvÞ is a constant

(see Supplementary Note 4). S can be thought of as a measure of the total amount
of activity in an area around a given synapse. Note that for high densities ν, the
critical value c* quickly approaches κ and is bounded above by it. The expression
for c* determines the dashed line in Fig. 2b, while the other contour lines come

Table 1 Parameters of the proposed model along with
nominal values used for simulations, unless stated
otherwise.

Parameter Variable Value
Synaptic efficacy time constant τW 6 s
proBDNF and BDNF time constants31 τP; τB 5ms
Postsynaptic calcium time constant21 τY ,τu 300ms
MMP9 time constant83 τM,τv 600ms
Constitutive percent of BDNF of amount of
total neurotrophins released25

η 45%

MMP9 efficiency constant22 ϕ 3
50 ms−1

Heterosynaptic offset* ρ 2η�1
2ð1�ηÞ

Synaptic efficacy time constant in the
generalized neurotrophin-inspired model*

τw τW
1

2ð1�ηÞ

Standard deviation of calcium spread21 σc 6 μm
Density of synapses85 ν 0.2 μm‒1

Spread of receptive field centers for ferret and
mouse8,9, in visual space

σp 5.3°, 26°

Diameter of Gabor receptive field mouse8,
ferret9, and macaque12

20°, 13.4°, 2°

LN model parameters6,9 a; b 0.2 Hz, 9.4
Turnover threshold below which a synapse is
replaced

Wthr 0.02

Threshold for bAP generation48 Bthr 25
Unattenuated amplitude of bAP47,48 Bamp 5

Citations indicate a free parameter fitted to experimental data.
*Indicates a parameter that is derived from the other parameters.
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directly from Eq. (11) and the approximation S � ffiffiffiffiffi
2π

p
σcν (see Supplementary Fig.

14 and Supplementary Note 4). Whether a synapse becomes stabilized or depressed
is thus determined by the balance of two factors: (1) A homosynaptic component,
which depends only on the activation of the given synapse and is always stabilizing
(Fig. 1d, top); (2) A heterosynaptic component, which depends only on the
activation of synapses in the neighborhood of the activated synapse and can be
either depressing or stabilizing. A synapse becomes depressed when the
heterosynaptic component is depressing and outweighs the homosynaptic
component. We first determined the correlation beyond which there is no

competition between synapses, κ ¼ � ρ
ϕ � μ

� �
τu þ τv
� � � 0:32, due to a

stabilizing, rather than depressing, heterosynaptic component (see Supplementary
Note 4 for details). Note that this parameter depends on the proBDNF to BDNF
constitutive ratio, η (through ρ), on the MMP9 efficiency constant, ϕ, the
stimulation rate of the synapse, μ, and the time constants of the pre- and
postsynaptic accumulators in the model. Second, we found that when the
heterosynaptic component is depressing for correlations below κ � 0:32, the
synaptic density, ν, plays an additional role in determining whether the depressing
heterosynaptic component outweighs the stabilizing homosynaptic component.

Parameters and data fitting. Many of the model parameters were extracted from
published experimental data as follows.

Experimental work has shown that the binding affinity of BDNF to TrkB and
proBDNF to p75NTR is very high (see ref. 81 and references therein). Therefore, we
assumed that the decay time constants of proBDNF and BDNF are small and, in
the absence of evidence otherwise, equal (τP ¼ τB). In our model, the decay time
constants of proBDNF and BDNF describe the tightness of coupling between the
level of postsynaptic calcium and of free (unbound) extracellular neurotrophin.
This produces much longer effective decay time constants τ̂B � τ̂P , as measured in
ref. 31 (Supplementary Fig. 15).

The synaptic efficacy time constant τW was chosen so that the total change in
synaptic efficacy integrates the contribution of multiple pre- and postsynaptic
events, yielding slow weight change compared to much faster neural activity,
consistent with other computational models of synaptic plasticity82. The value for
the time constant of postsynaptic calcium decay, τY (300 ms), is in the
experimentally measured range between 200–700 ms21. We based the decay time
constant of extracellular MMP9 (τM) on a recent study which measured the decay
of MMP9-GFP signal of a single exocytosis event in MCF-7 cells83.

We assumed that the constitutive percentage of BDNF ðηÞ of the total released
neurotrophin is η ¼ 45% based on estimates in the hippocampus84, although it is
possible that this ratio can change across different brain regions, over the course of
development and depending on the stimulation protocol. Our sensitivity analysis
(Supplementary Fig. 1) and perturbation simulations (Supplementary Fig. 3)
demonstrate that the constitutive percentage of BDNF ðηÞ is crucial in regulating
the overall amount of potentiation and depression of synaptic efficacy, and
therefore has a strong impact on the emergence and maintenance of synaptic
organization. Therefore, although in our model stimulation of a given synapse
leads to its potentiation consistent with some experimental data31 (Fig. 1),
decreasing η could lead to the depression of the stimulated synapse in agreement
with other experimental data6.

The MMP9 efficacy constant (ϕ) interacts closely with the constitutive
percentage of BDNF (η). This relationship becomes clear in the generalized
neurotrophin-inspired model, where ϕ and η trade off to maintain a given value of
the critical correlation c* and ensure the selective competition between strongly
and poorly synchronized synapses. Since c* depends on κ ¼ ð�ρ=ϕ� μÞðτu þ τvÞ,
ϕ needs to be proportional to ρ ¼ 2η�1

2ð1�ηÞ. We used ϕ ¼ 3
50 ms−1 to obtain c* with

appropriate synaptic competition (Fig. 2b) given experimentally measured synaptic
density. In particular, the density of synapses in the developing sensory cortex
increases from 0:2 μm�1 to 0:8�1:2 μm�1 during postnatal development85,86. We
used a fixed density of 0:2 μm�1 for computational tractability as the runtime of
our simulations scales as OðN2Þ in the number of synapses N . However, we also
found that synaptic clustering is not perturbed when synaptic density increases
during simulated development (Supplementary Fig. 12). Here, we increased the
density of synapses from 0:2 μm�1 to 0:8 μm�1 85 within four days, by adding a
new synapse at a random position and with random receptive field orientation at
regular time intervals of 64 min. Additionally, to conserve the total amount of
postsynaptic calcium, we decreased the amount of calcium spread and the amount
of released calcium per synaptic event with increasing time21.

To determine the standard deviation of calcium spread, σc , we referred to
experimental studies that report mean propagation distances (defined as the full
width at half maximum, FWHM) from individual synapses in dendrites of a
developing pyramidal neuron, reporting values between 7:97 μm21 and 17:6 μm4.
Assuming a Gaussian spread profile, these FWHM values translate into a standard
deviation between 3:4 μm and 7:5 μm, which validates our choice of σc ¼ 6 μm.

The values for all parameters used in our simulations are listed in Table 1.

Sensitivity analysis. We performed a sensitivity analysis to determine the sensi-
tivity of the central building blocks of our model, the shape of the resulting BTDP
rule (Fig. 1), and the emergence of local clustering (Fig. 3), to perturbations of
different model parameters. To quantify how uncertainty in the input parameters

propagates, we defined distributions over our model parameters that were chosen
to be sufficiently broad to sometimes produce poor clustering (Supplementary Fig.
1). Many of the distributions were truncated from below because choosing extre-
mely small values of any parameter is not biologically plausible and cannot be
implemented in the model—but the distributions still cover one order of magni-
tude relative to the nominal parameter value. The prior distributions used for the
sensitivity analysis are: τM ; τv �Nð600; 300Þms; truncated from below at 5 ms,
τY ; τu �Nð300; 150Þms; truncated from below at 5 ms, τB; τP � exp N 4; 1ð Þð Þms;
truncated from below at 1 ms, σc�N 8; 1ð Þ μm; truncated from below at 4 μm,
ϕ � Nð 350 ; 3

500Þ, η � Uniformð½40%; 50%�Þ.

Retinal wave generation. To generate retinal waves with realistic spatiotemporal
properties, we simulated 6 h of retinal waves from a published computational
model with the parameter setting for mice (P0–P13)41 and looped the waves over
the entire duration of the simulation. For consistency, we used the mouse retinal
wave parameter settings for all simulations, since the parameter settings for ferret
come from much younger animals (P2–P4)41. As a control we also generated white
noise input by sampling each pixel independently from a normal distribution and
applying a spatial Gaussian filter with a 2° standard deviation. Subsequently, we
used each frame of the retinal wave or the white noise movie as input to a linear-
nonlinear Poisson model of event generation.

Linear-nonlinear model. The linear filter consists of a Gabor linear filter H, which
we split into two components, a positive and a negative Gaussian with the same
shape and opposite sign. We chose the semi-minor axis to be half as large as the
semi-major axis so that the resulting Gabor is approximately equal in diameter
along all axes. The receptive field diameter depends on the species and was extracted
from published literature (Table 1). Synaptic receptive field centers in visual space
have been measured to spread out in a small (for ferret9) or large (for mouse8,51)
neighborhood around the somatic receptive field center. The spread of the receptive
field centers is inversely proportional to the size of the corresponding visual cortices,
so that for the ferret visual cortex which is five times the size of the mouse visual
cortex, the spread of receptive field centers in the ferret is one fifth the spread in the
mouse. We interpret this anatomical argument to mean that the product of the
receptive field spread and the diameter of the visual cortex is constant for the two
species. For macaque we then use this relationship to infer the receptive field spread
from the experimentally measured visual cortex diameter to obtain 2°. We defined
the receptive field center spread σp to incorporate these differences and estimated σp
from extracted experimental data in both species8,9 as the standard deviation of a
Gaussian (a0expð�ðx2=ð2σ2pÞÞÞ) (Fig. 4a–c and Table 1). A synaptic receptive field
center was drawn from a two-dimensional symmetric Gaussian with standard
deviation σp and truncated to a circle of radius 50° to ensure that receptive fields fall
within a region of visual space where they are modulated by the retinal waves. Each
individual Gabor filter is rotated according to its orientation, θ, between 0° and 360°.
For the simulations in Supplementary Fig. 11, we modeled On- and Off-selective
receptive fields as Gaussians with a positive or negative sign and a diameter that is
matched to typical mouse LGN neurons87. The linearly filtered stimulus is passed
through an exponential nonlinearity, a expðbHÞ, that produces an instantaneous
firing rate from which we generate a Poisson input train with individual 50ms-long
events. The parameters (a; b) were chosen (a ¼ 0:2 Hz, b ¼ 9:4) to achieve a burst
rate of around 15min−1, as found experimentally4. For the simulations in Sup-
plementary Fig. 11 we set the spontaneous background firing rate of Off-selective
inputs to twice the value of On-selective inputs88, a ¼ 0.4 Hz.

Structural plasticity. To model synaptic turnover, we implemented a structural
plasticity rule inspired by ref. 43 where each synapse whose efficacy falls below a
fixed threshold Wthr is removed and replaced by a new synapse with a random
position on the branch and a randomly oriented Gabor receptive field (Fig. 3d).
The newly generated efficacy of a synapse through structural plasticity is the same
as the initial efficacy at the onset of the simulation, i.e. 0:5, and the receptive field
has orientation drawn from a uniform distribution over the interval [0°, 360°]. The
turnover threshold is chosen arbitrarily to be sufficiently small to minimize the
possibility of accidental removal of a synapse that is well-correlated with its
neighbors. A novel synapse can potentially come from a pool of silent synapses, a
type of synapse that lacks AMPA receptors but can become unsilenced through
activity-dependent mechanisms89.

Dendritic nonlinearity and cooperative plasticity. Inspired by experiments67, we
used a sigmoidal-like dendritic nonlinearity, gðIÞ ¼ γ c1

1þexpð�c2ðI�c3 ÞÞ þ ð1� γÞI
where the parameter γ 2 ½0; 1� controls the strength of the nonlinearity and c1 ¼
0:5; c2 ¼ 35; c3 ¼ 0:125 (Supplementary Fig. 6). This nonlinearity modifies the
equation for the postsynaptic accumulation (Eq. 10),

τu _ukðtÞ ¼ �ukðtÞ þ g ∑
N

l¼1
sklwlðtÞxlðtÞ

� �
: ð12Þ

The nonlinearity boosts the amount of postsynaptic calcium that is released
through the simultaneous activation of multiple nearby synapses. This effectively
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imposes the constraint that multiple synapses have to be active to generate a
postsynaptic calcium event.

Similarly, we investigated whether synaptic organization can emerge when
imposing a threshold for cooperativity, as recently described for NMDA-dependent
cooperative potentiation34,90 and cooperative heterosynaptic depression26

adulthood. We adapted Eq. (10) for the change in synaptic efficacy to include a
spacing and a timing cooperativity threshold,

τw _wkðtÞ ¼ F ðuk tð Þðvk tð Þ þ ρÞÞ ð13Þ
where F ðxÞ ¼ x when more than three synapses within a distance from synapse k
smaller than a spacing threshold were activated within a timing threshold, and
F ðxÞ ¼ 0 otherwise. We chose three synapses guided by experimental data90, but
this number can be traded off with the spacing threshold.

Backpropagating somatic signal. To investigate the emergence of global order of
synaptic inputs on an entire dendritic tree, we included a somatic accumulator
which can produce backpropagating action potentials (bAPs) which attenuate with
distance from the soma. Our somatic accumulator sums linearly over all post-
synaptic accumulators, weighing them by their respective synaptic efficacy37,91,
AðtÞ ¼ ∑N

k¼1 wkðtÞukðtÞ. If the somatic accumulator crosses a threshold, Ath, there
is a 25% probability that a bAP is generated, BðtÞ 2 f0; 1g. These two parameters
were chosen so that the burst rate of the soma is similar to the firing rate of
synapses (15 min−1) while avoiding step like activation patterns. The resulting
somatic activation thus incorporates some aspects of the burst firing common for
developing neurons, where the burst rate is modulated by the probability of gen-
erating a bAP (Supplementary Fig. 10). The bAP affects the postsynaptic accu-
mulators of all synapses with attenuating effect over distance47,48

τu _ukðtÞ ¼ �ukðtÞ þ ∑
N

l¼1
sklxlðtÞwlðtÞ þ skBampBðtÞ: ð14Þ

Here, Bamp is the unattenuated strength of the bAP and sk ¼ e
� d2

k
2σ2s is the

attenuation factor of synapse k that depends on the distance to the soma dk
(Fig. 5b). We chose Bamp (Table 1) to reflect the experimental observation that the
calcium influx through a bAP is larger than that caused by synaptic activation7.
Additionally, a computational model48 found that the peak calcium concentration
at individual spines is around 29 μM (independent of distance) in a subthreshold
stimulation protocol, while it is between 30 μM (distal synapse) and 100 μM
(synapse at 150 μm from the soma). Extrapolating this to a distance of 0 μm makes
a value of 5 for Bamp plausible, since this is five times as large as the synaptic level of
calcium produced by presynaptic activation. Note that we did not include the term
with BðtÞ in the sum for the somatic accumulator AðtÞ to avoid a positive
feedback loop.

Since bAPs have been found to induce neurotrophin release in a calcium
dependent manner49, we also considered the case of including a bAP in the
neurotrophin model by modifying the equation for the postsynaptic calcium
(compare to Eq. 3),

τY
dYk

dt
¼ �YkðtÞ þ ∑

N

l¼1
sklxlðtÞWlðtÞ þ skBampBðtÞ: ð15Þ

Placing a synaptic input at increasing distances away from the soma along the
dendritic tree of the reconstructed layer 2/3 dendrite, we used either the distance-
dependent competition or the burst-timing-dependent plasticity protocol from
Fig. 1 to stimulate the soma and synaptic input (Supplementary Fig. 8).

Inhibitory clustering. To investigate the role of inhibitory synapses in synaptic
clustering, we extended our neurotrophin model to also include plastic, GABAergic
synapses. While it is commonly accepted that GABAergic synapses are plastic, the
nature of the inhibitory plasticity is not well known, strongly depends on the
cortical region and can easily be modulated by diverse neuromodulators92. During
development, BDNF-TrkB signaling at excitatory synapses produces potentiation
of nearby GABAergic synapses93 and proBDNF-p75NTR signaling results in the
depression of nearby GABAergic synapses, provided that the p75NTR activation
occurs in concert with the opening of NMDA receptors94. Therefore, we assumed
that the strength of GABAergic synapses is homeostatically regulated to maintain a
balance of excitation and inhibition95. We postulated that the plastic change of

inhibitory synapses,
dWGABA

k
dt , closely follows the average amount of plasticity of

nearby excitatory synapses (Supplementary Fig. 13a),

τW
dWGABA

k
dt ¼ ∑

NI

l¼1
sklðBlðtÞ � PlðtÞÞ; ð16Þ

where the sum runs over all the glutamatergic synapses l. Input to the GABAergic
synapses, xGABAk and structural turnover of GABAergic synapses is implemented in
the same way as for glutamatergic synapses. Since there is an ongoing debate on
whether GABA during development is inhibitory96, or whether it is initially
excitatory and only later switches to being inhibitory73,74, we considered two
scenarios (Supplementary Fig. 13a):

A. GABAergic synapses hyperpolarize the postsynaptic membrane and are able
to decrease postsynaptic calcium97,

τY
dYk
dt ¼ �YkðtÞ þ ∑

NE

l¼1
sklWlxlðtÞ � ∑

NI

l¼1
sklW

GABA
l xGABAl ðtÞ; ð17Þ

B. GABAergic synapses are initially excitatory and are able to increase
postsynaptic calcium,

τY
dYk
dt ¼ �YkðtÞ þ ∑

NE

l¼1
sklWlxlðtÞ þ ∑

NI

l¼1
sklW

GABA
l xGABAl ðtÞ; ð18Þ

and only later in the simulation switch to being inhibitory and decreasing
postsynaptic calcium73, see Eq. (17).

Note that in the first scenario we needed to impose the biologically realistic
condition Yk > 0. In both scenarios, we scaled the amount of calcium increase per
excitatory synaptic event so that the total amount of calcium in a neighborhood
remains constant over time to stay in the same dynamic regime as in the exclusively
glutamatergic case. We implemented the switch from excitation to inhibition in the
second scenario after 4 days, although the exact day of the switch does not
influence our results since the fraction of stable synapses increases at the same
speed as in Fig. 3e.

Simulations. For the simulations in Fig. 1b, d, we distributed two synapses at
varying distances (Δd ¼ 0 μm to 15 μm) on a linear dendrite of length L ¼ 150 μm
with periodic boundary conditions. Only one input was stimulated with a train of
continuous bursts of activation whose rate varies from 1 to 20 min−1. All bursts in
our model have a duration of 50 ms (xdur ¼ 50 ms) unless stated otherwise. We
fixed the synaptic efficacy to the initial value WðtÞ ¼ 0:5 and computed the
expected change in the efficacy of synapse k in Eq. (7) as the temporal average of
BkðtÞ � PkðtÞ over the 40 min duration of the simulation. For the simulations in
Fig. 1f, g, we simulated only one synapse and provided either one (panel f) or ten
(panel g) pairings of a pre- (tpre) and a postsynaptic (tpost) burst event at a temporal
offset of ΔT ¼ tpost � tpre. Each burst event has a duration of 1 s and contains ten
smaller 50 ms-long events. The postsynaptic burst contributes an additive term IðtÞ
with amplitude Bamp to the postsynaptic calcium, τY

dYk
dt ¼ �YkðtÞ þ BampIðtÞ. Note

that in comparison to the calcium released by stimulating a synapse (Eq. 4), here
Bamp provides a stronger contribution to the postsynaptic calcium (Table 1). We
assumed that this postsynaptic signal comes from a bAP and hence is stronger than
the synaptic signal48. We indirectly varied Bamp in Supplementary Fig. 9 where we
simulated Eq. (19) on a dendritic tree. We found that significantly weakening the
calcium signal from direct postsynaptic stimulation preserves the shape of the
BTDP curve (including the timing requirements for potentiation and depression)
but makes it somewhat flatter.

For the simulations in Fig. 2b, c, we distributed N ¼ bLνc synapses on a branch
of length L, where bxc is the largest integer smaller or equal to x and where we
choose L sufficiently long (30 μm in b and 64 μm in c) to avoid confounds from
periodic boundary conditions. We varied the density ν between 0.05 and 0.75 μm−1

to capture random and systematic fluctuations in local synaptic density98. We
generated 12min in Fig. 2b (4 h in Fig. 2c) of correlated Poisson event trains99,
homogeneous across pairs, and with a fixed firing rate of 15min−1. To compute the
instantaneous change in synaptic efficacy in Fig. 2b, we fixed the synaptic efficacy to
the initial value and used Eq. (10) to compute the change from the same initial
efficacy averaged over 12min, as a proxy for the ensemble average over inputs. In
Fig. 2c, the synaptic efficacy was not fixed to the initial value and evolved according
to Eq. (10). For the simulations in Fig. 2d, we used an initial efficacy of 0.9 and, in
line with the experimental paradigm6, generated 6min of correlated Poisson input
for synapses distributed at a high density (ν ¼ 0:5 μm�1) or low density (ν ¼ 0:05
μm�1).

In Figs. 3 and 4, we simulated a branch with length L of over 15 days. All
synaptic receptive fields were initialized with an orientation drawn from a uniform
distribution over the interval ½0�; 360��. For the simulations in Figs. 5 and 6, we
tested a morphologically realistic dendrite model by using a reconstructed
pyramidal cell from layer 2/3 of the mouse visual cortex (Allen Cell Type database,
ID 502269786) which we resampled into equally sized segments of 10 μm using the
TREES toolbox100. We used this dendritic tree for both types of simulations, ferret
and mouse, since to our knowledge no morphological reconstruction of a
pyramidal layer 2/3 neuron from the ferret visual cortex is openly available. We do
not expect this to influence our results, since the specific branching structure of the
dendritic tree does not matter in our model. Our results depend on the anatomical
argument of receptive field diameter and center spread and do not consider other
factors, for instance, differences in morphology and electrophysiology across
species. Furthermore, we did not include any differences between synaptic inputs
on the apical vs. basal parts of the dendritic tree. Although apical and basal
dendrites likely receive different inputs101,102, no location-dependent differences in
orientation or overlap clustering have been reported8,9. Therefore, our model only
considers synaptic differences pertaining to distance from the soma and their effect
on global synaptic organization in the ferret and mouse. Because of the increased
computational complexity, the duration for the simulations with the
morphologically realistic dendrite model was 5 days, which is sufficient for most of
the synapses to reach a stable state.
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For the simulations with spike-timing-dependent plasticity in Supplementary
Fig. 5, we used faster time scales of our pre- and postsynaptic accumulators (τM =
60 ms, τY = 1 ms), and further changed η = 0.3 and ϕ ¼ 3

5 ms−1. As we
demonstrated analytically in Supplementary Note 5, the issue with generating
clustering using this rule is its short integration time window (tens of milliseconds)
rather than the exact choice of parameters33.

Statistics. All correlations were computed as Pearson correlation coefficients, i.e.,

for two random variables X and Y we compute hðX�μX ÞðY�μY Þi
σXσY

, where μ and σ denote

the mean and the standard deviation. In Fig. 2b, for each pair of correlation and
synaptic density we computed the average change in synaptic efficacy over all
synapses in 50 simulations.

To compute the correlations in Figs. 3b, g and 4f, we first applied a boxcar filter
of length 3 s to generate signals consistent with the slow calcium dynamics in
experimental imaging studies19. The experiments from ref. 6 reproduced in Figs. 2e
and 4f report coactivity—the fraction of events at a given synapse that occurs in
concert with events at nearby synapses. Coactivity is closely related to the Pearson
correlation coefficient when it is only applied to pairs of synapses (see
Supplementary Note 6). To estimate the spatial decay of correlations as a function
of distance, λ, in Supplementary Fig. 4, we computed the average correlation
between pairs of synapses Δd apart, then subtracted the average correlation
between pairs of synapses more than 50 μm apart and fit a Gaussian function with
shape A0expð�Δd2=ð2λ2ÞÞ to the resulting curve9.

We computed the receptive field overlap in Fig. 4e as the spatial receptive field
correlation8, i.e., the pixel-wise Pearson correlation coefficient between Gabor
filters associated with pairs of synapses. The correlation for different receptive field
center spreads in Fig. 4h, i was computed by first multiplying the coordinates of the
receptive field center position with a scalar and then calculating the overlap oij
between all pairs of synapses i and j. Next we computed a weighted average overlap
for each synapse with its neighbors using the proximity values sij as ∑j sijoij=∑j sij
and related it to the correlation, which is a monotonically increasing function of the
overlap (Supplementary Fig. 7). In Supplementary Fig. 7, we generated a Gaussian
noise image by drawing independent samples from a standard normal distribution
and reshaping them into a matrix of the same shape as the receptive field filters
(73 × 73 pixels). Then we applied a Gabor filter with random orientation,
wavelength of 2 pixels per cycle and a ratio of the semi-major and semi-minor axes
equal to 1

2 to the resulting noise image. When computing the spatial overlap
between receptive fields (Supplementary Fig. 7), we generated a filtered noise image
for each receptive field and added the noise to the receptive field, scaled by a factor
uniformly distributed between 1

2 and 2.
The term orientation difference8 denotes the absolute difference in orientation

between receptive fields of pairs of synapses modulo 180°,

minðjθ0i � θ0jj; 180� � jθ0i � θ0jjÞ; ð19Þ
where θ0i is defined as modðθi; 180�Þ. The term circular dispersion denotes the
orientation difference between the receptive field of a given synapse and the soma,
where the orientation preference of the soma is the circular average of all synaptic
preferences7, arg

�
1
N ∑

N
j¼1e

iθj
�
. We define the mean circular dispersion in Fig. 5i as

the average circular dispersion of all synapses less than 50 μm apart. Analogously,
the term receptive field offset denotes the Euclidean distance between the center of
a given synaptic receptive field and the somatic receptive field center, defined as the
average location of all synaptic receptive fields. The average circular dispersion and
average receptive field offset in Figs. 5 and 6 were computed as the average over
synapses within dendritic segments. The coaxial space8 (Fig. 6f, g) is defined as the
portion of space up to 45° on either side of the axis extending along the average
orientation of all synaptic receptive fields. Conversely, the orthogonal space is the
remaining visual space that is not coaxial.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The morphological reconstruction that supports the findings of this study is available
from the Allen Cell Type database, ID 502269786.

Code availability
We used the openly available TREEs toolbox (https://www.treestoolbox.org, v1.15) and
the toolbox for generating correlated Poisson trains (https://de.mathworks.com/
matlabcentral/fileexchange/20591-sampling-from-multivariate-correlated-binary-and-
poisson-random-variables, v1.0). To generate retinal waves, we used open source code
(https://swindale.ecc.ubc.ca/home-page/software/retinal-wave-models/). We extracted all
displayed experimental data from the appropriately referenced publications using open
source software103. The code for this modeling study was written by Jan H. Kirchner
using the MATLAB 2019a programming environment. The relevant code to generate the
figures of this paper is publicly available at https://github.com/comp-neural-circuits/
synaptic-organization (https://doi.org/10.5281/zenodo.4630142).
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