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Abstract

The recovery of sparse data is at the core of many applications in machine learning
and signal processing. While such problems can be tackled using `1-regularization
as in the LASSO estimator and in the Basis Pursuit approach, specialized algorithms
are typically required to solve the corresponding high-dimensional non-smooth
optimization for large instances. Iteratively Reweighted Least Squares (IRLS) is a
widely used algorithm for this purpose due to its excellent numerical performance.
However, while existing theory is able to guarantee convergence of this algorithm
to the minimizer, it does not provide a global convergence rate. In this paper, we
prove that a variant of IRLS converges with a global linear rate to a sparse solution,
i.e., with a linear error decrease occurring immediately from any initialization, if
the measurements fulfill the usual null space property assumption. We support our
theory by numerical experiments showing that our linear rate captures the correct
dimension dependence. We anticipate that our theoretical findings will lead to new
insights for many other use cases of the IRLS algorithm, such as in low-rank matrix
recovery.

1 Introduction

The field of sparse recovery deals with the problem of recovering an (approximately) sparse vector
x from only few linear measurements, presented by an underdetermined system of linear equations
of the form y = Ax. One approach to solve this problem is to consider the `0-minimization under
linear constraints, which is NP-hard in general [24, 54]. For computational reasons, instead of
`0-minimization, it is common practice to consider its convex relaxation

min
x∈RN

||x||1 subject to Ax = y, (P1)
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where A ∈ Rm×N , b ∈ Rm are given, which is referred to as `1(-norm) minimization [20, 27, 64] or
basis pursuit [18, 19] in the literature.

Unlike `0-minimization, the optimization program (P1) is computationally tractable in general,
and a close relationship of their minimizers has been recognized and well-studied in the theory of
compressive sensing [12, 13, 26, 32]. In statistics and machine learning, an unconstrained variant of
(P1), often called LASSO, amounts to the most well-studied tractable estimator for variable selection
in high-dimensional inference [37, 48, 65]. `1-minimization has many other applications and it was
even called the modern least squares [14].

The tractability of (P1) becomes evident from the fact that it can be reformulated as a linear program
[66]. However, as many problems of interest in applications are high-dimensional and therefore
challenging for standard linear programming methods, many specialized solvers for (P1) have been
proposed, such as the Homotopy Method [28], primal-dual methods [15, 52], Alternating Direction
Method of Multipliers [9], Bregman iterative regularization [71] and Semismooth Newton Augmented
Lagragian Methods [46] and Iteratively Reweighted Least Squares (IRLS), the latter of which is in
the focus of this paper.

Iteratively Reweighted Least Squares corresponds to a family of algorithms that minimizes non-
smooth objective functions by solving a sequence of quadratic problems, with its idea going back to a
method proposed by Weiszfeld for the Fermat-Weber problem [7, 69]. A variety of different problems
such as robust regression in statistics [39, 53], total variation regularization in image processing
[2, 33, 55], joint learning of neural networks [72], robust subspace recovery [45] and the recovery
of low-rank matrices [31, 42, 43, 51] can be solved efficiently by IRLS in practice, as it relies on
simple linear algebra to solve the linear systems arising from the quadratic problems at each iteration,
without the need of a careful initialization or intricate parameter tuning. On the other hand, the
analysis of IRLS methods is typically challenging: General convergence results are often weak, and
stronger convergence results are only available in particular cases; see Section 2.3 for more details.

IRLS for sparse recovery. In the sparse recovery context, the first variants of IRLS were introduced
in [34, 59] for the `p-quasinorm minimization problem (Pp) with 0 < p ≤ 1 that is similar to (P1),
but with ‖x‖p instead of ‖x‖1 as an objective. In [16], modifications of the method of [34, 59] using
specific smoothing parameter update rules were observed to exhibit excellent numerical performance
for solving (Pp), retrieving the underlying sparse vector when most of the methods fail. A useful fact
is that IRLS is one of the few methods (ADMM being the other one [9]) that provides a framework to
solve both constrained and unconstrained formulations of `p-minimization problems.

A major step forward in the theoretical understanding of IRLS was achieved in [23], where the authors
showed that a variant of IRLS for (P1) converges globally to an `1-minimizer if the measurement
operator A fulfills the null space property of sufficient order, which essentially ensures that an
`1-minimizer is actually sparse. However, since this proof relies on the existence of a convergent
subsequence, their proof does not reveal any rate for global convergence. The analysis of [23]
provides, furthermore, a locally linear convergence rate, but this local linear rate has the drawback
that it only applies if the support of the true signal has been discovered, which is arguably the difficult
part of `0-minimization—cf. Proposition 3.1 below and Section 4.1.

While several extensions and modifications of the IRLS algorithm in [23] have been proposed (see,
e.g., [3, 30]), this following fundamental algorithmic question has remained unanswered:

What is the global convergence rate of the IRLS algorithm for `1-minimization?

Our contribution. We resolve this question, formally stated in [62], and present a new IRLS
algorithm that converges linearly to a sparse ground truth, starting from any initialization, as stated in
Theorem 3.2. Our algorithm returns a feasible solution with δ-accuracy, i.e., ‖x∗ − xk‖1 ≤ δ, where
x∗ is the underlying s-sparse vector, in k = O(N

√
(logN)/m log(1/δ)) iterations. Analogous

to [23], it is assumed that the measurement matrix A satisfies the so-called null space property
[21]. We also provide a similar result for approximately sparse vectors. Our proof relies on a novel
quantification of the descent of a carefully chosen objective function in the direction of the ground
truth. Additionally, we support the theoretical claims by numerical simulations indicating that we
capture the correct dimension dependence. We believe that the new analysis techniques in this paper
are of independent interest and will pave the way for establishing global convergence rates for other
variants of IRLS such as in low-rank matrix recovery [31].

2



Notation. We denote the cardinality of a set I by |I| and the support of a vector x ∈ RN , i.e., the
index set of its nonzero entries, by supp(x) = {j ∈ [N ] : xj 6= 0}. We call a vector s-sparse
if at most s of its entries are nonzero. We denote by xI the restriction of x onto the coordinates
indexed by I , and use the notation Ic := [N ] \ I to denote the complement of a set I . Furthermore,
σs(x)`1 denotes the `1-error of the best s-term approximation of a vector x ∈ RN , i.e., σs(x)`1 =
inf{‖x− z‖1 : z ∈ RN is s-sparse}.

2 IRLS for sparse recovery

We now present a simple derivation of the Iteratively Reweighted Least Squares (IRLS) algorithm
for `1-minimization which is studied in this paper. IRLS algorithms can be interpreted as a variant
of a Majorize-Minimize (MM) algorithm [63], as we will lay out in the following. It mitigates the
non-smoothness of the ‖ · ‖1-norm by using the smoothed objective function Jε : RN → R, which is
defined, for a given ε > 0, by

Jε(x) :=

N∑
i=1

jε(xi) with jε(x) :=

{
|x|, if |x| > ε,
1
2

(
x2

ε + ε
)
, if |x| ≤ ε. (1)

The function Jε can be considered as a scaled Huber loss function which is widely used in robust
regression analysis [40, 50]. Moreover, the function Jε is continuously differentiable and fulfills
|x| ≤ jε(x) ≤ |x| + ε for each x ∈ R. Instead of minimizing the function Jε directly, the idea
of IRLS is to minimize instead a suitable chosen quadratic function Qε(·, x), which majorizes
Jε such that Qε (z, x) ≥ Jε (z) for all z ∈ RN . This function is furthermore chosen such that
Qε (x, x) = Jε (x) holds, which implies that min

z∈Rn
Qε (z, x) ≤ Jε (x). The latter inequality implies

that by minimizing Qε(·, x), IRLS actually achieves an improvement in the value of Jε as well. More
specifically, Qε (·, x) is defined by

Qε(z, x) := Jε(x) + 〈∇Jε(x), z − x〉+
1

2
〈(z − x),diag(wε(x))(z − x)〉

= Jε(x) +
1

2
〈z,diag(wε(x))z〉 − 1

2
〈x, diag(wε(x))x〉,

(2)

where ∇Jε(x) =

({
xi
|xi| , if |xi| > ε
xi
ε , if |xi| ≤ ε

)N
i=1

is the gradient of Jε at x and the weight vector

wε (x) ∈ RN is a vector of weights such that wε(x)i := [max(|xi|, ε)]−1 for i ∈ [N ]. The
following lemma shows that Qε (·, ·) has indeed the above-mentioned properties. We refer to the
supplementary material for a proof.

Lemma 2.1. Let ε > 0, let Jε : RN → R be defined as in (1) and Qε : RN ×RN → R as defined
in (2). Then, for any z, x ∈ RN , the following affirmations hold:

i. diag(wε(x))x = ∇Jε(x), ii. Qε(x, x) = Jε(x), iii. Qε(z, x) ≥ Jε(z).

As can be seen from the equality in (2), minimizing Qε(·, x) corresponds to a minimization of a
(re-)weighted least squares objective 〈·,diag(wε(x))·〉, which lends its name to the method. Note
that unlike a classical MM approach, however, IRLS comes with an update step of the smoothing
parameter ε at each iteration. We provide an outline of the method in Algorithm 1.

The weighted least squares update (3) can be computed such that xk+1 = W−1k A∗(AW−1k A∗)−1(y)

with Wk = diag (wk), with the solution of the (m×m) linear system (AW−1k A∗)z = y as a main
computational step. This linear system is positive definite and suitable for the use of iterative solvers.
In [30], an analysis of how accurately the linear system of a similar IRLS method needs to be solved
to ensure overall convergence. We note that for small εk, the Sherman-Woodbury formula [70]
can be used so that the calculation of xk+1 boils down to solving a smaller linear system that is
well-conditioned, c.f. the supplementary material for details. This numerically advantageous property
is not shared by the methods of [3, 23, 30], as our smoothing update (4) is slightly different from the
ones proposed in these papers. We refer to Section 2.2 for a discussion.

The update step of the smoothing parameter ε (4) for the IRLS algorithm under consideration requires
an a priori estimate of the sparsity of the ground truth of the signal, a piece of information that is
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Algorithm 1 Iteratively Reweighted Least Squares for `1-minimization

Input: Measurement matrix A ∈ Rm×N , data vector y ∈ Rm,
initial weight vector w0 ∈ RN (default: w0 = (1, 1, . . . , 1)).
Set ε0 =∞.
for k = 0, 1, 2, . . . do

xk+1 := arg min
z∈RN

〈z,diag (wk) z〉 subject to Az = y, (3)

εk+1 := min

(
εk,

σs(x
k+1)`1
N

)
, (4)

(wk+1)i :=
1

max
(
|xk+1
i |, εk+1

) for each i ∈ [N ], (5)
end for
return Sequence (xk)k≥1.

also needed by most of the methods for sparse reconstruction. In practice, an overestimation of s
is not a problem for similar numerical results if the overestimation remains within small multiples
of the sparsity of the signal. We note, however, that there are also versions of IRLS which do not
require a-priori knowledge of s, e.g. [30,68], as the update rule for the smoothing parameter is chosen
differently. An interesting future research direction is to extend the analysis presented here to IRLS
with such a smoothing parameter update.

A consequence of Lemma 2.1, step (4), the fact that ε 7→ Jε(z) is monotonously non-decreasing,
and that k 7→ εk is non-increasing is that k 7→ Jε(z) is non-increasing in k. This implies that the
iterates xk, xk+1 of Algorithm 1 fulfill

Jεk+1
(xk+1) ≤ Jεk(xk+1) ≤ Qεk(xk+1, xk) ≤ Qεk(xk, xk) = Jεk(xk). (6)

This shows in particular that the sequence
{
Jεk

(
xk
)}∞
k=0

is non-increasing. For this reason, it can
be shown that each accumulation point of the sequence of iterates (xk)k≥0 is a (first-order) stationary
point of the smoothed `1-objective Jε(·) subject to the measurement constraint imposed by A and y,
where ε = limk→∞ εk (see [23, Theorem 5.3]).

2.1 Null space property

As in [23], the analysis we present is based on the assumption that the measurement matrix A satisfies
the so-called null space property [21, 36], which is a key concept in the compressed sensing literature
(see, e.g., [32, Chapter 4] for an overview).
Definition 2.2. A matrix A ∈ Rm×N is said to satisfy the `1-null space property (`1-NSP) of order
s ∈ N with constant 0 < ρs < 1 if for any set S ⊂ [N ] of cardinality |S| ≤ s, it holds that
‖vS‖1 ≤ ρs‖vSc‖1, for all v ∈ ker(A).

In [32, Chapter 4], the property of Definition 2.2 was called stable null space property. The importance
of the null space property is due to the fact that it gives a necessary and sufficient criterion for the
success of basis pursuit for sparse recovery, as the following theorem shows.
Theorem 2.3 ([32, Theorem 4.5]). Given a matrix A ∈ Rm×N , every vector x ∈ RN such that
||x||0 ≤ s is the unique solution of (P1) with Ax = y if and only if A satisfies the null space property
of order s for some 0 < ρs < 1.

The `1-NSP is implied by the restricted isometry property (see, e.g., [11]), which is fulfilled by
a large class of random matrices with high probability. For example, this includes matrices with
(sub-)gaussian entries and random partial Fourier matrices [6, 60].

2.2 Existing theory

A predecessor of IRLS for the sparse recovery problem (P1), and more generally, for `p-quasinorm
minimization with 0 < p ≤ 1, is the FOCal Underdetermined System Solver (FOCUSS) as proposed
by Gorodnitsky, Rao and Kreutz-Delgado [34, 59]. Asymptotic convergence of FOCUSS to a
stationary point from any initialization was claimed in [59], but the proof was not entirely accurate, as

4



pointed out by [17]. One limitation of FOCUSS is that, unlike in IRLS as presented in Algorithm 1,
no smoothing parameter ε is used, which leads to ill-conditioned linear systems.

To mitigate this, [16] proposed an IRLS method that uses smoothing parameters ε (such as used in
Qε defined above) that are updated iteratively. It was observed that this leads to a better condition
number for the linear systems to be solved in each step of IRLS and, furthermore, that this smoothing
strategy has the advantage of finding sparser vectors if the weights of IRLS are chosen to minimize a
non-convex `p-quasinorm for p < 1.

Further progress for IRLS designed to minimize an `1-norm was achieved in the seminal paper [23].
In [23], it was shown that if the measurement operator fulfills a suitable `1-null space property as in
Definition 2.2, an IRLS method with iteratively updated smoothing converges to an s-sparse solution,
coinciding with the `1-minimizer, if there exists one that is compatible with the measurements.
This method uses not exactly the update rule of (4), but rather updates the smoothing parameter
such that εk+1 = min(εk, R(xk+1)s+1/N), where R(xk+1)s+1 is the (s+ 1)st-largest element of
the set {|xk+1

j |, j ∈ [N ]}. Furthermore, a local linear convergence rate of IRLS was established
[23, Theorem 6.1] under same conditions.

However, the analysis of [23] has its limitations: First, there is a gap in the assumption of their
convergence results between the sparsity s of a vector to be recovered and the order ŝ of the
NSP of the measurement operator. Recently, this gap was circumvented in [3] with an IRLS
algorithm that uses a smoothing update rule based on an `1-norm, namely, εk+1 = min(εk, η(1−
ρs)σs(x

k+1)`1/N), where η ∈ (0, 1), and ρs is the NSP constant of the order s of the NSP fulfilled
by the measurement matrix A—this rule is quite similar to the rule (4) that we use in Algorithm 1. In
particular, [3, Theorem III.6] establishes convergence with local linear rate similar to [23] without the
gap mentioned above. The main limitation, however, of the theory of [23] (which is shared by [3]) is
that the linear convergence rate only holds locally, i.e., in a situation where the support of the sparse
vector has already been identified, see also Section 3 and Section 4.1 for a discussion.

We finally mention three relevant papers for the theoretical understanding of IRLS. [5] established
the correspondence between the IRLS algorithms and the Expectation-Maximization algorithm for
constrained maximum likelihood estimation under a Gaussian scale mixture distribution. By doing
so, they established similar results as those from [23], i.e., the global convergence of IRLS with
local linear convergence rate (as can be seen from their equation (38), which similar to (7) below)
but by using different techniques based on such correspondence. [62] explores the relationship of
IRLS for `1-minimization and a slime mold dynamics, interpreting both as an instance of the same
meta-algorithm. Without requiring any connection between sparse recovery and `1-minimization, [29]
shows that an IRLS-like algorithm for (P1), requires O(N1/3 log(1/δ)/δ2/3 + log(N)/δ2) iterations
to obtain a multiplicative error of 1 + δ on the minimizer ||x||1. Unlike our result Theorem 3.2, this
corresponds not to a linear, but to a sublinear convergence rate.

2.3 Related work

As mentioned in the introduction, IRLS has a long history and has appeared under different names
within different communities, e.g., similar algorithms are usually called half-quadratic algorithms
in image processing [2, 41] and the Kac̆anov method in numerical PDEs [25]. Probably the most
common usage of IRLS has been in robust regression [35, 39], c.f. [10] for a survey that also covers
applications in approximation theory. For p-norm regression, [1] proposed a version of IRLS for
which convergence results for p ∈ [2,∞) were established, solving a problem that was open for
over thirty years. Also, for robust regression, by using an `1-objective on the residual, [53] showed
recently global convergence of IRLS with a linear rate, with high probability for sub-Gaussian data.
We note that our proof strategy is different from the one of [53] due to a structural difference of (P1)
from robust regression.

In [57], the authors provide a general framework for formulating IRLS algorithms for the optimization
of a quite general class of non-convex and non-smooth functions, however, without updated smoothing.
They use techniques developed in [4] to show convergence of the sequence of iterates to a critical
point under the Kurdyka-Łojasiewicz property [8]. However, no results about convergence rates were
presented.

For the sparse recovery problem, the topic discussed in this paper, the references [30, 44, 68]
analyzed IRLS for an unconstrained version of (P1), which is usually a preferable formulation if
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the measurements are corrupted by noise. Additionally, the work [30] addressed the question of
how to solve the successive quadratic optimization problems. The authors developed a theory that
shows, under the NSP, how accurately the quadratic subproblems need to be solved via the conjugate
gradient method in order to preserve the convergence results established in [23].

Finally, for the related problems of low-rank matrix recovery and completion, IRLS strategies
have emerged as one of the most successful methods in terms of data-efficiency and scalability
[31, 42, 43, 51].

While we were writing this paper, the manuscript [58] appeared providing new insights about IRLS.
It describes a surprisingly simple reparametrization of the IRLS formulation for `p-minimization
(with p ∈ (2/3, 1)) that leads to a smooth bilevel optimization problem without any spurious minima,
i.e., the stationary points of this new formulation are either global minima or strict saddles. It is
an interesting future direction to explore the connection between this new approach and our global
convergence theory.

3 IRLS for Basis Pursuit with Global Linear Rate

As discussed in Section 2.2, the main theoretical advancements for IRLS for the sparse recovery
problem were achieved in the work [23].
Proposition 3.1. [23, Theorem 6.1] Assume that A ∈ Rm×N satisfies the NSP of order ŝ > s with
constant ρŝ such that 0 < ρŝ < 1− 2

ŝ+2 and ŝ > s+ 2ρŝ
1−ρŝ hold. Let x∗ ∈ RN be an s-sparse vector

and set y = Ax∗. Assume that there exists an integer k0 ≥ 1 and a positive number ξ > 0 such that

ξ :=
‖xk0 − x∗‖1

mini∈S |(x∗)i|
< 1. (7)

Then the iterates {xk0 , xk0+1, xk0+2, . . .} of the IRLS method in [23] converge linearly to x∗, i.e., for
all k ≥ k0, the kth iteration of IRLS satisfies

‖xk+1 − x∗‖1 ≤
ρŝ(1 + ρŝ)

1− ξ

(
1 +

1

ŝ− 1− s

)
‖xk − x∗‖1. (8)

The main contribution of this paper is that we overcome a local assumption such as (7) and show
that IRLS as defined by Algorithm 1 exhibits a global linear convergence rate, i.e., there is a linear
convergence rate starting from any initialization, as early as in the first iteration.

Exactly sparse case. Our first main result, Theorem 3.2, deals with the scenario that the ground truth
vector x∗ is exactly s-sparse. Our second result, presented in the supplementary material, generalizes
the first one to the more realistic situation of approximately sparse vectors.

Theorem 3.2. Consider the problem of recovering an unknown s-sparse vector x∗ ∈ RN from known
measurements of the form y = Ax∗. Assume that the measurement matrix A ∈ Rm×N fulfills the
`1-NSP of order s with constant ρs < 1/2. Let the IRLS iterates

{
xk
}
k

and {εk}k be defined by the
IRLS algorithm (3) and (4) with initialization x0. Then, for all k ∈ N, it holds that

Jεk(xk)− ‖x∗‖1 ≤
(

1− c

ρ1N

)k (
Jε0(x0)− ‖x∗‖1

)
(9)

as well as

‖xk − x∗‖1 ≤ 9

(
1− c

ρ1N

)k
‖x0 − x∗‖1. (10)

Here c = 1/768 is an absolute constant and ρ1 < 1/2 denotes the `1-NSP constant of order 1.

Inequality (9) says that the difference Jεk(xk)−‖x∗‖1 converges linearly with a uniform upper bound
of 1− c

ρ1N
on the linear convergence factor. As our proof, which is detailed in the supplementary

material, shows, this implies inequality (10), which implies that also ‖x∗ − xk‖1 exhibits linear
convergence in the number of iterations k. In particular, this means that for some error tolerance
δ > 0, we obtain ‖x∗ − xk‖1 ≤ δ after O

(
ρ1N log

(
‖x∗−x0‖1

δ

))
iterations.
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Remark 3.3. Note that it follows directly from Definition 2.2 that the constant ρ1 of the `1-NSP of or-
der 1 satisfies ρ1 ≤ ρs ≤ 1, which implies that δ-accuracy is obtained after O

(
N log

(
‖x∗−x0‖1

δ

))
iterations. This bound can be improved in many scenarios where one can obtain more explicit bounds
on ρ1, for example, when A is a Gaussian matrix. Namely, inspecting [32, p. 142 and Thm. 9.2], we
observe in this scenario that ρ1 .

√
(logN)/m with high probability. Hence, in this scenario, at

most O
(
N
√

logN
m log

(
‖x∗−x0‖1

δ

))
iterations are needed to achieve δ-accuracy.

The key idea in our proof is to use fact that the quadratic functional Qεk(·, xk) approximates the
`1-norm in a neighborhood of the current iterate xk. For this reason, we also expect that for t > 0
sufficiently small, we have that Qεk(xk + tvk, xk) < Qεk(xk, xk) if vk = x∗ − xk is the vector
between xk and the ground truth x∗. Then by choosing t properly, we can guarantee a sufficient
decrease of the functional Jεk

(
xk
)

in each iteration.

In Section 4, we conduct experiments that indeed verify the linear convergence in (9) and (10).
Moreover, we study numerically whether one can observe a dependence of the convergence rate
on the problem parameters N , s and m. We construct a worst-case example which indicates that
the convergence rate indeed may depend on the dimension N in a way as described by (9). In a
certain sense, this indicates that there are two convergence phases, a global one, where a dimension-
dependent constant cannot be avoided and a local convergence phase, where a local convergence
result such as described in Proposition 3.1 kicks in.

Finally, let us mention that we have undertaken no efforts to optimize the constant c = 1/768 in
Theorem 3.2. Nevertheless, we note that the constant c can be replaced by the sharper constant cρs as
defined in Proposition B.3.

4 Numerical experiments

In this section, we support our theory with numerical experiments. First, we examine whether IRLS
indeed exhibits two distinct convergence phases, a “global” one, as described in this paper, and a
local one, as described in [3, 23], corresponding to different linear convergence rate factors. Second,
we explore to which extent the dimension dependence in the convergence rates (9) and (10) indicated
by Theorem 3.2 is necessary, or if we rather can expect a dimension-free linear convergence rate
factor. All experiments are conducted on an iMac computer with a 4 GHz Quad-Core Intel Core i7
CPU, using MATLAB R2020b.

4.1 Local and global convergence phase

We first note that the local convergence result of [23, Theorem 6.1] depends on the locality condition
ξ(k) := ‖xk−x∗‖1

mini∈S |(x∗)i| < 1, cf. (7). Under this condition (and an appropriate null space condition),
Proposition 3.1 stated above implies that ‖xk+1 − x∗‖1 ≤ µ‖xk − x∗‖1 with an absolute constant
µ < 1 which, in particular, does not depend on the dimension N,m, and s. This corresponds to
a locally linear rate for IRLS. A very similar condition to (7) is required by the comparable and
more recent local convergence statement [3, Theorem III.6, inequality (III.14)] for the IRLS variant
considered in [3].

However, a closer look at the locality condition (7) reveal that its basin of attraction is very restrictive:
This condition means that the support identification problem underlying the sparse recovery has
already been solved, as can be seen from the following proposition, whose proof we provide in the
supplementary material.

Proposition 4.1. Let xk, x∗ ∈ RN , let S ⊂ [N ] be the support set of x∗ of size |S| = s. If (7)
holds, i.e., if ‖xk − x∗‖1 < mini∈S |(x∗)i|, then the set Sk ⊂ [N ] of the s largest coordinates of xk
coincides with S.

We now explore the behavior of the IRLS algorithm for `1-minimization, Algorithm 1, and the
sharpness of Proposition 4.1 in experiments that build on those of [23, Section 8.1]. For this purprose,
forN = 8000, we sample independently a 200-sparse vector x∗ ∈ RN with random support S ⊂ [N ],
s = 200 = |S|, chosen uniformly at random such that (x∗)S is chosen according the Haar measure
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Figure 1: Instantaneous linear convergence rates of IRLS for `1-minimization (N = 8000):
Linear convergence factors µ`1(k) := ‖xk − x∗‖1/‖xk−1 − x∗‖1 (in blue), filled blue circle
if Sk = S with Sk of Proposition 4.1 (support identification), and error parameter ζ(k) :=
‖xk − x∗‖1/mini∈S |(x∗)i| (in red). Horizontal (red) line: Threshold ζ = 1. Vertical (red) line:
First iterate k with ζ(k) < 1.

on the sphere of a 200-dimensional unit `2-ball, and a measurement matrix A ∈ Rm×N with i.i.d.
Gaussian entries such that Aij ∼ N (0, 1/m), while setting m = b2s log(N/s)c. Such a matrix is
known to fulfill with high probability the `1-null space property of order s with constant ρs < 1
[32, Theorem 9.29].

In Figure 1, we track the decay of the `1-error ‖xk − x∗‖1 of the iterates xk returned by Algorithm 1
via the values of ζ(k) := ‖xk − x∗‖1/mini∈S |(x∗)i|, depicted in red, and the behavior of the
factor µ`1(k) := ‖xk − x∗‖1/‖xk−1 − x∗‖1, depicted in blue. We observe that the condition (7) for
local convergence with the fast, dimension-less linear rate (8) is satisfied after k = 33 iterations, as
indicated by the vertical dashed red line.

In the first few iterations, ζ(k) is larger than 1 by several orders of magnitudes, suggesting that the
local convergence rate results of [3, 23] do not apply until the later stages of the simulation: In fact,
we observe that the support S of x∗ is already perfectly identified via the s largest coordinates of xk
as soon as k ≥ 18. For iterations 18 ≤ k ≤ 50, the linear rate µ`1(k) remains very stably around
≈ 0.7, after which an accelerated linear rate can be observed.5 Before k = 18, for this example, the
rate µ(k) hovers around 0.7 with slight variations. For all iterations k, µ(k) is smaller than 1, in line
with the global linear convergence rate implied by Theorem 3.2.

Repeating a similar experiment for a larger ambient space dimension N = 16000 and a smaller
measurement-to-sparsity ratio such that m = b1.75s log(N/s)c results in a qualitatively similar
situation, as seen in Figure 2(a): In Figure 2(a), we add also a plot of the linear convergence factor

µ(k) :=
Jεk (x

k)−‖x∗‖1
Jεk−1

(xk−1)−‖x∗‖1 that tracks the behavior of the linear convergences in the smoothed

`1-norm objective J , cf. (17). In addition to what have been observed in Figure 1, we see that µ(k)
and µ`1(k) exhibit a very similar behavior for this example.

Hence, these experiments indicate that we can distinguish two phases. In the first, global phase linear
convergence already sets in, but the instantaneous linear convergence rate has not yet stabilized. In
the second one, when the support identification problem has been solved, the instantaneous linear
convergence stabilizes.

Remark 4.2. There are other methods in the literature, such as proximal algorithms, for which
convergence results with a two phase behaviour were already established. For example, [47] showed
that a forward-backward method applied to the Lasso problem exhibits local linear convergence,
and that after a finite number of iterations, the region of fast convergence is reached. In particular,
[47, Proposition 3.6(ii)] provides a bound on this number of iterations, which scales proportionally
with ||x∗−x0||22. On the other hand, (3.2) for IRLS provides a bound on the number of iterations until
the fast linear convergence rate is reached that scales proportionally with log(||x∗ − x0||2), but also
proportionally with the dimension N . Moreover, most of these results require stronger assumptions
than the NSP, such as the restricted isometry property or a restricted strong convexity/smoothness
property.

5The latter phenomenon cannot be observed for the IRLS algorithm of [23] as it uses a slightly different
objective function than Algorithm 1.
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(b) Adversary initialization
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Figure 2: Instantaneous linear convergence rates of IRLS for `1-minimization (N = 16000):

Linear convergence factors µ`1(k) := ‖xk−x∗‖1
‖xk−1−x∗‖1 (in blue) and µ(k) :=

Jεk (x
k)−‖x∗‖1

Jεk−1
(xk−1)−‖x∗‖1 (in

green), filled circles if Sk = S (perfect support identification), and error parameter ζ(k) :=
‖xk − x∗‖1/mini∈S |(x∗)i| (in red), horizontal and vertical red lines as in Figure 1.

4.2 Global convergence rate and its dimension dependence

In this section, we explore to which extent the dependence on N in the convergence rates (10) and
(14) is necessary or if we can rather expect a dimension-free linear convergence rate factor. To this
end, we run a variation of IRLS that initializes the weight vector w0 ∈ RN not uniformly as in
Algorithm 1, but based on an adversary initialization, here denoted by zadv. More specifically, we
first compute a minimizer

zadv ∈ arg min
z∈RSc :AScz=y

‖z‖1

of the `1-minimization problem restricted to the off-support coordinates of x∗ indexed by Sc and
set then x0 ∈ RN such that x0Sc := zadv and x0S = 0. Based on this initialization x0, we compute

ε0 :=
σs(x

0)`1
N and set the first weight vector such that for all i ∈ [N ],

(w0)i :=
1

max (|x0i |, ε0)
, (11)

before proceeding with the IRLS steps (3), (4) and (5) until convergence.

We observe in Figure 2(b) that this initialization, which is adversary as it sets very large initial
weights on the coordinates of S that correspond to the true support of x∗, eventually results in the
same behavior of Algorithm 1 as for the standard initialization by uniform weights, identifying the
true support at iteration k = 39 compared to k = 30. However, in the first few iterations, we see that
the instantaneous linear convergence factor µ(k) is close to 1 with µ(1) = 0.980, decreasing only
slowly before stabilizing around 0.79 after around k = 30.

While this is just one example, this already indicates that in general, a linear rate such as (8), i.e.,
without dependence on the dimension N (which has been proven locally in [23, Theorem 6.1] and
[3, Theorem III.6]) might not hold in general.

In our next experiment, we further investigate numerically the dimension dependence of the worst-

case linear convergence factor µ(k) :=
Jεk (x

k)−‖x∗‖1
Jεk−1

(xk−1)−‖x∗‖1 , which is upper bounded by the result of
Theorem 3.2. We saw that in the experiment using the adversary initialization mentioned above and
depicted in Figure 2(b), the maximal value was attained in the first iteration, i.e., for µ(1), as the
effect of the adversary initialization is most eminent for k = 1.

We now run IRLS starting from the adversary initialization for different ambient dimensions N =
125 · 2`/2 for ` = 0, 1, . . . , 14. For each of the values of N , we sample vectors x∗ ∈ RN of
sparsity s = 40 from the same random model as above, and scale the number of i.i.d. Gaussian
measurements with m = b2s log(N/s)c. We average the resulting values for µ(1) across 500
independent realizations of the experiment.
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In Figure 3, we see that dependence on N of linear convergence factor µ(1) that is observed for this
experiment is quite well described by the upper bound (9) provided by our main result Theorem 3.2,
as 1

1−µ(1) scales almost linearly with N . As a footnote in Section 3 indicates, the constant ρ1 of the

null space property of order 1 scales with
√

logN
m , and therefore a precise dependence on all the

parameters such as m and s might be more complicated than what can be observed in this experiment.

Nevertheless, we interpret Figure 3 as strong evidence that the linear convergence rate factor of
Proposition B.3 is tight in its dependence on N , and that a dimension-less factor µ cannot be expected
in general.

Conclusion

In this paper, we solved an open problem in the algorithmic theory for sparse recovery. In particular,
we established a new variant of the IRLS algorithm for Basis Pursuit or `1-minimization for which we
show a global linear convergence rate under a suitable and sharp assumption, namely, the null-space
property. Moreover, we have corroborated our theory with numerical experiments that, first, discussed
the difference between the local and global convergence phase and, second, that elucidated the
optimality of the dimension dependence of convergence rate given by our main theorem.

We think that the results in this paper give rise to a number of interesting research directions for
follow-up work. While the numerical experiments in Section 4 substantiate the hypothesis that the
dependence of the convergence rate on N and ρ1 in our theory is not an artifact of our proof, we
also observed in this section that for a generic initialization no such dependence can be observed.
In view of this, it is interesting to investigate whether a dimension-independent global convergence
rate is possible, for example via a smoothed analysis [22, 61]. Furthermore, there are currently
no convergence rates available for IRLS optimizing a nuclear norm-type objective, which is of
great interest for low-rank matrix recovery [31, 43, 51], and we expect that our analysis may be
generalizable to this setting as well.

Finally, it was observed that sparse vectors can be recovered from even fewer measurements via
the optimization of a non-convex `p-quasinorm (with 0 < p < 1), and that IRLS exhibits excellent
performance in this case [16, 23]. While a thorough understanding has remained elusive so far for
this non-convex case, we consider our results as a first step towards a global convergence theory for
IRLS for the optimization of `p-quasinorms or similar non-convex surrogate objectives.
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