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Abstract
The goal in maintenance is to avoid machine fail-
ures and overhauls, while simultaneously mini-
mizing the cost of preventive maintenance. Main-
tenance policies aim to optimally schedule main-
tenance by modeling the effect of preventive main-
tenance on machine failures and overhauls. Exist-
ing work assumes the effect of preventive main-
tenance is (1) deterministic or governed by a
known probability distribution, and (2) machine-
independent. Conversely, this work proposes to
relax both assumptions by learning the effect of
maintenance conditional on a machine’s character-
istics from observational data on similar machines
using existing methodologies for causal inference.
This way, we can estimate the number of over-
hauls and failures for different levels of mainte-
nance and, consequently, optimize the preventive
maintenance frequency. We validate our proposed
approach using real-life data on more than 4,000
maintenance contracts from an industrial partner.
Empirical results show that our novel, causal ap-
proach accurately predicts the maintenance effect
and results in individualized maintenance sched-
ules that are more accurate and cost-effective
than supervised or non-individualized approaches.

1. Introduction
The goal in maintenance is to avoid machine failures and
overhauls, while simultaneously minimizing the cost of pre-
ventive maintenance (PM). Maintenance is an important
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operational problem, estimated to represent 15% to 40%
of production costs (Dunn, 1987; Löfsten, 2000). Mainte-
nance policies aim to optimally schedule maintenance by
modeling the effect of preventive maintenance on machine
failures and overhauls. In practice, maintenance has an im-
perfect effect and does not make the machine as good as
new. A broad spectrum of maintenance effects have been
studied in the literature, ranging from perfect maintenance,
making the system as good as new, to worst maintenance,
where maintenance causes failure (Pham & Wang, 1996).

Existing approaches in imperfect maintenance rely on strong
assumptions to model the effect of PM (Alaswad & Xi-
ang, 2017): (1) the effect is assumed to be deterministic
or stochastic assuming a certain probability distribution,
and (2) the effect is assumed to be machine-independent,
i.e., identical for all machines. This work proposes a gen-
eral, data-driven maintenance policy that relaxes both as-
sumptions and learns the effect of maintenance conditional
on a machine’s characteristics. The benefit of our ap-
proach is that it allows (1) to flexibly learn maintenance
effects from observational data that is biased due to an ex-
isting maintenance policy, and (2) to design a machine-
specific PM schedule based on these learned effects.

We contribute by proposing a novel prescriptive framework
for maintenance that prescribes the maintenance frequency
based on the estimated effect of PM on the machine’s num-
ber of overhauls and failures. Instead of assuming a model
of the PM effect, we frame maintenance as a problem of
causal inference. To this aim, we leverage state-of-the-
art machine learning methods for causal inference that
learn models to estimate a machine’s potential outcomes
for different PM frequencies from biased, observational
data. Moreover, we formulate a prescriptive policy that
uses the potential outcomes to decide on the optimal PM
frequency so as to minimize the total cost of failures and
interventions. Empirically, we contribute by demonstrat-
ing the use of the presented prescriptive framework on a
dataset consisting of more than 4,000 maintenance contracts
of industrial equipment provided by an industrial partner.

2. Problem overview
This work aims to solve the problem faced by a provider
of full-service maintenance contracts, where a client’s as-
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set is maintained at a predetermined price (Deprez et al.,
2021). The provider’s goal is to minimize the total con-
tract cost. To this aim, the service provider needs to decide
on each contract’s (usage-based) PM frequency, prior to
contract start, based on contract information. PM aims to
prevent two types of events: overhauls (unplanned, com-
prehensive maintenance interventions where large parts
of the machinery need to be replaced) and machine fail-
ures (resulting in downtime and corrective maintenance).

Let each contract be a tuple (X, T,O, F ). X ∈ X ⊂ Rd

denotes the characteristics of the machine and contract. The
treatment T ∈ T ⊂ R+ is the PM frequency: the number of
preventive maintenance interventions that will be applied per
running period (e.g., maintaining every 200 running hours).
The contract’s number of overhauls and failures per running
period are denoted as O ∈ O ⊂ R+ and F ∈ F ⊂ R+.
We adopt the potential outcomes framework (Rubin, 2004;
2005) and denote the overhauls O and failures F per run-
ning period for maintenance frequency t as O(t) and F (t).

The objective is to find the optimal PM frequency that mini-
mizes the total cost per running period. We assume a usage-
based maintenance cost similar to (Faccio et al., 2014). A
machine i’s cost per running period given PM frequency
consists of the combined costs of PM, overhauls and failures:

ci = ct ti︸︷︷︸
PM

+ co oi︸︷︷︸
Overhauls

+ cf fi︸︷︷︸
Failures

. (1)

We assume that the costs of PM, overhauls and failures are
deterministic and known: ct, co, cf ∈ R+.

To assist the provider’s decision-making, an observational
data set is available with information on n past contracts:
D = {(xi, ti, oi, fi)}ni=1. Past maintenance decisions were
made according to an unknown existing policy, resulting in
selection bias. Because of this, the challenge of learning
a predictive model for obtaining unbiased estimates of the
potential outcomes from D is to adjust for selection bias.

3. Methodology
Our methodology consists of a predict-then-optimize frame-
work, see Figure A2 for an overview. To estimate each
contract’s cost for different PM frequencies ci(ti), its po-
tential outcomes need to be estimated, i.e., its number of
overhauls oi(t) and failures fi(t) for a PM frequency ti,
given characteristics xi. The first step is to learn a ma-
chine learning model for predicting potential outcomes from
historical, observational data on similar full-service con-
tracts D. In the second step, these estimated outcomes are
used to optimize the PM frequency and resulting total cost.

3.1. Assumptions

The challenge in estimating potential outcomes from obser-
vational data is dealing with selection bias. This requires
two standard assumptions to learn unbiased estimates of
the potential outcomes (Imbens, 2000; Bica et al., 2020):

Assumption 3.1. Consistency. Y = Y (t) for all t ∈ T .

Assumption 3.2. Overlap. For all x ∈ X with p(x > 0)
and t ∈ T : 0 < p(t|x) < 1.

Assumption 3.3. Unconfoundedness. Potential outcomes
O(t) and F (t) are independent of the PM frequency T con-
ditional on machine characteristics X: {O(t), F (t) | ∀ t ∈
T } ⊥⊥ T |X.

3.2. Predicting preventive maintenance effects

First, we need to predict each machine’s potential outcomes
oi(t) and fi(t) for PM frequency ti given its characteristics
xi. Therefore, we aim to find models go : X × T → O
and gf : X × T → F defined by θo, θg ∈ Θ. The goal
is to obtain unbiased estimates of the potential outcomes:

go(t,x) = E [O(t)|X = x] , (2)
gf (t,x) = E [F (t)|X = x] . (3)

We learn go and gf using SCIGAN, a state-of-the-art ma-
chine learning approach for predicting potential outcomes
given a continuously-valued treatments (Bica et al., 2020).
SCIGAN learns g in two steps. First, a generative adversar-
ial network (GAN) is trained to model the distribution of
the potential outcomes: the generator is trained to generate
counterfactual contracts that cannot be distinguished from
factual, observed contracts by the discriminator. In a second
phase, the GAN is used to augment the observed training
data with generated counterfactual samples. This way, the
augmented data set contains all potential outcomes, includ-
ing both the factual outcomes and the generated, counterfac-
tual outcomes. Because of this, selection bias is no longer
a problem and, using this augmented data set, a predictive
model gθ can be trained to predict the potential outcomes
in a supervised manner. For this, we use a neural network.

3.3. Optimizing the maintenance cost

The optimal PM frequency is a trade-off between costs re-
sulting from planned PM on the one hand and costs resulting
from overhauls and failures on the other hand. However,
using the potential outcomes oi(ti) and fi(ti), it can be seen
that the overhauls and failures can be written as functions
of the PM frequency ti. Therefore, the predicted potential
outcomes can be used to directly estimate the costs incurred
at different PM frequencies. This is achieved by rewriting
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all terms in Equation (1) (PM, overhauls and failures) as a
function of the PM frequency ti:

ci(ti) = ct ti + co oi(ti) + cf fi(ti). (4)

Each machine’s optimal PM frequency t∗i is found as the
level that minimizes the expected cost: t∗i = argmin ci(t).
To account for heterogeneity in the contracts, this opti-
mal PM frequency is optimized for each specific machine.

4. Results
We validate our methodology empirically using real-world
data on full-service maintenance contracts. This section
describes our semi-synthetic setup and the choice of eval-
uation metrics. Our data set contains more than 4,000
full-service maintenance contracts. For each contract i,
we have information on the machine, the contract and the
maintenance that was performed. Detailed information on
this data is provided in the Appendix A2 (see Table A1).

4.1. Semi-synthetic setup

A good estimator should accurately predict both the ob-
served outcome, the number of failures that did occur at
maintenance frequency ti, as well as the unobserved out-
comes, the number of failures if the machine had received
less or more maintenance. In practice however, not all
potential outcomes are observed, which makes evaluation
of causal models hard. Because of this, we rely on semi-
synthetic data to evaluate our model. This approach is com-
monly used in both causal inference (see e.g., Berrevoets
et al., 2020) and maintenance (e.g., Deprez et al., 2021).

Potential outcomes oi(t) and fi(t) are generated based on
the observed characteristics xi. For the overhauls, we have:

oi(t) = 7σ

(
v⊺
oxi︸︷︷︸

Base rate

− 1

10
σ (w⊺

oxi)︸ ︷︷ ︸
PM effect

t + ϵo︸︷︷︸
Noise

)
(5)

where vo,wo ∼ U
(
(0, 1)d×1

)
and ϵo ∼ N (0, 1). The 7

rescales the average number of overhauls to roughly same
number in the original data. For failures, we similarly have:

fi(t) = 9σ

(
v⊺
fxi −

1

10
σ
(
w⊺

fxi

)
t+ ϵf

)
(6)

with vf ,wf ∼ U
(
(0, 1)d×1

)
and ϵf ∼ N (0, 1).

Using the semi-synthetic setup, the test set contains the
potential outcomes for all possible values of ti ∈ T us-
ing these equations. Conversely, the training and valida-
tion sets include only one observed outcome for one ob-
served ti. The training, validation and test sets respectively

consist out of 50%, 25% and 25% of the data. Hyper-
parameter optimization is based on the mean squared er-
ror on the observed outcomes in the validation set. An
illustration of a generated data set is shown in Figure A3.

On the one hand, we evaluate the prescribed maintenance
frequencies using the maintenance frequency ti that was ob-
served in practice for the observed outcomes in the training
and validation set. On the other hand, we want to evaluate
our policy for different levels of selection bias. For this, we
control the level of selection bias in the semi-synthetic data
using an approach similar to (Bica et al., 2020). Selection
bias is simulated by assigning PM frequencies from a beta
distribution as follows:

ti ∼ 20Beta
(
1 +

λδi
10

, 1 + λδi

)
(7)

where δi = σ(wbxi) with wb ∼ U
(
(0, 1)d×1

)
. δi ensure

that treatment assignment is based on observed features
xi. This way, λ controls the level of selection bias. λ =
0 results in Beta(1, 1) or the uniform distribution, which
implies random maintenance assignment. Higher values
of λ imply more selection bias with λ = 30 resulting in a
maintenance distribution similar to the observed distribution.
An illustration of the observed distribution and generated
distributions for different values of λ is shown in Figure A4.

4.2. Evaluation

Evaluation is done using three different metrics. First, we
evaluate the ability of the machine learning model to ac-
curately predict a contract’s potential outcomes. This is
measured using the mean integrated square error (MISE)
(Silva, 2016; Schwab et al., 2020):

MISE =
1

n

n∑
i=1

∫ m

0

(yi(t)− ŷi(t))
2
dt. (8)

Second, we want to evaluate the accuracy of the prescribed
maintenance frequencies. To this end, we consider a variant
of the policy error (PE) (Schwab et al., 2020) that compares
the prescribed maintenance frequency with the ideal level:

PE =
1

n

n∑
i=1

(
t∗i − t̂∗i

)2
. (9)

Third, we evaluate the prescribed maintenance frequency
in terms of costs using the policy cost ratio (PCR) that
compares the costs of the estimated optimal maintenance
frequency with the ideal level:

PCR =
1

n

n∑
i=1

ci(t̂
∗
i )

ci(t∗i )
. (10)

For all metrics, a lower value is better with 0 being the
optimal value for MISE and PE and 1 for PCR.
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MISE
Overhauls Failures

SCIGAN 07.71 ± 0.60 14.16 ± 1.68
MLP 10.25 ± 1.33 18.27 ± 3.65

PE PCR

SCIGAN–ITE 2.40 ± 0.46 1.07 ± 0.01
MLP–ITE 4.36 ± 1.25 1.11 ± 0.02

SCIGAN–ATE 8.77 ± 1.07 1.24 ± 0.04

Table 1: Empirical evaluation. We compare performance for the different policies over five runs. We evaluate each model’s
ability to predict the potential outcomes oi(t) and fi(t) (MISE), as well as each policy’s ability to accurately prescribe the
maintenance frequency (PE) and minimize costs (PCR). For all metrics, a lower value is better.
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Figure 1: Results for varying levels of selection bias. Selection bias is controlled by λ (Equation (7)). Although SCIGAN
performs similar to the MLP for lower values of λ, it performs better when the data is biased. Conversely, SCIGAN–ITE
performs similar both when assignments are randomized (λ = 0) or biased at levels similar to the observed data (λ = 30).

Our proposed maintenancy policy uses SCIGAN to learn
the individual treatment effects (ITE) and will be referred to
as SCIGAN–ITE. This policy is benchmarked against two
other policies (see Table A2). MLP–ITE is a policy based
on a neural network (MLP) that learns oi and fi given xi

and ti in a completely supervised manner without adjusting
for selection bias. This allows us to assess whether there
is a benefit of adjusting for selection bias. SCIGAN–ATE
is a generalized policy setting a single optimal t∗ for all
contracts based on the average (instead of the individual)
maintenance effect. This allows to assess the potential bene-
fit of an individualized policy customized for each machine.

4.3. Empirical results

In this section, we present the results of the semi-synthetic
experiments based on more than 4,000 maintenance con-
tracts, as put forward in Sections 4.1 and 4.2. The goal is to
answer two research questions. (1) Does an individualized
approach outperform a general approach? (2) Does a causal,
prescriptive approach outperform a supervised, predictive
approach? These are examined for both the observed PM
frequencies as well as under varying levels of selection bias.

Observed PM frequencies We present the results for the
different methodologies given the maintenance frequency
ti that was observed in practice in Table 1 and Figure A5.
For both failures and overhauls, SCIGAN more accurately
predicts the potential outcomes in terms of MISE compared
to MLP, the supervised approach. Moreover, the individ-
ualized, prescriptive approach (SCIGAN–ITE) most accu-
rately prescribes the optimal PM frequency compared to the

supervised (MLP–ITE) and non-individualized approach
in terms of policy error. Finally, SCIGAN–ITE also re-
sults in lower costs compared to MLP–ITE and SCIGAN–
ATE. The improved performance of SCIGAN–ITE com-
pared to MLP–ITE illustrates the importance of adjust-
ing for selection bias when learning from observational
data. Moreover, the relatively worse performance of the
average approach, SCIGAN–ATE, indicates the benefit of
an individualized, machine-dependent policy for imperfect
maintenance that takes into account machine characteristics.

Different levels of selection bias We compare SCIGAN–
ITE’s and MLP–ITE’s performance for different levels of
selection bias using Equation (7) in Figure 1. SCIGAN
achieves similar predictive performance, in terms of MISE,
and quality of decision-making, in terms of PE and PCR,
for the entire range of operating conditions ranging from
randomized PM assignments (λ = 0) to realistic levels of
selection bias (λ = 30). The supervised approach, MLP,
results in accurate predictions and decisions when preven-
tive maintenance is randomized, but deteriorates when λ
increases. This illustrates that, even when conditioning on
confounders, not adjusting for selection bias results in worse
performance when data is limited (Alaa & Schaar, 2018).

5. Conclusion
This work proposes a novel, generally applicable prescrip-
tive maintenance policy that models maintenance by learn-
ing a maintenance effect conditional on the machine’s char-
acteristics from observational data. This is achieved by
relying on state-of-the-art machine learning methodologies
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for causal inference. The benefit of our approach is that,
unlike existing approaches, our methodology does need
strong assumptions regarding the maintenance effect, but is
instead able to learn it from observational data using flexible
machine learning models. We validate our approach with
semi-synthetic experiments using real-life data on more than
4,000 maintenance contracts. Our proposed approach out-
performs supervised and non-individualized approaches in
terms of both accuracy and cost of the prescribed mainte-
nance schedules. These findings show that our proposed
approach offers a powerful and flexible policy for individu-
alized maintenance and highlight the importance of dealing
with selection bias when learning from observational data.
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A1. Problem formulation
The assumed causal structure of the problem is shown in Figure A1. Machine and contract characteristics X affect the
outcomes O and F both directly as well as indirectly through T .

X

T

O F

Figure A1: Causal diagram depicting the relations between the different variables. X: Machine and contract
characteristics, T : Preventive maintenance, O: Overhauls, and F : Failures.

A2. Data
An overview of the data is shown in Table A1. All events are presented per running period, which is a set number of running
hours. For reasons of confidentiality, the exact number of running hours per period is not presented. Costs are averaged over
all events and re-scaled for reasons of confidentiality. Moreover, the data is preprocessed as follows. Categorical variables
are encoded with dummies and xi is standardized. The PM frequency, overhauls and failures that occurred throughout the
contract are converted to the number of events per running period. Even though a contract’s exact number of running hours
is not known in advance, an estimate is typically available.

Variable Domain

Machine information
Type {1, . . . , 7}
Age at contract start [0, 39]
Running hours at contract start [2500, 110000]
Running hours during contract [0, 186000]
Average running hours per year [300, 8500]

Contract information
Type {1, 2}
Duration (days) [180, 5850]

Preventive maintenance per running period
PM frequency [0, 20]

Outcomes per running period
Number of overhauls [0, 128]
Number of failures [0, 185]

Average costs (in e)
Preventive maintenance 73
Overhaul 207
Failure 104

Table A1: Data overview. Overview of the available contract information: machine and contract characteristics, preventive
maintenance interventions, overhauls, and failures.

A3. Methodology
We show a high-level overview of our predict-then-optimize methodology in Figure A2.
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Total cost 
PM cost 
Cost of failures 
Cost of overhauls

1. Machine information 2. Predict potential outcomes  and 3. Prescribe the PM frequency  to minimize the total cost

CostFeature Value
Machine type 2
Age 10.2
Running hours 2,000
Contract type 1

... PM Frequency 

Failures  
Overhauls  

Potential
outcomes

PM Frequency 

Figure A2: Methodology overview. We present a high-level overview of our methodology. Contract information xi is used
to predict the potential outcomes in terms of overhauls oi(t) and failures fi(t). Based on these estimates, the total cost for
different levels of PM can then be estimated. Finally, the PM frequency is chosen to minimize the total expected cost.

A comparison of our proposed methodology, SCIGAN–ITE, with two ablations is shown in Table A2. Our proposed,
individual policy, SCIGAN–ITE, prescribes the PM frequency based on the individual treatment effect (ITE) estimated using
SCIGAN. This proposed approach is compared with two ablations. The first, MLP–ITE, does not account for selection bias.
The second, SCIGAN–ATE, is a general policy based on the average treatment effect (ATE) and does not differentiate based
on machine characteristics.

Methodology Selection bias? Individualized?

SCIGAN–ITE ✓ ✓

MLP–ITE ✗ ✓
SCIGAN–ATE ✓ ✗

Table A2: Methodologies comparison.

A4. Results
An visualization of our semi-synthetic setup is shown in Figure A3. The simulated selection bias for different values of λ is
shown in Figure A4.
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8 Failures

Overhauls

(a) Potential outcomes
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PM Frequency

0
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C
os

t

×104

(b) Costs

Figure A3: Semi-synthetic data. We show the observed outcomes in the training and validation set with dots and potential
outcomes in the test set with a line. The average potential outcomes and cost are shown with a bold line.

A more detailed comparison of the prescribed PM frequencies per policy is shown in Figure A5.
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(a) Effect of λ on the individual machines’ maintenance distributions
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(b) PM frequencies

Figure A4: Simulating selection bias. (A4a) We show the distributions that govern the PM frequency for different machines.
As these distributions depend on the machine’s characteristics, certain machines will more frequently have more maintenance,
resulting in selection bias. Moreover, higher values of λ imply more diversity in the distributions and, consequently, more
selection bias. (A4b) We show how the PM frequency is distributed among the different machines in reality and as a result
of different values of λ. Larger values of λ result in more selection bias with a value of 30 resulting in a PM frequency
distribution close to the original.
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Figure A5: Evaluating the policies’ decisions. We compare the accuracies and costs for each policy’s decisions in terms of
the difference between the prescribed and ideal maintenance level (left), as well as the policy cost ratio (right). Results are
shown for one representative iteration.


