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ABSTRACT

Adversarial training, which is to enhance robustness against adversarial attacks,
has received much attention because it is easy to generate human-imperceptible
perturbations of data to deceive a given deep neural network. In this paper, we
propose a new adversarial training algorithm that is theoretically well motivated
and empirically superior to other existing algorithms. A novel feature of the
proposed algorithm is to apply more regularization to data vulnerable to adversarial
attacks than other existing regularization algorithms do. Theoretically, we show
that our algorithm can be understood as an algorithm of minimizing a newly derived
upper bound of the robust risk. Numerical experiments illustrate that our proposed
algorithm improves the generalization (accuracy on examples) and robustness
(accuracy on adversarial attacks) simultaneously to achieve the state-of-the-art
performance.

1 INTRODUCTION

It is easy to generate human-imperceptible perturbations that put prediction of a deep neural network
(DNN) out. Such perturbed samples are called adversarial examples (Szegedy et al., 2014) and
algorithms for generating adversarial examples are called adversarial attacks. It is well known that
adversarial attacks can greatly reduce the accuracy of DNNs, for example from about 96% accuracy
on clean data to almost zero accuracy on adversarial examples (Madry et al., 2018). This vulnerability
of DNNs can cause serious security problems when DNNs are applied to security critical applications
(Kurakin et al., 2017; Jiang et al., 2019) such as medicine (Ma et al., 2020; Finlayson et al., 2019) and
autonomous driving (Kurakin et al., 2017; Deng et al., 2020; Morgulis et al., 2019; Li et al., 2020).

Adversarial training, which is to enhance robustness against adversarial attacks, has received much
attention. Various adversarial training algorithms can be categorized into two types. The first one is
to learn prediction models by minimizing the robust risk - the risk for adversarial examples. PGD-AT
(Madry et al., 2018) is the first of its kinds and various modifications including Zhang et al. (2020);
Ding et al. (2020); Zhang et al. (2021) have been proposed since then.

The second type of adversarial training algorithms is to minimize the regularized risk which is the
sum of the empirical risk for clean examples and a regularized term related to adversarial robustness.
TRADES (Zhang et al., 2019) decomposes the robust risk into the sum of the natural and boundary
risks, where the first one is the risk for clean examples and the second one is the remaining part, and
replaces them to their upper bounds to have the regularized risk. HAT (Rade & Moosavi-Dezfolli,
2022) modifies the regularization term of TRADES by adding an additional regularization term based
on helper samples.

The aim of this paper is to develop a new adversarial training algorithm for DNNs, which is theoreti-
cally well motivated and empirically superior to other existing competitors. Our algorithm modifies
the regularization term of TRADES (Zhang et al., 2019) to put more regularization on less robust
samples. This new regularization term is motivated by an upper bound of the boundary risk.

Our proposed regularized term is similar to that used in MART (Wang et al., 2020). The two key
differences are that (1) the objective function of MART consists of the sum of the robust risk and
regularization term while ours consists of the sum of the natural risk and regularization term and
(2) our algorithm regularizes less robust samples more but MART regularizes less accurate samples
more. Note that our algorithm is theoretically well motivated from an upper bound of the robust risk
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but no such theoretical explanation of MART is available. In numerical studies, we demonstrate that
our algorithm outperforms MART as well as TRADES with large margins.

1.1 OUR CONTRIBUTIONS

We propose a new adversarial training algorithm. Novel features of our algorithm compared to other
existing adversarial training algorithms are that it is theoretically well motivated and empirically
superior. Our contributions can be summarized as follows:

• We derive an upper bound of the robust risk for multi-classification problems.
• As a surrogate version of this upper bound, we propose a new regularized risk.
• We develop an adversarial training algorithm that learns a robust prediction model by

minimizing the proposed regularized risk.
• By analyzing benchmark data sets, we show that our proposed algorithm is superior to other

competitors in view of the generalization (accuracy on clean examples) and robustness (ac-
curacy on adversarial examples) simultaneously to achieve the state-of-the-art performance.

• We illustrate that our algorithm is helpful to improve the fairness of the prediction model in
the sense that the error rates of each class become more similar compared to TRADES.

2 PRELIMINARIES

2.1 ROBUST POPULATION RISK

Let X ⊂ Rd be the input space, Y = {1, · · · , C} be the set of output labels and fθ : X → RC

be the score function parameterized by the neural network parameters θ (the vector of weights and
biases) such that pθ(·|x) = softmax(fθ(x)) is the vector of the conditional class probabilities.
Let Fθ(x) = argmax

c
[fθ(x)]c, Bp(x, ε) = {x′ ∈ X : ∥x− x′∥p ≤ ε} and 1(·) be the indicator

function. Let capital letters X,Y denote random variables or vectors and small letters x, y denote
their realizations.

The robust population risk used in the adversarial training is defined as

Rrob(θ) := E(X,Y) max
X′∈Bp(X,ε)

1 {Fθ(X
′) ̸= Y} , (1)

where X and Y are a random vector in X and a random variable in Y , respectively. Most adversarial
training algorithms learn θ by minimizing an empirical version of the above robust population risk. In
turn, most empirical versions of (1) require to generate an adversarial example which is a surrogate
version of

xadv := argmax
x′∈Bp(x,ε)

1 {Fθ(x
′) ̸= y} .

Any method of generating an adversarial example is called an adversarial attack.

2.2 ALGORITHMS FOR GENERATING ADVERSARIAL EXAMPLES

Existing adversarial attacks can be categorized into either the white-box attack (Goodfellow et al.,
2015; Madry et al., 2018; Carlini & Wagner, 2017; Croce & Hein, 2020a) or the black-box attack
(Papernot et al., 2016; 2017; Chen et al., 2017; Ilyas et al., 2018; Papernot et al., 2018). For the white-
box attack, the model structure and parameters are known to adversaries who use this information for
generating adversarial examples, while outputs for given inputs are only available to adversaries for
the black-box attack.

The most popular method for the white-box attack is PGD (Projected Gradient Descent) (Madry
et al., 2018). Let η(x′|θ,x, y) be a surrogate loss of 1 {Fθ(x

′) ̸= y} for given θ,x, y. PGD finds
the adversarial example by applying the gradient ascent algorithm to η to update x′

η and projecting it
to Bp(x, ε). That is, the update rule of PGD is

x(t+1) = ΠBp(x,ε)

(
x(t) + ν sgn

(
∇x(t)η(x(t)|θ,x, y)

))
, (2)
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where ν > 0 is the step size, ΠBp(x,ε)(·) is the projection operator to Bp(x, ε) and x(0) = x. We
define xpgd as xpgd := lim

t→∞
x(t). For the surrogate loss η, the cross entropy (Madry et al., 2018) or

the KL divergence (Zhang et al., 2019) is used.

For the black-box attack, an adversary generates a dataset {xi, ỹi}ni=1 where ỹi is an output of a
given input xi. Then, the adversary trains a substitute prediction model based on this data set, and
generates adversarial examples from the substitute prediction model by PGD (Papernot et al., 2017).

2.3 REVIEW OF ADVERSARIAL TRAINING ALGORITHMS

We review some of the adversarial training algorithms which, we think, are related to our proposed
algorithm. Typically, adversarial training algorithms consist of the maximization and minimization
steps. In the maximization step, we generate adversarial examples for given θ, and in the minimization
step, we fix the adversarial examples and update θ. In the followings, we denote x̂pgd

i as the adversarial
example corresponding to (xi, yi) generated by PGD.

2.3.1 ALGORITHMS MINIMIZING THE ROBUST RISK DIRECTLY

PGD-AT Madry et al. (2018) proposes PGD-AT which updates θ by minimizing

n∑
i=1

ℓce(fθ(x̂
pgd
i ), yi),

where ℓce is the cross-entropy loss.

GAIR-AT Geometry Aware Instance Reweighted Adversarial Training (GAIR-AT) (Zhang et al.,
2021) is a modification of PGD-AT, where the weighted robust risk is minimized and more weights
are given to samples closer to the decision boundary. To be more specific, the weighted empirical risk
of GAIR-AT is given as

n∑
i=1

wθ(xi, yi)ℓce(fθ(x̂
pgd
i ), yi),

where κθ(xi, yi) = min
(
min({t : Fθ(x

(t)
i ) ̸= yi}), T

)
for a prespecified maximum iteration T

and wθ(xi, yi) = (1 + tanh(5(1− 2κθ(xi, yi)/T )))/2.

There are other similar modifications of PGA-AT including Max-Margin Adversarial (MMA) Training
(Ding et al., 2020) and Friendly Adversarial Training (FAT) (Zhang et al., 2020).

2.3.2 ALGORITHMS MINIMIZING A REGULARIZED EMPIRICAL RISK

Robust risk, natural risk and boundary risk are defined by

Rrob(θ) = E(X,Y )1 {∃X′ ∈ Bp(X, ε) : Fθ(X
′) ̸= Y } ,

Rnat(θ) = E(X,Y )1 {Fθ(X) ̸= Y } ,
Rbdy(θ) = E(X,Y )1 {∃X′ ∈ Bp(X, ε) : Fθ(X) ̸= Fθ(X

′), Fθ(X) = Y } .

Zhang et al. (2019) shows
Rrob(θ) = Rnat(θ) +Rbdy(θ).

By treatingRbdy(θ) as the regularization term, various regularized risks for adversarial training have
been proposed.

TRADES Zhang et al. (2019) proposes the following regularized empirical risk which is a surrogate
version of the upper bound of the robust risk:

n∑
i=1

{
ℓce(fθ(xi), yi) + λ ·KL(pθ(·|xi)∥pθ(·|x̂pgd

i ))
}
,
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HAT Helper based training (Rade & Moosavi-Dezfolli, 2022) is a variation of TRADES where an
additional regularization term based on helper examples is added to the regularized risk. The role of
helper examples is to restrain the decision boundary from having excessive margins. HAT minimizes
the following regularized empirical risk:

n∑
i=1

[
ℓce (fθ (xi) , yi) + λ ·KL

(
pθ (·|xi) ∥pθ(·|x̂pgd

i )
)
+ γℓce

(
fθ(x

helper
i ), Fθpre(x̂

pgd
i )

)]
,

where θpre is the parameter of a pre-trained model only with clean examples, xhelper
i = xi +2(x̂pgd

i −
xi).

MART Misclassification Aware adveRsarial Training (MART) (Wang et al., 2020) minimizes
n∑

i=1

{
ℓmargin(fθ(x̂

pgd
i ), yi) + λ ·KL(pθ(·|xi)∥pθ(·|x̂pgd

i ))(1− pθ(yi|xi))
}
, (3)

where ℓmargin(fθ(x̂
pgd
i ), yi) = − log pθ(yi|x̂pgd

i )− log(1−max
k ̸=yi

pθ(k|x̂pgd
i )). This objective function

can be regarded as the regularized robust risk and thus MART can be considered as a hybrid algorithm
of PGD-AT and TRADES.

3 ANTI-ROBUST WEIGHTED REGULARIZATION (AROW)

In this section, we develop a new adversarial training algorithm called Anti-Robust Weighted
Regularization (ARoW), which is an algorithm minimizing a regularized risk. We propose a new
regularized term which applies more regularization to data vulnerable to adversarial attacks than
other existing algorithms such as TRADES and HAT do. Our new regularized term is motivated by
the upper bound of the robust risk derived in the following section.

3.1 UPPER BOUND OF THE ROBUST RISK

In this subsection, we provide an upper bound of the robust risk for multi-classification problem
which is stated in the following theorem. The proof is deferred to Appendix A.
Theorem 1. For a given score function fθ, let z(·) be an any measurable mapping from X to X
satisfying

z(x) ∈ argmax
x′∈Bp(x,ε)

1 (Fθ(x) ̸= Fθ(x
′)) .

for every x ∈ X . Then, we have

Rrob(θ) ≤ E(X,Y )1(Y ̸= Fθ(X)) + E(X,Y )1(Fθ(X) ̸= Fθ(z(X)))1 {pθ(Y |z(X)) < 1/2} (4)

The upper bound (4) consists of the two terms : the first term is the natural risk itself and the second
term is an upper bound of the boundary risk. This upper bound is motivated by the upper bound
derived in TRADES (Zhang et al., 2019). For binary classification problems, Zhang et al. (2019)
shows that

Rrob(θ) ≤ E(X,Y )ϕ(Y fθ(X)) + EXϕ(fθ(X)fθ(z(X))), (5)
where

z(x) ∈ argmax
x′∈Bp(x,ε)

ϕ (fθ(x)fθ(x
′))

and ϕ(·) is an upper bound of 1(· < 0). Our upper bound (4) is a modification of the upper bound (5)
for multiclass problems where ϕ(·) and fθ in (5) are replaced by 1(· < 0) and Fθ, respectively. A
key difference, however, between (4) and (5) is the term 1 {pθ(Y |z(X)) < 1/2} at the last part of
(4) that is not in (5).

It is interesting to see that the upper bound in Theorem 1 becomes equal to the robust risk for binary
classification problems. That is, the upper bound (4) is an another formulation of the robust risk.
However, this rephrased formula of the robust risk is useful since it provides a new learning algorithm
when the indicator functions are replaced by their surrogates as we do.
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Algorithm 1 ARoW Algorithm

Input : network fθ, training dataset D =
{
(xi, yi) ∈ Rd+1 : i = 1, · · · , n

}
, learning rate η,

hyperparameters (λ, α) of (6), number of epochs T , number of batch B, batch size K
Output : adversarially robust network fθ

1: for t = 1, · · · , T do
2: for b = 1, · · · , B do
3: x̂pgd

t,b,k ← argmax
x′∈Bp(xt,b,k,ε)

KL(pθ(·|xt,b,k)∥pθ(·|x′)) ; xt,b,k ∈ Rd, k = 1, . . . ,K

4: θ ← θ − η 1
K∇θRARoW(θ; {(xt,b,k, yt,b,k)}Kk=1 , λ, α), whereRARoW is (6).

5: end for
6: end for
7: Return fθ

3.2 ALGORITHM

By replacing the indicator functions in Theorem 1 by their smooth proxies, we propose a new
regularized risk and develop the corresponding adversarial learning algorithm called the Anti-Robust
Weighted Regularization (ARoW) algorithm. The four indicator functions in (4) are replaced by

• the adversarial example z(x) is replaced by x̂pgd obtained by the PGD algorithm with the
KL divergence;

• the term 1(Y ̸= Fθ(X)) is replaced by the label smooth cross-entropy (Müller et al., 2019)
ℓLS(fθ(x), y) = −yLS

α
⊤
logpθ(·|x) for a given α > 0, where yLS

α = (1 − α)uy + α
C1C ,

uy ∈ RC is the one-hot vector whose the y-th entry is 1 and 1C ∈ RC is the vector whose
entries are all 1;

• the term 1(Fθ(X) ̸= Fθ(z(X))) is replaced by λ ·KL(pθ(·|X)||pθ(·|X̂pgd)) for λ > 0;

• the term 1 {pθ(Y |z(X)) < 1/2} is replaced by its convex upper bound 2(1− pθ(Y |X̂pgd));

to have the following regularized risk for ARoW, which is a smooth surrogate of the upper bound (4),

RARoW(θ; {(xi, yi)}ni=1 , λ)

:=

n∑
i=1

{
ℓLS(fθ(xi), yi) + 2λ ·KL(pθ(·|xi)||pθ(·|x̂pgd

i )) · (1− pθ(yi|x̂pgd
i ))

}
. (6)

Here, we introduce the regularization parameter λ > 0 to control the robustness of a trained prediction
model to adversarial attacks. That is, the regularized risk (6) can be considered as a smooth surrogate
of the regularized robust risk ofRnat(θ) + λRbdy(θ).

We use the label smoothing cross-entropy as a surrogate for 1(Y ̸= Fθ(X)) instead of the standard
cross-entropy to estimate the conditional class probabilities pθ(·|x) more accurately (Müller et al.,
2019). The accurate estimation of pθ(·|x) is important since it is used in the regularization term of
ARoW. It is well known that DNNs trained by minimizing the cross-entropy are poorly calibrated
(Guo et al., 2017), and so we use the label smoothing cross-entropy technique. We set α = 0.2 in our
numerical studies for simplicity even if it can be tuned optimally.

The ARoW algorithm, which learns θ by minimizingRARoW(θ; {(xi, yi)}ni=1 , λ), is summarized in
Algorithm 1.

Comparison to TRADES A key difference of the regularized risks of ARoW and TRADES is that
TRADES does not have the term (1− pθ(yi|x̂pgd

i )) at the last part of (6). That is, ARoW puts more
regularization to samples which are vulnerable to adversarial attacks (i.e. pθ(yi|x̂pgd

i ) is small). Note
that this term is motivated by the tighter upper bound of the robust risk (4) and thus is expected to
lead better results. Numerical studies confirm that it really works.

Comparison to MART Although the objective function in MART (3) has no theoretical basis,
it is similar with the objective function of ARoW. But, there are two main differences. First, the
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Figure 1: Comparison of ARoW, TRADES and HAT with varying λ. The x-axis and y-axis are
the standard and robust accuracies, respectively. The robust accuracies in the left panel are against
PGD20 while the robust accuracies in the right panel are against AutoAttack. We exclude the results
of MART from the figures because its rboust and standard accuracies are too low.

supervised loss term of ARoW is the label smoothing loss with clean examples, whereas MART
uses the margin cross entropy loss with adversarial examples. Second, regularization term in MART
is proportional to (1 − pθ(y|x)) while that in ARoW is proportional to (1 − pθ(y|x̂pgd)). In the
numerical studies, we observe that ARoW outperforms MART with large margins. These would be
partly because ARoW is theoretically well motivated.

4 EXPERIMENTS

In this section, we investigate the ARoW algorithm in view of robustness and generalization by
analyzing the three benchmark data sets - CIFAR10 (Krizhevsky, 2009) , F-MINST (Xiao et al., 2017)
and SVHN dataset (Netzer et al., 2011). In particular, we show that ARoW is superior to existing
algorithms including TRADES (Zhang et al., 2019), HAT (Rade & Moosavi-Dezfolli, 2022) and
MART (Wang et al., 2020) as well as PGD-AT (Madry et al., 2018) and GAIR-AT (Zhang et al., 2021)
to achieve state-of-art performances. WideResNet-34-10 (WRN-34-10) (Zagoruyko & Komodakis,
2016) and ResNet-18 (He et al., 2016) are used for CIFAR10 while ResNet-18 (He et al., 2016) is
used for F-MNIST and SVHN. Experimental details are presented in Appendix B.

4.1 COMPARISON OF AROW TO TRADES, HAT AND MART

We compare ARoW to the the regularization algorithms TRADES (Zhang et al., 2019), HAT (Rade
& Moosavi-Dezfolli, 2022) and MART (Wang et al., 2020) explained in Section 2.3.2. Table 1 shows
that ARoW outperforms the other regularization algorithms for various data sets and architectures in
terms of both the standard and robust accuracies. The selected values of the hyper-parameters for the
other algorithms are listed in Appendix B.2.

To investigate whether ARoW dominates its competitors uniformly with respect to the regularization
parameter λ, we compare the trade-off between the standard and robust accuracies of ARoW and
other regularization algorithms when λ varies. Figure 1 draws the plots of the standard accuracies
in the x-axis and the robust accuracies in the y-axis obtained by the corresponding algorithms with
various values of λ. For this experiment, we use CIFAR10 and WideResNet-34-10 (WRN-34-10)
architecture.

The trade-off between the standard and robust accuracies is well observed (i.e. a larger regularization
parameter λ yields lower standard accuracy but higher robust accuracy). Moreover, we can clearly
see that ARoW uniformly dominates TRADES and HAT (and MART) regardless of the choice of the
regularization parameter and the methods for adversarial attack. Additional results for the trade-off
are provided in Appendix F.1.

4.2 COMPARISON OF AROW TO PGD-AT AND GAIR-AT

We compare ARoW with PGD-AT (Madry et al., 2018) and GAIR-AT (Zhang et al., 2021) which are
the algorithms minimizing the robust risk directly. Table 2 shows that ARoW outperforms PGD-AT
and GAIR-AT in terms of the standard accuracy and the robust accuracy against to AutoAttack (Croce
& Hein, 2020b). GAIR-AT is, however, better for PGD20 attack than ARoW. This would be mainly
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Table 1: Comparison of ARoW, TRADES, HAT and MART. We conduct the experiment three
times with different seeds and present the averages of the accuracies with the standard errors in the
brackets.

Method CIFAR10 (WRN-34-10) CIFAR10 (ResNet-18)
Stand PGD20 AA Stand PGD20 AA

TRADES 85.86(0.09) 56.79(0.08) 54.31(0.08) 82.41(0.07) 52.68(0.22) 49.63(0.25)
HAT 86.98(0.10) 56.81(0.17) 54.63(0.07) 83.05(0.03) 52.91(0.08) 49.60(0.02)

MART 84.69(0.18) 55.67(0.13) 50.95(0.09) 74.87(0.95) 53.68(0.30) 49.61(0.24)
ARoW 87.65(0.02) 58.38(0.09) 55.15(0.14) 82.53(0.13) 55.08(0.16) 51.33(0.18)

Method SVHN (ResNet-18) FMNIST (ResNet-18)
Stand PGD20 AA Stand PGD20 AA

TRADES 91.62(0.49) 58.75(0.19) 51.06(0.93) 91.92(0.04) 88.33(0.03) 88.19(0.04)
HAT 91.72(0.12) 58.66(0.06) 51.67(0.12) 92.10(0.11) 88.09(0.16) 87.93(0.13)

MART 91.64(0.41) 60.57(0.27) 49.95(0.42) 92.14(0.05) 88.10(0.10) 87.88(0.14)
ARoW 92.79(0.24) 61.14(0.74) 51.93(0.33) 92.26(0.05) 88.73(0.03) 88.54(0.04)

because of the gradient masking (Papernot et al., 2018; 2017) - PGD does not find an adversarial
example well. See Appendix C for details about gradient masking

Table 2: Comparison of ARoW to PGD-AT and GAIR-AT. We conduct the experiment three times
with different seeds and present the averages of the accuracies with the standard errors in the brackets.

Method CIFAR10 (WRN-34-10) CIFAR10 (ResNet-18)
Stand PGD20 AA Stand PGD20 AA

PGD-AT 87.02(0.20) 57.50(0.12) 53.98(0.14) 82.42(0.05) 53.48(0.11) 49.30(0.07)
GAIR-AT 85.44(0.10) 67.27(0.07) 46.41(0.07) 81.09(0.12) 64.89(0.04) 41.35(0.16)

ARoW 87.65(0.02) 58.38(0.09) 55.15(0.14) 82.53(0.13) 55.08(0.16) 51.33(0.18)

Method SVHN (ResNet-18) FMNIST (ResNet-18)
Stand PGD20 AA Stand PGD20 AA

PGD-AT 92.75(0.04) 59.05(0.46) 47.66(0.52) 92.25(0.06) 87.43(0.03) 87.19(0.03)
GAIR-AT 91.95(0.40) 70.29(0.18) 38.26(0.48) 90.96(0.10) 87.25(0.01) 85.00(0.12)

ARoW 92.79(0.24) 61.14(0.74) 51.93(0.33) 92.26(0.05) 88.73(0.03) 88.54(0.04)

4.3 ANALYSIS WITH EXTRA DATA

For improving performance on CIFAR10, Carmon et al. (2019) and Rebuffi et al. (2021) use extra
unlabeled data sets with TRADES. Carmon et al. (2019) uses an additional subset of 500K extracted
from 80 Million Tiny Images (80M-TI) and Rebuffi et al. (2021) uses a data set of 1M synthetic
samples generated by a denoising diffusion probabilistic model (DDPM) (Ho et al., 2020) along with
the SiLU activation function and Exponential Moving Average (EMA). Further, Rade & Moosavi-
Dezfolli (2022) shows that HAT achieves the SOTA performance for these extra data.

Table 3 compares ARoW with the exiting algorithms for extra data, which shows that ARoW achieves
the state-of-the-art performance when extra data are available even though the margins compared to
HAT are not significant. Note that ARoW has advantages other than the high robust accuracies. For
example, ARoW is easy to implement compared to HAT since HAT requires a pre-trained model and
it needs additional memory. Moreover, as we will see in Section 4.5, ARoW improves the fairness
compared to TRADE while HAT does not.

4.4 ABLATION STUDIES

We study the following three issues - (i) the effect of label smoothing to ARoW, (ii) the role of
the new regularization term in ARoW to improve robustness and (iii) modifications of ARoW by
applying tools which improve existing adversarial training algorithms.

4.4.1 EFFECT OF LABEL SMOOTHING

Table 4 indicates that label smoothing is helpful not only for ARoW but also for TRADES. This
would be partly because the regularization terms in ARoW and TRADES depend on the conditional

7



Under review as a conference paper at ICLR 2023

Table 3: Comparison of ARoW to other adversarial algorithms with extra data on CIFAR10.

Model Extra data Method Stand PGD20 AutoAttack

WRN-28-10 80M-TI(500K)

Carmon et al. (2019) 89.69 62.95 59.58
Rebuffi et al. (2021) 90.47 63.06 60.57

HAT 91.50 63.42 60.96
ARoW 91.57 64.64 60.91

ResNet-18

80M-TI(500K)

Carmon et al. (2019) 87.07 56.86 53.16
Rebuffi et al. (2021) 87.67 59.20 56.24

HAT 88.98 59.29 56.40
ARoW 89.04 60.38 56.54

DDPM(1M)

Carmon et al. (2019) 82.61 56.16 52.82
Rebuffi et al. (2021) 83.46 56.89 54.22

HAT 86.09 58.61 55.44
ARoW 86.72 59.50 55.57

class probabilities and it is well known that label smoothing is helpful for the calibration of the
conditional class probabilities (Pereyra et al., 2017).

Moreover, the results in Table 4 imply that label smoothing is not a main reason for ARoW to
outperform TRADES. Even without label smoothing, ARoW is still superior to TRADES (even with
the label smoothing). Appendix F.2 presents the results of an additional experiment to assess the
effect of label smoothing to the performance.

Table 4: Comparison of TRADES and ARoW with/without label smoothing. With WRN-28-10
architecture and CIFAR10 dataset, we use λ = 6 for TRADES while use λ = 3 for ARoW.

Method Standard PGD20 AutoAttack
TRADES w/o-LS 85.86(0.09) 56.79(0.08) 54.31(0.08)
TRADES w/-LS 86.33(0.08) 57.45(0.02) 54.66(0.08)
ARoW w/o-LS 86.83(0.16) 58.34(0.09) 55.01(0.10)
ARoW w/-LS 87.65(0.02) 58.38(0.09) 55.15(0.14)

4.4.2 ROLE OF THE NEW REGULARIZATION TERM IN AROW

The regularization term of ARoW puts more regularization to less robust samples, and thus we expect
that ARoW improves the robustness of less robust samples much. To confirm this conjecture, we do a
small experiment.

First, we divide the test data into four groups - least robust, less robust, robust and highly robust
according to the values of pθPGD(yi|x̂

pgd
i ) (< 0.3, 0.3 ∼ 0.5, 0.5 ∼ 0.7 and > 0.7), where θPGD is the

parameter learned by PGD-AT (Madry et al., 2018)1.

Then, for each group, we check how many samples become robust for ARoW and TRADES,
respectively, whose results are presented in Table 5. Note that ARoW improves the robustness of
least robust samples most compared with TRADES. We believe that this improvement is due to the
regularization term in ARoW that enforces more regularization on less robust samples.

Table 5: Role of the new regularization term in ARoW. # RobTRADES and # RobARoW represent
the number of samples which are only robust to TRADES but not to ARoW, or vice versa. Diff. and
Rate of Impro. denote (# RobARoW - # RobTRADES) and Diff. / # RobTRADES)

Sample’s Robustness # RobTRADES # RobARoW Diff. Rate of Impro. (%)
Least Robust 317 357 40 12.62
Less Robust 945 1008 63 6.67

Robust 969 1027 58 5.99
Highly Robust 3524 3529 5 0.142

1We use PGD-AT instead of a standard non-robust training algorithm since all samples become least robust
for a non-robust prediction model.
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4.4.3 MODIFICATIONS OF AROW

There are many useful tools which improve existing adversarial training algorithms. Examples are
Adversarial Weight Perturbation (AWP) (Wu et al., 2020) and Friendly Adversarial Training (FAT)
(Zhang et al., 2020). AWP is a tool to find a flat minimum of the objective function and FAT uses
early-stopped PGD when generating adversarial examples in the training phase. Details about AWP
and FAT are given in Appendix F.4.

We investigate how ARoW performs when it is modified by such a tool. We consider the two
modifications of ARoW - ARoW-AWP and ARoW-FAT, where ARoW-AWP searches a flat minimum
of the ARoW objective function and ARoW-FAT uses early-stopped PGD in the training phase of
ARoW.

Table 6 compares ARoW-AWP and ARoW-FAT to TRDAES-AWP and TRADES-FAT. Both of AWP
and FAT are helpful for ARoW and TRADES but ARoW still outperforms TRADES with large
margins even after modified by AWP or FAT.

Table 6: Modifications of TRADES and ARoW. We use CIFAR10 dataset and ResNet-18 architec-
ture. More details of hyerparameters are provided in Appendix F.4.

Method AWP FAT
Standard PGD20 AutoAttack Standard PGD20 AutoAttack

TRADES 82.10(0.09) 53.56(0.18) 49.56(0.23) 82.96(0.08) 52.76(0.22) 49.83(0.28)
ARoW 84.98(0.11) 55.55(0.15) 50.64(0.18) 86.21(0.06) 53.37(0.20) 50.07(0.17)

4.5 IMPROVED FAIRNESS

Xu et al. (2021) reports that TRADES (Zhang et al., 2019) increases the variation of the per-class
accuracies (accuracy in each class) which is not desirable in view of fairness. In turn, Xu et al.
(2021) proposes the Fair-Robust-Learning (FRL) algorithm to alleviate this problem. Even if fairness
becomes improved, the standard and robust accuracies of FRL are worse than TRADES.

In contrast, Table 7 shows that ARoW improves the fairness as well as the standard and robust
accuracies compared to TRADES. This desirable property of ARoW can be partly understood as
follows. The main idea of ARoW is to impose more robust regularization to less robust samples. In
turn, samples in less accurate classes tend to be more vulnerable to adversarial attacks. Thus, ARoW
improves the robustness of samples in less accurate classes which results in improved robustness
as well as improved generalization for such less accurate classes. The class-wise accuracies are
presented in Appendix G.

Table 7: Class-wise accuracy disparity for CIFAR10. We report the accuracy (ACC), the worst-class
accuracy (WC-Acc) and the standard deviation of class-wise accuracies (SD) for each method.

Method Standard PGD10

Acc WC-Acc SD Acc WC-Acc SD
TRADES 85.69 67.10 9.27 57.38 27.10 16.97

HAT 86.74 65.40 11.12 57.92 24.20 18.26
ARoW 87.58 74.51 7.11 59.32 31.05 15.67

5 CONCLUSION AND FUTURE WORKS

In this paper, we derived an upper bound of the robust risk and developed a new algorithm for
adversarial training called ARoW which minimizes a surrogate version of the derived upper bound.
A novel feature of ARoW is to impose more regularization on less robust samples than TRADES.
The results of numerical experiments shows that ARoW improves the standard and robust accuracies
simultaneously to achieve state-of-the-art performances. In addition, ARoW enhances the fairness of
the prediction model without hampering the accuracies.

When we developed a computable surrogate of the upper bound of the robust risk in Theorem 1, we
replaced 1(Fθ(X) ̸= Fθ(z(X)))) by KL(pθ(·|X)||pθ(·|X̂pgd)). The KL divergence, however, is
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not an upper bound of the 0-1 loss and thus our surrogate is not an upper bound of the robust risk.
We employed the KL divergence surrogate to make the objective function of ARoW be similar to that
of TRADES. It would be worth pursuing to devise an alternative surrogate for the 0-1 loss to reduce
the gap between the theory and algorithm.

We have seen in Section 4.5 that ARoW improves fairness as well as accuracies. The advantage of
ARoW in view of fairness is an unexpected by-product, and it would be interesting to develop a more
principled way of enhancing the fairness further without hampering the accuracy.
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Appendices

A PROOF OF THEOREM 1

In this section, we prove Theorem 1. The following lemma provides the key inequality for the proof.
Lemma 2. For a given score function fθ, let z(·) be an any measurable mapping from X to X
satisfying

z(x) ∈ argmax
x′∈Bp(x,ε)

1 (Fθ(x) ̸= Fθ(x
′))

for every x ∈ X . Then, we have

1 {∃x′ ∈ Bp(x, ε) : Fθ(x) ̸= Fθ(x
′), Fθ(x) = Y }

≤ 1 {Fθ(x) ̸= Fθ(z(x)), Y ̸= Fθ(z(x))}
(A.1)

Proof. The inequality holds obviously if 1 {Fθ(x) ̸= Fθ(z(x)), Y ̸= Fθ(z(x))} = 1. Hence, it
suffices to show that 1 {∃x′ ∈ Bp(x, ε) : Fθ(x) ̸= Fθ(x

′), Fθ(x) = Y } = 0 when either Fθ(x) =
Fθ(z(x)) or Y = Fθ(z(x)).

Suppose Fθ(x) = Fθ(z(x)). It trivially holds that 1 (Fθ(x) ̸= Fθ(z(x))) ≤ 1 (Fθ(x) ̸= Fθ(x
′))

for every x′ ∈ X since 1 (Fθ(x) ̸= Fθ(z(x))) = 0 and the equality holds if and only
if Fθ(z(x)) = Fθ(x

′). By the definition of z(x), the left side of (A.1) is 0 since
1 {∃x′ ∈ Bp(x, ε) : Fθ(x) ̸= Fθ(x

′)} = 0, and hence the inequality holds.

Suppose Y = Fθ(z(x)). If Fθ(x) = Y and there exists x′ in Bp(x, ε) such that Fθ(x
′) ̸= Fθ(x),

then we have Fθ(x
′) ̸= Y = Fθ(x) = Fθ(z(x)). In turn, it implies 1 (Fθ(x) ̸= Fθ(z(x))) <

1 (Fθ(x) ̸= Fθ(x
′)) , which is a contradiction to the definition of z(x). Hence, the left side of (A.1)

should be 0, and we complete the proof of the inequality.

Theorem 1. For a given score function fθ, let z(·) be an any measurable mapping from X to X
satisfying

z(x) ∈ argmax
x′∈Bp(x,ε)

1 (Fθ(x) ̸= Fθ(x
′)) .

for every x ∈ X . Then, we have

Rrob(θ) ≤ E(X,Y )1(Y ̸= Fθ(X)) + E(X,Y )1(Fθ(X) ̸= Fθ(z(X)))1 {pθ(Y |z(X)) < 1/2} (4)

Proof. Note that Rrob(θ) = Rnat(θ) + Rbdy(θ) where Rnat(θ) = E(X,Y )1 {Fθ(X) ̸= Y } and
Rbdy(θ) = E(X,Y )1 {∃X′ ∈ Bp(X, ε) : Fθ(X) ̸= Fθ(X

′), Fθ(X) = Y }.
Since

Rbdy(θ) = E(X,Y )1 {∃X′ ∈ Bp(X, ε) : Fθ(X) ̸= Fθ(X
′), Fθ(X) = Y }

≤ E(X,Y )1 {Fθ(X) ̸= Fθ(z(X)), Y ̸= Fθ(z(X))} (∵ Lemma 2)

= E(X,Y )1 {Fθ(X) ̸= Fθ(z(X))}1 {Y ̸= Fθ(z(X))}
≤ E(X,Y )1 {Fθ(X) ̸= Fθ(z(X))}1 {pθ(Y |z(X)) < 1/2} ,

the inequality (4) holds.
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B DETAILED SETTINGS FOR THE EXPERIMENTS WITH BENCHMARK DATASETS

B.1 EXPERIMENTAL SETUP

For CIFAR10, SVHN and FMNIST datasets, input images are normalized into [0, 1]. Random crop
and random horizontal flip with probability 0.5 are used for CIFAR10 while only random horizontal
flip with probability 0.5 is applied for SVHN. For FMNIST, augmentation is not used.

For generating adversarial examples in the training phase, PGD10 with random initial, p = ∞,
ε = 8/255 and ν = 2/255 is used, where PGDT is the output of the PGD algorithm (2) with T
iterations. For training prediction models, the SGD with momentum 0.9, weight decay 5× 10−4, the
initial learning rate of 0.1 and batch size of 128 is used and the learning rate is reduced by a factor of
10 at 60 and 90 epochs. Stochastic weighting average (SWA) (Izmailov et al., 2018) is employed
after 50-epochs for preventing from robust overfitting (Rice et al., 2020) as Chen et al. (2021) does.

For evaluating the robustness in the test phase, PGD20 and AutoAttack are used for adversarial attacks,
where AutoAttack consists of three white box attacks - APGD and APGD-DLR in Croce & Hein
(2020b) and FAB in Croce & Hein (2020a) and one black box attack - Square Attack (Andriushchenko
et al., 2020). To the best of our knowledge, AutoAttack is the strongest attack. The final model is set
to be the best model against PGD10 on the test data among those obtained until 120 epochs.

B.2 HYPERPARAMETER SETTING

Table 8: Selected hyperparameters. Hyperparameters used in the numerical studies in Section 4.1
and Section 4.2.

Dataset Model Method λ γ Weight Decay α SWA

CIFAR10

WRN-34-10

TRADES 6 - 5e−4 - o
HAT 4 0.25 5e−4 - o

MART 6 - 2e−4 - x
PGD-AT - - 5e−4 - o
GAIR-AT - - 5e−4 - o

ARoW 3 - 5e−4 0.2 o

ResNet-18

TRADES 6 - 5e−4 - o
HAT 4 0.5 5e−4 - o

MART 6 - 5e−4 - x
PGD-AT - - 5e−4 - o
GAIR-AT - - 5e−4 - o

ARoW 5 - 5e−4 0.2 o

SVHN ResNet-18

TRADES 6 - 5e−4 - x
HAT 4 0.5 5e−4 - x

MART 6 - 5e−4 - x
PGD-AT - - 5e−4 - x
GAIR-AT - - 5e−4 - x

ARoW 3 - 5e−4 0.2 x

FMNIST ResNet-18

TRADES 6 - 5e−4 - x
HAT 5 0.15 5e−4 - x

MART 6 - 5e−4 - x
PGD-AT - - 5e−4 - x
GAIR-AT - - 5e−4 - x

ARoW 6 - 5e−4 0.2 x

Table 8 presents the hyperparameters used on our experiments. Most of the hyperparameters are
set to be the ones used in the previous studies. The weight decay parameter is set to be 5e−4 in
most experiments, which is the well-known optimal value. Only for MART (Wang et al., 2020) with
WRN34-10, we use weight decay 2e−4 as Wang et al. (2020) did since MART works poorly with
5e−4. We use stochastic weight averaging (SWA) for CIFAR10 except MART. Note that SWA is not
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used in the experiments of Wang et al. (2020), and we confirm that SWA is not helpful for MART.
Effects of SWA for all methods are provided in Appendix F.3.

C CHECKING THE GRADIENT MASKING

Table 9: Comparison of GAIR-AT and ARoW. We compare the robustness of GAIR-AT (Zhang
et al., 2021) and ARoW against the four attacks used in AutoAttack on CIFAR10. The results are
based on WRN-34-10. We set λ = 3 for ARoW.

Method Standard PGD APGD APGD-DLR FAB SQUARE
GAIR-AT 85.44(0.170) 67.27(0.07) 63.14(0.16) 46.48(0.07) 49.35(0.05) 55.19(0.16)

ARoW 87.65(0.02) 58.38(0.09) 56.07(0.14) 55.17(0.11) 56.69(0.17) 63.50(0.08)

Gradient masking (Papernot et al., 2018; 2017) is the case that the gradient of the loss for a given
non-robust datum is almost zero (i.e. ∇xℓce(fθ(x), y) ≈ 0). In this case, PGD cannot generate an
adversarial example. We can check the ocuurence of gradient masking when a prediction model is
robust to the PGD attack but not robust to attacks such as FAB (Croce & Hein, 2020a), APGD-DLR
(Croce & Hein, 2020b) and SQUARE (Andriushchenko et al., 2020).

In Table 9, the robustness of GAIR-AT becomes worse much for the three attacks in AutoAttack
except APGD (Croce & Hein, 2020b) while the robustness of ARoW remains stable regardless of
the adversarial attacks. Since APGD uses the gradient of the loss, this observation implies that the
gradient masking occurs in GAIR-AT while it does not in ARoW.

Better performance of GAIR-AT for PGD20 attack in Table 2 is not because GAIR-AT is robust to
adversarial attacks but because adversarial examples obtained by PGD are close to clean samples.
This claim is supported by the fact that GAIR-AT performs poorly for AutoAttack while it is still
robust to other PGD-based adversarial attacks. Moreover, gradient masking for GAIR-AT is already
reported by Hitaj et al. (2021).

D DETAILED SETTING FOR THE EXPERIMENTS WITH EXTRA DATA

Table 10: Selected hyperparameters. Hyperparameters used in the numerical studies in Section
4.3. We do not employ cutmix augmentation (Yun et al., 2019) as does in Rade & Moosavi-Dezfolli
(2022).

Model Method λ γ Weight Decay α EMA SiLU

WRN-28-10

Carmon et al. (2019) 6 - 5e−4 - x x
Rebuffi et al. (2021) 6 - 5e−4 - o o

HAT 4 0.25 5e−4 - o o
ARoW 3.5 - 5e−4 0.2 o o

ResNet-18

Carmon et al. (2019) 6 - 5e−4 - x x
Rebuffi et al. (2021) 6 - 5e−4 - o o

HAT 4 0.25 5e−4 - o o
ARoW 3.5 - 5e−4 0.2 o o

In Section 4.3, we presented the results of ARoW on CIFAR10 with extra unlabeled data used in
Carmon et al. (2019) and Rebuffi et al. (2021). In this section, we provide experimental details.

Rebuffi et al. (2021) use the SiLU activation function and exponential model averaging (EMA) based
on TRADES. For HAT (Rade & Moosavi-Dezfolli, 2022) and ARoW, we use the SiLU activation
function and exponential model averaging (EMA) with weight decay factor 0.995 as is done in
Rebuffi et al. (2021). The cosine annealing learning rate scheduler (Loshchilov & Hutter, 2017) is
used with the batch size 512. The final model is set to be the best model against PGD10 on the test
data among those obtained until 500 epochs.
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E ADDITIONAL RESULTS WITH EXTRA DATA

E.1 RESULTS ON CIFAR 100

For additional experiments, we analyzed CIFAR-100 in WRN-34-10 and found that ARoW still
outperforms the other competitors.

Table 11: Comparison of ARoW to competitors on CIFAR100. We compare ARoW to PGD-AT,
TRADES, HAT and MART on CIFAR100. We used WRN-28-10 architecture.

Method Stand PGD AutoAttack
PGD-AT 62.20 32.27 28.66
TRADES 62.23 33.45 29.07

HAT 60.42 33.75 29.42
MART 59.76 33.37 29.68
ARoW 62.38 34.74 30.42

E.2 ADDITIONAL RESULTS WITH EXTRA DATA

In the main manuscript, we use architecture of ResNet18, while Rade & Moosavi-Dezfolli (2022)
use PreAct-ResNet18. For better comparison, we conduct an additional experiment with extra data
where the same architecture - PreaAct-ResNet18 is used. In addition, we set batch size to 1024 which
is used in Rade & Moosavi-Dezfolli (2022). Table 12 shows that ARoW outperforms HAT both on
standard accuracy(+0.29%) and robust accuracy(+0.11%) against autoattack.

Table 12: Performance with extra data (Carmon et al.) on CIFAR10. We brought the values in
the paper as reported in Rade & Moosavi-Dezfolli (2022).

Method Standard AutoAttack
HAT 89.02 57.67

ARoW 89.31 57.78

F ABLATION STUDY

F.1 THE TRADE-OFF DUE TO THE CHOICE OF λ

Table 13 presents the trade-off between the generalization and robustness accuracies of ARoW on
CIFAR10 due to the choice of λ, where ResNet18 is used. The trade-off is obviously observed.

Table 13: Standard and robust accuracies of ARoW on CIFAR10 for varying λ.

λ Standard PGD20 AutoAttack
TRADES(λ = 6) 82.41 52.68 49.63
ARoW(λ = 2.5) 85.30 53.80 49.66
ARoW(λ = 3.0) 84.65 54.23 50.11
ARoW(λ = 3.5) 83.86 54.13 50.15
ARoW(λ = 4.0) 83.73 54.20 50.55
ARoW(λ = 4.5) 82.97 54.69 50.83
ARoW(λ = 5.0) 82.53 55.08 51.33

F.2 THE EFFECT OF LABEL SMOOTHING

Table 14 presents the standard and robust accuracies of ARoW on CIFAR10 for various values of the
smoothing parameter α in the label smoothing where the regularization parameter λ is fixed at 3 and
ResNet18 is used.

16



Under review as a conference paper at ICLR 2023

Table 14: Standard and robust accuracies of ARoW on CIFAR10 for varying α.

α Standard PGD20 AutoAttack
0.05 83.54 53.10 49.88
0.10 84.10 53.29 49.75
0.15 84.36 53.56 49.67
0.20 84.52 53.68 49.96
0.25 84.48 53.53 49.93
0.30 84.55 53.53 49.89
0.35 84.66 54.19 50.03
0.40 84.65 54.23 50.11

F.3 EFFECT OF STOCHASTIC WEIGHT AVERAGING (SWA)

We compare the standard and robust accuracies of the adversarial training algorithms with and without
SWA whose results are summarized in Table 15. SWA improves the accuracies for all the algorithms
except MART. Without SWA, ARoW is competitive to HAT, which is known to be the SOTA method.
However, ARoW dominates HAT when SWA is applied.

Table 15: Effects of SWA on CIFAR10 with WideResNet 34-10. We conduct the experiment three
times with different seeds and present the averages of the accuracies with the standard errors in the
brackets. ‘w/o’ stands for ‘without’.

Method Standard PGD20 AutoAttack

SWA

TRADES 85.86(0.09) 56.79(0.08) 54.31(0.08)
HAT 86.98(0.10) 56.81(0.17) 54.63(0.07)

MART 78.41(0.07) 56.04(0.09) 48.94(0.09)
PGD-AT 87.02(0.20) 57.50(0.12) 53.98(0.14)
ARoW 87.59(0.02) 58.61(0.09) 55.21(0.14)

w/o-SWA

TRADES 85.48(0.12) 56.06(0.08) 53.16(0.17)
HAT 87.53(0.02) 56.41(0.09) 53.38(0.10)

MART 84.69(0.18) 55.67(0.13) 50.95(0.09)
PGD-AT 86.88(0.09) 54.15(0.16) 51.35(0.14)
ARoW 87.60(0.02) 56.47(0.10) 52.95(0.06)

F.4 AWP AND FAT

F.4.1 ADVERSARIAL WEIGHT PERTURBATION (AWP)

For a given objective function of the adversarial training, AWP (Wu et al., 2020) tries to find a flat
minimum in the parameter space. Wu et al. (2020) proposes TRADES-AWP, which minimizes

min
θ

max
∥δl∥≤γ∥θl∥

1

n

n∑
i=1

{
ℓce(fθ+δ(xi), yi) + λ ·KL(pθ+δ(·|xi)∥pθ+δ(·|x̂pgd

i ))
}
,

where θl is the weight vector of l-th layer and γ is the weight perturbation size. Inspired by
TRADES-AWP, we propose ARoW-AWP which minimizes

min
θ

max
∥δl∥≤γ∥θl∥

1

n

n∑
i=1

{
ℓce(fθ+δ(xi), yi)

+ 2λ ·KL(pθ+δ(·|xi)∥pθ+δ(·|x̂pgd
i )) · (1− pθ(yi|x̂pgd

i ))
}
.

In our experiment, we set γ to be 0.005 which is the value used in Wu et al. (2020) and do not use
SWA as did in original paper.
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F.4.2 FRIENDLY ADVERSARIAL TRAINING (FAT)

Zhang et al. (2020) suggests early-stopped PGD which uses a data-adaptive iterations of PGD when
an adversarial example is generated. TRADES-FAT, which uses the early-stopped PGD in TRADES,
minimizes

n∑
i=1

ℓce(fθ(xi), yi) + λ ·KL(pθ(·|xi)∥pθ(·|x̂(ti)
i ))

where ti = min
{
min{t : Fθ(x̂

(t)
i ) ̸= yi}+K,T

}
. Here, T is the maximum iterations of PGD.

We propose an adversarial training algorithm ARoW-FAT by combining ARoW and early-stopped
PGD. ARoW-FAT minimizes the following regularized empirical risk:

n∑
i=1

{
ℓLS
α (fθ(xi), yi) + 2λ ·KL(pθ(·|xi)∥pθ(·|x̂(ti)

i )) · (1− pθ(yi|x̂(ti)
i ))

}
.

In the experiments, we set K to be 2, which is the value used in Zhang et al. (2020).

G IMPROVED FAIRNESS

Table 16: Comparison of per-class robustness and generalization of TRADES and ARoW.
RobTRADES and RobARoW are the robust accuracies against PGD20 of TRADES and ARoW, respec-
tively. StandTRADES and StandARoW are the standard accuracies.

Class RobTRADES RobARoW StandTRADES StandARoW

0(Airplane) 64.8 66.7 88.3 91.6
1(Automobile) 77.5 77.5 93.7 95.3

2(Bird) 38.5 43.1 72.5 80.6
3(Cat) 26.1 30.2 65.9 75.1

4(Deer) 35.6 40.3 83.4 87.5
5(Dog) 48.6 47.2 76.0 79.3
6(Frog) 67.8 63.6 94.2 95.2
7(Horse) 69.7 69.3 91.0 92.7
8(Ship) 62.3 70.1 90.9 94.9

9(Truck) 75.3 76.3 93.5 93.5

In Table 16, we present the per-class robust and standard accuracies of the prediction models trained
by TRADES and ARoW. We can see that ARoW is highly effective for classes difficult to be classified
such as Bird, Cat, Deer and Dog. For such classes, ARoW improves much not only the standard
accuracies but also the robust accuracies. For example, in the class ‘Cat’, which is the most difficult
class (the lowest standard accuarcy for TRADES and ARoW), the robustness and generalization are
improved by 4.1 percentage point (26.1% → 30.2%) and 9.2 percentage point (65.9% → 75.1%)
by ARoW compared with TRADES, respectively. This desirable results would be mainly due to
the new regularization term in ARoW. Usually, difficult classes are less robust to adversarial attacks.
By putting more regularization on less robust classes, ARoW improves the accuracies of less robust
classes more.
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