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Abstract

Sparse graphs built by sparse representation has
been demonstrated to be effective in clustering
high-dimensional data. Albeit the compelling em-
pirical performance, the vanilla sparse graph ig-
nores the geometric information of the data by
performing sparse representation for each datum
separately. In order to obtain a sparse graph aligned
with the local geometric structure of data, we pro-
pose a novel Support Regularized Sparse Graph,
abbreviated as SRSG, for data clustering. SRSG
encourages local smoothness on the neighborhoods
of nearby data points by a well-defined support reg-
ularization term. We propose a fast proximal gradi-
ent descent method to solve the non-convex opti-
mization problem of SRSG with the convergence
matching the Nesterov’s optimal convergence rate
of first-order methods on smooth and convex ob-
jective function with Lipschitz continuous gradi-
ent. Extensive experimental results on various real
data sets demonstrate the superiority of SRSG over
other competing clustering methods.

1 INTRODUCTION

Clustering methods based on pairwise similarity, such as
K-means [Duda et al., 2000], Spectral Clustering [Ng et al.,
2001] and Affinity Propagation [Frey and Dueck, 2007],
segment the data in accordance with certain similarity mea-
sure between data points. The performance of similarity-
based clustering largely depends on the similarity measure.
Among various similarity-based clustering methods, graph-
based methods [Schaeffer, 2007] are promising which often
model data points and data similarity as vertices and edge
weight of the graph respectively. Sparse graphs, where only
a few edges of nonzero weights are associated with each
vertex, are effective in clustering high-dimensional data.

Existing works, such as Sparse Subspace Clustering (SSC)
[Elhamifar and Vidal, 2013] and ℓ1-graph [Yan and Wang,
2009, Cheng et al., 2010], build sparse graphs by sparse
representation of each point. In these sparse graphs, the
vertices represent the data points, an edge is between two
vertices whenever one contributes to the spare representa-
tion of the other, and the weight of the edge is determined
by the associated sparse codes. A theoretical explanation is
provided by SSC, which shows that such sparse representa-
tion recovers the underlying subspaces from which the data
are drawn under certain assumptions on the data distribu-
tion and angles between subspaces. When such assumptions
hold, data belonging to different subspaces are disconnected
in the sparse graph. A sparse similarity matrix is then ob-
tained as the weighted adjacency matrix of the constructed
sparse graph by ℓ1-graph or SSC, and spectral clustering
is performed on the sparse similarity matrix to obtain the
data clusters. In the sequel, we refer to ℓ1-graph and SSC as
vanilla sparse graph. Vanilla sparse graph has been shown to
be robust to noise and capable of producing superior results
for high-dimensional data, compared to spectral clustering
on the similarity produced by the widely used Gaussian
kernel.

Albeit compelling performance for clustering, vanilla sparse
graph is built by performing sparse representation for each
data point independently without considering the geometric
information of the data. High dimensional data always lie
in low dimensional submanifold. The Manifold assumption
[Belkin et al., 2006] has been employed in the sparse graph
literature with an effort in learning a sparse graph aligned
with the local geometric structure of the data. For example,
Laplacian Regularized ℓ1-graph (LR-ℓ1-graph) is proposed
in [Yang et al., 2014a,b] to obtain locally smooth sparse
codes in the sense of ℓ2-distance so as to improve the per-
formance of vanilla sparse graph. The locally smooth sparse
codes in LR-ℓ1-graph is achieved by penalizing large ℓ2-
distance between the sparse codes of two nearby data points.
However, the locally smooth sparse codes in the sense of ℓ2-
distance does not encode the local geometric structure of the
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data into the construction of sparse graph. Intuitively, it is
expected that nearby data points, or vertices, in a data mani-
fold could exhibit locally smooth neighborhood according
to the geometric structure of the data. Namely, nearby points
are expected to have similar neighbors in the constructed
sparse graph.

The support of the sparse code of a data point determines the
neighbors it selects, and the nonzero elements of the sparse
code contribute to the corresponding edge weights. This
indicates that ℓ2-distance is not a suitable distance measure
for sparse codes in our setting, and one can easily imagine
that two sparse codes can have very small ℓ2-distance while
their supports are quite different, meaning that they choose
different neighbors. Motivated by the manifold assumption
on the local sparse graph structure, we propose a novel
Support Regularized Sparse Graph, abbreviated as SRSG,
which encourages smooth local neighborhood in the sparse
graph. The smooth local neighborhood is achieved by a well-
defined support distance between sparse codes of nearby
points in a data manifold.

The contributions of this paper are as follows. First, we pro-
pose Support Regularized Sparse Graph (SRSG) which is
capable of learning a sparse graph with its local neighbor-
hood structure aligned to the local geometric structure of
the data manifold. Secondly, we propose an efficient and
provable optimization algorithm, Fast Proximal Gradient
Descent with Support Projection (FPGD-SP), to solve the
non-convex optimization problem of SRSG. Albeit the non-
smoothness and nonconvexity of the optimization problem
of SRSG, FPGD-SP still achieves Nesterov’s optimal con-
vergence rate of first-order methods on smooth and convex
problems with Lipschitz continuous gradient.

The remaining parts of the paper are organized as follows.
Vanilla sparse graph (ℓ1-graph) and LR-ℓ1-graph are intro-
duced in the next section, and then the detailed formulation
of SRSG is illustrated. We then show the clustering perfor-
mance of SRSG, and conclude the paper. Throughout this
paper, bold letters are used to denote matrices and vectors,
and regular lower letter is used to denote scalars. Bold letter
with superscript indicates the corresponding column of a
matrix, e.g. Zi indicates the i-th column of the matrix Z, and
the bold letter with subscript indicates the corresponding
element of a matrix or vector. σmax(·) and σmin(·) indicate
the maximum and minimum singular value of a matrix. ∥·∥F
and ∥·∥p denote the Frobenius norm and the ℓp-norm, and
diag(·) indicates the diagonal elements of a matrix. supp(v)
denotes the support of a vector v, which is the set of in-
dices of nonzero elements of v. [n] denotes all the natural
numbers between 1 and n inclusively.

2 PRELIMINARIES: VANILLA SPARSE
GRAPH AND ITS LAPLACIAN
REGULARIZATION

Vanilla sparse graph based methods [Yan and Wang, 2009,
Cheng et al., 2010, Elhamifar and Vidal, 2009, 2013, Wang
and Xu, 2013, Soltanolkotabi et al., 2014] apply the idea
of sparse coding to build sparse graphs for data clustering.
Given the data X = [x1, . . . ,xn] ∈ Rd×n, robust version of
vanilla sparse graph first solves the following optimization
problem for some weighting parameter λℓ1 > 0 to obtain
the sparse representation for each data point xi:

min
Zi∈Rn,Zi

i=0

∥∥xi −XZi
∥∥2
2
+ λℓ1

∥∥Zi
∥∥
1
, i ∈ [n], (1)

then construct a coefficient matrix Z = [Z1, . . . ,Zn] ∈
Rn×n with element Zij = Zj

i , where Zi is the i-th column
of Z. The diagonal elements of Z are zero so as to avoid
trivial solution Z = In where In is a n× n identity matrix.

A vanilla sparse graph G = (X,W) is then built where X is
the set of vertices, W is the weighted adjacency matrix of G.
The edge weight Wij is set by the sparse codes according
to

Wij = (|Zij |+ |Zji|)/2, 1 ≤ i, j ≤ n. (2)

Finally, the data clusters are obtained by performing spec-
tral clustering on the vanilla sparse graph G with sparse
similarity matrix W. In SSC and its geometric analysis [El-
hamifar and Vidal, 2009, 2013, Soltanolkotabi et al., 2014],
it is proved that the sparse representation (1) for each da-
tum recovers the underlying subspaces from which the data
are generated when the subspaces satisfy certain geometric
properties in terms of the principle angle between differ-
ent subspaces. When these required assumptions hold, data
belonging to different subspaces are disconnected in the
sparse graph, leading to the success of the subspace cluster-
ing. In practice, however, one can often empirically try the
same formulation to obtain satisfactory results even without
checking the assumptions.

High dimensional data often lie on or close to a submanifold
of low intrinsic dimension, and existing clustering methods
benefit from learning data representation aligned to its under-
lying manifold structure. While vanilla sparse graph demon-
strates better performance than many traditional similarity-
based clustering methods, it performs sparse representation
for each datum independently without considering the geo-
metric information and manifold structure of the entire data.
On the other hand, in order to obtain the data embedding
that accounts for the geometric information and manifold
structure of the data, the manifold assumption [Belkin et al.,
2006] is usually employed [Liu et al., 2010, He et al., 2011,
Zheng et al., 2011, Gao et al., 2013].



3 SUPPORT REGULARIZED SPARSE
GRAPH

In this section, we propose Support Regularized Sparse
Graph (SRSG) which learns locally smooth neighborhoods
in the sparse graph by virtue of locally consistent support
of the sparse codes. Instead of imposing smoothness in the
sense of ℓ2-distance on the sparse codes in the existing LR-
ℓ1-graph, SRSG encourages locally smooth neighborhoods
so as to capture the local manifold structure of the data in
the construction of the sparse graph. A side effect of locally
smooth neighborhoods is robustness to noise or outliers
by encouraging nearby points on the manifold to choose
similar neighbors in the sparse graph. Note that ℓ2-distance
based graph regularization cannot enjoy this benefit since
small ℓ2-distance between the sparse codes of nearby data
points does not guarantee their consistent neighborhood in
the sparse graph. The optimization problem of SRSG is

min
Z∈Rn×n,diag(Z)=0

L(Z) =

n∑
i=1

∥∥xi −XZi
∥∥2
2
+ γRS(Z),

(3)

where RS(Z) :=
n∑

i,j=1

Sijd(Z
i,Zj) is the support regular-

ization term, S is the adjacency matrix of the KNN graph,
γ > 0 is the weighting parameter for support regularization
term. Sij = 1 if xj is among the K nearest neighbors of
xi in terms of the regular Euclidean distance, and 0 other-
wise. Each data point xi is normalized to have unit ℓ2-norm.
d(Zi,Zj) is the support distance between two sparse codes
Zi and Zj which is defined as

d(Zi,Zj) =
∑

1≤m≤n,m ̸=i,j

(1IZi
m=0,Zj

m ̸=0 + 1IZi
m ̸=0,Zj

m=0).

(4)

SRSG encourages nearby data points to have similar neigh-
borhoods by penalizing large support distance between ev-
ery pair of nearby points in a data manifold. It can be seen
from (4) that a small support distance between Zi and Zj in-
dicates that the indices of their nonzero elements are mostly
the same. By the construction of sparse graph (2), it indi-
cates that the two points xi and xj choose similar neighbors.
Figure 1 further illustrates the effect of support regulariza-
tion.

We use coordinate descent to optimize (3) with respect to
Zi, i.e. in each step the i-th column of Z, while fixing all
the other sparse codes {Zj}j ̸=i. In each step of coordinate
descent, the optimization problem for Zi is

min
Zi∈Rn,Zi

i=0
F (Zi) =

∥∥xi −XZi
∥∥2
2
+ γRS(Z

i), (5)

where RS(Z
i) :=

n∑
j=1

Sijd(Z
i,Zj). Note that RS(Z

i) can
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Figure 1: During the construction of support regularized
sparse graph, point xi is among the K nearest neighbors of
xt and xj . Zt and Zj have the same support denoted by the
three black dots (xk1

, xk2
and xk3

), suggesting the correct
neighbors of xi. By penalizing support distance between
nearby points, xi is encouraged to choose the three black
dots as neighbors in the sparse graph while discarding the
wrong neighbors marked in red.

be written as RS(Z
i) =

n∑
t=1

cti1IZi
t ̸=0 up to a constant,

where cti =
n∑

j=1

Sij1IZj
t=0 −

n∑
j=1

Sij1IZj
t ̸=0.

It should be emphasized that SRSG does not use the ℓ1-
norm, which is

∥∥Zi
∥∥
1
, to impose sparsity on Zi. It is

noted that the SRSG regularization term RS(Z) induces
a sparse graph where every column of Z is sparse. This is
because RS(Z) penalizes the number of different neighbors
of nearby points. As a result, the remaining neighbors of
every point are forced to be the common neighbors shared
by its nearby points, and the number of such common neigh-
bors is limited so that sparsity is induced. In addition, as
will be illustrated in Section 3.1, our proposed fast proxi-
mal method always finds a sparse solution efficiently. (5) is
equivalent to

min
Zi∈Rn,Zi

i=0
F (Zi) =

∥∥∥xi −XZi
∥∥∥2

2
+ γ

n∑
t=1

cti1IZi
t ̸=0. (6)

Problem (6) is non-convex due to the non-convex regular-

ization term
n∑

t=1
cti1IZi

t ̸=0, and an optimization algorithm is

supposed to find a critical point for this problem. The defi-
nition of critical point for general Frechet subdifferentiable
functions is defined as follows.

Definition 3.1. (Subdifferential and critical points [Rock-
afellar and Wets, 2009]) Given a non-convex function
f : Rn → R ∪ {+∞} which is a proper and lower semi-
continuous function,

• For a given x ∈ domf , the Frechet subdifferential of f
at x, denoted by ∂̃f(x), is the set of all vectors u ∈ Rn

which satisfy

lim inf
y ̸=x,y→x

f(y)− f(x)− ⟨u,y − x⟩
∥y − x∥2

≥ 0.



• The limiting-subdifferential of f at x ∈ Rn, denoted by
∂f(x), is defined by

∂f(x) = {u ∈ Rn : ∃xk → x, f(xk) → f(x),

ũk ∈ ∂̃f(xk) → u}.

The point x is a critical point of f if 0 ∈ ∂f(x).

Before stating optimization algorithms that solve (6), we in-
troduce a simpler problem below with a simplified objective
F̃ . Compared to (6), it has regularization for Zi

k only for
positive cti:

min
z∈Rn,zi=0

F̃ (z) = ∥xi −Xz∥22 + γ
∑

t : 1≤t≤n,cti>0

cti1Izt ̸=0,

(7)

where Zi is replaced by a simpler notation z.

Proposition 1.1 in the supplementary states that a critical
point to problem (7) has a limiting-subdifferential arbitrary
close to 0. As a result, we resort to solve (7) instead of (5).
In the next subsection, we propose a novel proximal method
with a fast convergence rate locally matching the Nesterov’s
optimal convergence rate for first-order methods on smooth
and convex problems. In the sequel, we define f(z) ≜
∥xi −Xz∥22 and hγ,c(z) ≜ γ

∑
t : 1≤t≤n,cti>0

cti1Izt ̸=0.

3.1 FAST PROXIMAL GRADIENT DESCENT BY
SUPPORT PROJECTION

Inspired by Nesterov’s accelerated Proximal Gradient De-
scent (PGD) method [Nesterov, 2005, 2013], we propose
a novel and fast PGD method to solve (7). To this end, we
first introduce the proximal mapping operator. The proposed
fast PGD algorithm, Fast Proximal Gradient Descent with
Support Projection (FPGD-SP), is described in Algorithm 1.
In Algorithm 1, the proximal mapping operator denoted by
prox is defined by

proxshγ,c
(u) := argmin

v∈Rn,vi=0

1

2s
∥v − u∥22 + hγ,c(z)

= Ts,γ,c(u), (8)

where s > 0 is the step size, Ts,γ,c is an element-wise hard
thresholding operator. For 1 ≤ t ≤ n,

[Ts,γ,c(u)]t =

{
0 : |ut| ≤

√
2sγcti and cti > 0, or t = i

ut : otherwise

PA(u) in (11) of Algorithm 1 is a novel support projection
operator which returns a vector whose elements with in-
dices in A are the same as those in u, while all the other
elements vanish. Namely, [PA(u)]k = uk if k ∈ A, and
[PA(u)]k = 0 otherwise. Theorem 3.2 below shows the lo-
cally optimal convergence rate of O( 1

k2 ) achieved by FPGD-
SP. We define Ci := {t : 1 ≤ t ≤ n, cti > 0} and we use C
to denote Ci when no confusion arises.

Algorithm 1 Fast Proximal Gradient Descent with Support
Projection (FPGD-SP) for Problem (7)

1: Input: v(0) ∈ Rn, sequence {αk}k≥1 where αk = 2
k+1

for any k ≥ 1, step size s > 0, positive sequence
{λk}k≥1 with λk = ηk for any k ≥ 1 and another step
size η > 0 such that λkαk ≤ s.

2: Set the initial point z(0) = v(0) and k = 1.
3: for k = 1, . . . , do

m(k) = (1− αk)z
(k−1) + αkv

(k−1) (9)

z(k) = proxshγ,c
(m(k) − s∇f(m(k))) (10)

ṽ(k) = v(k−1) − λk∇f(m(k)) (11)

v(k) = P(C∩supp(z(k)))∪C(ṽ
(k)) (12)

Algorithm 2 Learning SRSG

1: Input: the data set X = {xi}ni=1, the number of clusters
c, the parameter γ and K for SRSG, maximum itera-
tion number Mc for coordinate descent, and maximum
iteration number Mp for FPGD-SP, stopping threshold
ε.

2:
3: r = 1, initialize the sparse code matrix as Z(0) = Z(ℓ1).
4: while r ≤ Mc do
5: Obtain Z(r) from Z(r−1) by coordinate descent. In

i-th (1 ≤ i ≤ n) step of the r-th iteration of coor-
dinate descent, solve (7) by FPGD-SP descrbibed in
Algorithm 1.

6: if |L(Z(r))− L(Z(r−1))| < ε then
7: break
8: else
9: r = r + 1.

10: end if
11: end while
12: Obtain the sub-optimal sparse code matrix Z∗ when the

above iterations converge or maximum iteration number
is achieved.

13: Build the pairwise similarity matrix by symmetrizing
Z∗: W∗ = |Z∗|+|Z∗|⊤

2
14: Output: the sparse graph whose weighted adjacency

matrix is W∗.

Theorem 3.2. Let {z(k)} be the sequence generated by
Algorithm (1), and suppose that there exists a constant
G such that

∥∥∇f(m(k))
∥∥
2

≤ G for all k ≥ 1. Sup-

pose s < min
{

2τ
G2 ,

1
Lf

}
with Lf := 2σmax(X

⊤X) and
τ := γmint : 1≤t≤n,cti>0 cti, then there exists a finite
k0 > 0 such that for all k ≥ k0, supp(z(k)) = S ⊆ [n].
Furthermore, let z∗ = argminz : supp(zC)=S,zi=0 f(z), then

0 ≤ F̃ (z(k))− F̃ (z∗) ≤ U(k0)

k(k + 1)
, (13)



where U(k0) := k0(k0 − 1)
(
F̃ (z(k0−1))− F̃ (z∗)

)
+

∥v(k0−1)−z∗∥2

2

η .

Theorem 3.2 shows that FPGD-SP has a fast local con-
vergence rate of O( 1

k2 ). This convergence rate is locally
optimal because O( 1

k2 ) is the Nesterov’s optimal conver-
gence rate of first-order methods on smooth and convex
problems with Lipschitz continuous gradient. While the ob-
jective function F̃ is non-convex and nonsmooth, FPGD-SP
still achieves the Nesterov’s optimal convergence rate.

Key Idea in the Proof of Theorem 3.2. Let zC ∈ R|C|

be the vector formed by elements of z with indices in the
set C. The proof of Theorem 3.2 is based on the idea that
when the step size for gradient descent is small enough, the
support of z(k)C shrinks during iterations of FPGD-SP, so the
optimization through FPGD-SP can be divided into a finite
number of stages wherein the support of z(k) belonging to
the same stage remains unchanged. Therefore, the objective
function F̃ is convex when restricted to the final stage. The
optimal convergence rate O( 1

k2 ) in Theorem 3.2 is achieved
on the final stage.

Thanks to the property of support shrinkage, the result of
FPGD-SP is always sparser than the initialization point z(0),
so SRSG does not need the ℓ1-norm to impose sparsity on
the solutions to (3) or (7). In our experiments, the initializa-
tion point z(0) is sparse, which can be chosen as the sparse
code generated by vanilla sparse graph. Due to its faster
convergence rate than the vanilla PGD, we employ FPGD-
SP to solve (7) for each step of coordinate descent in the
construction of SRSG.

In practice, the iteration of Algorithm 1 is terminated when
a maximum iteration number is achieved or certain stopping
criterion is satisfied. When the FPGD-SP method converges
or terminates, the step of coordinate descent for problem (7)
for some Zi is finished and the coordinate descent algorithm
proceeds to optimize other sparse codes. We initialize Z as
Z(0) = Zℓ1 and Zℓ1 is the sparse codes generated by vanilla
sparse graph through solving (1) with some proper weight-
ing parameter λℓ1 . In all the experimental results shown in
the next section, we empirically set λℓ1 = 0.1. The data
clustering algorithm by SRSG is described in Algorithm 2.
Spectral clustering is performed on the output SRSG pro-
duced by Algorithm 2 to generate data clusters for data
clustering.

3.2 TIME COMPLEXITY OF BUILDING SRSG
USING FPGD-SP

Let the maximum iteration number of coordinate descent be
Mc, and maximum iteration number be Mp for the FPGD-
SP method used to solve (5). It can be verified that each
iteration of Algorithm 1 has a time complexity of O(dn)
where s0 is the cardinality of the support of the initialization

point for FPGD-SP. The overall time complexity of running
the coordinate descent for SRSG is O(McMpn

2d).

4 EXPERIMENTAL RESULTS

The superior clustering performance of SRSG is demon-
strated by extensive experimental results on various data
sets. SRSG is compared to K-means (KM), Spectral Cluster-
ing (SC), ℓ1-graph, Sparse Manifold Clustering and Embed-
ding (SMCE) [Elhamifar and Vidal, 2011], and LR-ℓ1-graph
introduced in Section 2.

4.1 EVALUATION METRIC

Two measures are used to evaluate the performance of the
clustering methods, which are the accuracy and the Normal-
ized Mutual Information (NMI) [Zheng et al., 2004]. Let
the predicted label of the datum xi be ŷi which is produced
by the clustering method, and yi is its ground truth label.
The accuracy is defined as

Accuracy =
1IΩ(ŷi )̸=yi

n
, (14)

where 1I is the indicator function, and Ω is the best permu-
tation mapping function by the Kuhn-Munkres algorithm
[Plummer and Lovász, 1986]. The more predicted labels
match the ground truth ones, the more accuracy value is
obtained.

Let X̂ be the index set obtained from the predicted labels
{ŷi}ni=1, X be the index set from the ground truth labels
{yi}ni=1, H(X̂) and H(X) be the entropy of X̂ and X , then
the normalized mutual information (NMI) is defined as

NMI(X̂,X) =
MI(X̂,X)

max{H(X̂), H(X)}
, (15)

where MI(X̂,X) is the mutual information between X̂ and
X .

4.2 CLUSTERING ON UCI DATA SETS

We conduct experiments on three real data sets from UCI
machine learning repository [A. Asuncion, 2007], i.e. Heart,
Ionosphere, Breast Cancer (Breast), to reveal the clustering
performance of SRSG on general data sets. The clustering
results on these three data sets are shown in Table 3.

4.3 CLUSTERING ON COIL-20 AND COIL-100
DATA

COIL-20 Database has 1440 images of resolution 32× 32
for 20 objects, and the background is removed in all images.
The dimension of this data is 1024. Its enlarged version,
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Figure 2: Parameter sensitivey on the UMIST Face Data, from left to right: Accuracy with respect to different values of γ;
NMI with respect to different values of γ; Accuracy with respect to different values of K; NMI with respect to different
values of K

Table 1: Clustering Results on COIL-20 and COIL-100 Database. c in the leftmost column indicates that the first c clusters
of the entire data set are used for clustering.

COIL-20
# Clusters

Measure KM SC ℓ1-graph SMCE LR-ℓ1-graph SRSG

c = 4
AC 0.6625 0.6701 1.0000 0.7639 0.7188 1.0000

NMI 0.5100 0.5455 1.0000 0.6741 0.6129 1.0000

c = 8
AC 0.5157 0.4514 0.7986 0.5365 0.6858 0.9705

NMI 0.5342 0.4994 0.8950 0.6786 0.6927 0.9581

c = 12
AC 0.5823 0.4954 0.7697 0.6806 0.7512 0.8333

NMI 0.6653 0.6096 0.8960 0.8066 0.7836 0.9160

c = 16
AC 0.6689 0.4401 0.8264 0.7622 0.8142 0.8750

NMI 0.7552 0.6032 0.9294 0.8730 0.8511 0.9435

c = 20
AC 0.6504 0.4271 0.7854 0.7549 0.7771 0.8208

NMI 0.7616 0.6202 0.9148 0.8754 0.8534 0.9297
COIL-100
# Clusters

Measure KM SC ℓ1-graph SMCE LR-ℓ1-graph SRSG

c = 20
AC 0.5875 0.4493 0.5340 0.6208 0.6681 0.9250

NMI 0.7448 0.6680 0.7681 0.7993 0.7933 0.9682

c = 40
AC 0.5774 0.4160 0.5819 0.6028 0.5944 0.8465

NMI 0.7662 0.6682 0.7911 0.7919 0.7991 0.9484

c = 60
AC 0.5330 0.3225 0.5824 0.5877 0.6009 0.7968

NMI 0.7603 0.6254 0.8310 0.7971 0.8059 0.9323

c = 80
AC 0.5062 0.3135 0.5380 0.5740 0.5632 0.7970

NMI 0.7458 0.6071 0.8034 0.7931 0.7934 0.9240

c = 100
AC 0.4928 0.2833 0.5310 0.5625 0.5493 0.7425

NMI 0.7522 0.5913 0.8015 0.8057 0.8055 0.9105



Table 2: Clustering Results on Various Face Datasets, where CMU Multi-PIE contains the facial images captured in four
sessions (S1 to S4)

Yale-B
# Clusters

Measure KM SC ℓ1-graph SMCE LR-ℓ1-graph SRSG

c = 10
AC 0.1780 0.1937 0.7580 0.3672 0.4563 0.8750

NMI 0.0911 0.1278 0.7380 0.3264 0.4578 0.8134

c = 15
AC 0.1549 0.1748 0.7620 0.3761 0.4778 0.7754

NMI 0.1066 0.1383 0.7590 0.3593 0.5069 0.7814

c = 20
AC 0.1227 0.1490 0.7930 0.3542 0.4635 0.8376

NMI 0.0924 0.1223 0.7860 0.3789 0.5046 0.8357

c = 30
AC 0.1035 0.1225 0.8210 0.3601 0.5216 0.8475

NMI 0.1105 0.1340 0.8030 0.3947 0.5628 0.8652

c = 38
AC 0.0948 0.1060 0.7850 0.3409 0.5091 0.8500

NMI 0.1254 0.1524 0.7760 0.3909 0.5514 0.8627
CMU PIE
# Clusters

Measure KM SC ℓ1-graph SMCE LR-ℓ1-graph SRSG

c = 20
AC 0.1327 0.1288 0.2329 0.2450 0.3076 0.3294

NMI 0.1220 0.1342 0.2807 0.3047 0.3996 0.4205

c = 40
AC 0.1054 0.0867 0.2236 0.1931 0.3412 0.3525

NMI 0.1534 0.1422 0.3354 0.3038 0.4789 0.4814

c = 68
AC 0.0829 0.0718 0.2262 0.1731 0.3012 0.3156

NMI 0.1865 0.1760 0.3571 0.3301 0.5121 0.4800
CMU Multi-PIE

# Clusters
Measure KM SC ℓ1-graph SMCE LR-ℓ1-graph SRSG

MPIE S1
AC 0.1167 0.1309 0.5892 0.1721 0.4173 0.6815

NMI 0.5021 0.5289 0.7653 0.5514 0.7750 0.8854

MPIE S2
AC 0.1330 0.1437 0.6994 0.1898 0.5009 0.7364

NMI 0.4847 0.5145 0.8149 0.5293 0.7917 0.9048

MPIE S3
AC 0.1322 0.1441 0.6316 0.1856 0.4853 0.7138

NMI 0.4837 0.5150 0.7858 0.5155 0.7837 0.8963

MPIE S4
AC 0.1313 0.1469 0.6803 0.1823 0.5246 0.7649

NMI 0.4876 0.5251 0.8063 0.5294 0.8056 0.9220
UMIST Face

# Clusters
Measure KM SC ℓ1-graph SMCE LR-ℓ1-graph SRSG

c = 4
AC 0.4848 0.5691 0.4390 0.5203 0.5854 0.5854

NMI 0.2889 0.4351 0.4645 0.3314 0.4686 0.4640

c = 8
AC 0.4330 0.4789 0.4836 0.4695 0.5399 0.6948

NMI 0.5373 0.5236 0.5654 0.5744 0.5721 0.7333

c = 12
AC 0.4478 0.4655 0.4505 0.4955 0.5706 0.6967

NMI 0.6121 0.6049 0.5860 0.6445 0.6994 0.7929

c = 16
AC 0.4297 0.4539 0.4124 0.4747 0.4700 0.6544

NMI 0.6343 0.6453 0.6199 0.6909 0.6714 0.7668

c = 20
AC 0.4216 0.4174 0.4087 0.4452 0.4991 0.7026

NMI 0.6377 0.6095 0.6111 0.6641 0.6893 0.8038

Table 3: Clustering Results on three UCI Data Sets

Data Set Measure KM SC ℓ1-graph SMCE LR-ℓ1-graph SRSG

Heart
AC 0.5889 0.6037 0.6370 0.5963 0.6259 0.6481

NMI 0.0182 0.0269 0.0529 0.0255 0.0475 0.0637

Ionosphere
AC 0.7095 0.7350 0.5071 0.6809 0.7236 0.7635

NMI 0.1285 0.2155 0.1117 0.0871 0.1621 0.2355

Breast
AC 0.8541 0.8822 0.9033 0.8190 0.9051 0.9051

NMI 0.4223 0.4810 0.5258 0.3995 0.5249 0.5333

COIL-100 Database, contains 100 objects with 72 images
of resolution 32× 32 for each object. The images of each
object were taken 5 degrees apart when each object was
rotated on a turntable. The clustering results on these two
data sets are shown in Table 1. It can be observed that
LR-ℓ1-graph produces better clustering accuracy than ℓ1-

graph, since graph regularization produces locally smooth
sparse codes aligned to the local manifold structure of the
data. Using the ℓ0-norm in the graph regularization term to
render the sparse graph that is better aligned to the geometric
structure of the data, SRSG always performs better than all
other competing methods.



4.4 CLUSTERING ON YALE-B, CMU PIE, CMU
MULTI-PIE, UMIST FACE DATA, MNIST,
MINIIMAGENET

The Extended Yale Face Database B contains face images
for 38 subjects with 64 frontal face images taken under dif-
ferent illuminations for each subject. CMU PIE face data
contains cropped face images of size 32×32 for 68 persons,
and there are around 170 facial images for each person under
different illumination and expressions, with a total number
of 11554 images. CMU Multi-PIE (MPIE) data [Gross et al.,
2010] contains the facial images captured in four sessions.
The UMIST Face Database consists of 575 images of size
112 × 92 for 20 people. Each person is shown in a range
of poses from profile to frontal views - each in a separate
directory labelled 1a, 1b, . . . , 1t and images are numbered
consecutively as they were taken. The clustering results on
these four face data sets are shown in Table 2. We conduct
an extensive experiment on the popular face data sets in this
subsection, and we observe that SRSG always achieve the
highest accuracy, and best NMI for most cases, revealing
the outstanding performance of our method and the effec-
tiveness of manifold regularization on the local sparse graph
structure. Figure 1 in the supplementary demonstrates that
the sparse graph generated by SRSG effectively removes
many incorrect neighbors for many data points through lo-
cal smoothness of the sparse graph structure, compared to
ℓ1-graph.

4.5 PARAMETER SETTING

There are two essential parameters for SRSG, i.e. γ for
the ℓ0 regularization term and K for building the adjacency
matrix of the KNN graph. We use the sparse codes generated
by ℓ1-graph with weighting parameter λℓ1 = 0.1 in (1) to
initialize both SRSG and LR-ℓ1-graph, and set λ = γ = 0.1
in (3) and K = 5 for SRSG empirically throughout all the
experiments. The maximum iteration number M = 100 and
the stopping threshold ε = 10−5. The weighting parameter
for the ℓ1-norm in both ℓ1-graph and LR-ℓ1-graph, and the
regularization weight γℓ2 for LR-ℓ1-graph is chosen from
[0.1, 1] for the best performance.

In order to investigate how the performance of SRSG varies
with parameter γ and K, we vary the weighting parameter
γ and K, and illustrate the result in Figure 2. The perfor-
mance of SRSG is noticeably better than other competing
algorithms over a relatively large range of both λ and K,
which demonstrate the robustness of our algorithm with re-
spect to the parameter settings. We also note that a too small
K (near to 1) or too big K (near to 10) results in under
regularization and over regularization.

5 CONCLUSION

We propose a novel Support Regularized Sparse Graph
(SRSG) for data clustering, which employs manifold as-
sumption to align the sparse codes of vanilla to the local
manifold structure of the data. We use coordinate descent
to optimize the objective function of SRSG and propose
a novel and fast Proximal Gradient Descent (PGD) with
Support Projection to perform each step of the coordinate
descent. Our FPGD-SP solves the non-convex optimization
problem of SRSG with a proved convergence rate locally
matching Nesterov’s optimal convergence rate for first-order
methods on smooth and convex problems. The effectiveness
of SRSG for data clustering is demonstrated by extensive
experiment on various real data sets.
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