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Abstract

Exploration in reinforcement learning through intrinsic rewards has previously been
addressed by approaches based on state novelty or artificial curiosity. In partially
observable settings where observations look alike, state novelty can lead to intrinsic
reward vanishing prematurely. On the other hand, curiosity-based approaches re-
quire modeling precise environment dynamics which are potentially quite complex.
Here we propose random curiosity with general value functions (RC-GVF), an
intrinsic reward function that connects state novelty and artificial curiosity. Instead
of predicting the entire environment dynamics, RC-GVF predicts temporally ex-
tended values through general value functions (GVFs) and uses the prediction error
as an intrinsic reward. In this way, our approach generalizes a popular approach
called random network distillation (RND) by encouraging behavioral diversity and
reduces the need for additional maximum entropy regularization. Our experiments
on four procedurally generated partially observable environments indicate that
our approach is competitive to RND and could be beneficial in environments that
require behavioural exploration.

1 Introduction

Efficient exploration in reinforcement learning (RL) is a challenging problem, especially in high-
dimensional observation spaces and sparse-reward environments [Thrun, 1992, Bellemare et al.,
2016]. A common strategy to address this is by incorporating an intrinsic reward, in addition to the
(sparse) extrinsic reward.

In the recent literature two main approaches have emerged: (1) approaches based on state novelty,
where an intrinsic reward in the form of a ‘novelty bonus’ is awarded based on how often a state has
been visited [Sutton, 1990, Barto and Singh, 1991, Bellemare et al., 2016, Burda et al., 2019a]; and
(2) approaches based on artificial curiosity, where agents are rewarded based on the prediction error
or information gain of a world model [Schmidhuber, 1991, Storck et al., 1995, Houthooft et al., 2016,
Pathak et al., 2017].

A limitation of state novelty bonuses in partially observable settings is that observations may look
alike. For example in random network distillation (RND) the agent simply receives a novelty bonus
based on the error in making predictions about the observation after applying a fixed randomly
initialized neural network. The success of the RND novelty bonus would therefore rely on the
generalization properties of a (random) neural network’s mapping of observations to features. This
can be especially problematic if the error (and thus the intrinsic reward) vanishes before the agent has
reliably discovered the source of extrinsic rewards in the environment [Raileanu and Rocktäschel,
2020, Flet-Berliac et al., 2021]. Similarly, curiosity-based approaches usually require modeling the
complete environment dynamics, which are potentially very complex.
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In this paper we explore a connection between state novelty and artificial curiosity that may address
both limitations. To that extent we propose random curiosity with general value functions (RC-GVF),
a novel approach to generating intrinsic rewards based on general value functions (GVFs) [Sutton et al.,
2011] and the prediction of abstract quantities about the environment [Schmidhuber, 1997]. We view
GVFs as partially modeling the environment dynamics through predicting the temporally extended
value of a quantity of interest (i.e. ‘answering’ a question) in the environment when following a
given policy [Sutton, 1995]. This quantity of interest corresponds to a random observation-dependent
function of pseudo-rewards, akin to the random target features of RND. We then minimize the
TD-error of these GVFs while using the error as an intrinsic reward. We argue that this is similar
to the intrinsic reward derived from curiosity-based approaches, but now only modeling a random
subset of the environment dynamics.

RC-GVF includes RND as a special case where the discount factor of the GVF is set to zero. Unlike
in RND, where predictions about random target features may be viewed as predicting pseudo-rewards,
RC-GVF takes longer horizon prediction errors into account that might be better suited for exploration.
In particular, by integrating the policy as part of the prediction problem, we reward the agent for
altering its behavior, reducing the need for additional exploration mechanisms such as maximum
entropy regularization that is typically used in the case of RND.

We evaluate RC-GVF on a benchmark of sparse reward partially observable environments. Com-
pared to RND we observe improvements in mean return in the absence of entropy regularization.
Introspection reveals that our approach reaches states that provide external reward more frequently
when learning only from intrinsic rewards in environments that benefit from behavioral diversity. In
environments that require visiting most states, performance is similar to RND.

2 Preliminaries

Reinforcement Learning We follow the standard POMDP formulation with time steps t ∈ N,
observations ot ∈ O, environment states st ∈ S, actions at ∈ A, extrinsic rewards Re(st), and
policies π(at|ht) where ht = o1:t. The objective is to find the optimal policy π∗ that maximizes the
expected discounted return

J(π) = Eπ[
∞∑
k=0

γkRe(Sk)], (1)

where 0 < γ < 1 is the discount factor and upper case variables denote random variables.

Random Network Distillation In random network distillation (RND) the agent receives a state
novelty reward proportional to the error of predicting features ẑ(ot) generated by a randomly ini-
tialized neural network Zφ : O → Rd. The RND intrinsic reward for an observation is given by

Ri(ot) = ‖Zφ (ot)− ẑ (ot) ‖2. (2)

Entropy Regularization To encourage additional exploration, many RL algorithms employ entropy
regularization. The maximum entropy objective [Haarnoja et al., 2017] adjusts the RL objective from
Equation 1 to

JMaxEnt(π) = Eπ[
∞∑
k=0

γkRe(Sk) + αH(π(·|Hk))], (3)

where α ∈ R+ is a hyper-parameter that trades off rewards and entropy regularization. RND also
typically employs this regularization, despite introducing its own exploration mechanism.

General Value Functions A general value function (GVF) [Sutton et al., 2011, Schaul and Ring,
2013] is defined by a policy π, a cumulant or pseudo-reward function Z : O → R, and a discount
factor γz . It can be expressed as

vπ,z(o) = Eπ

[ ∞∑
k=0

γkzZ(Ot+k)|Ot = o

]
. (4)
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General value functions extend the concept of predicting expected cumulative values to arbitrary
signals beyond the reward. They can be viewed as answers to questions about such quantities under a
particular policy.

3 Random Curiosity with General Value Functions

This section describes random curiosity with general value functions (RC-GVF), a novel approach to
intrinsic rewards based on GVFs of random pseudo rewards.

Random Pseudo-Rewards and GVFs Similar to artificial curiosity [Schmidhuber, 1991] in RC-
GVF we model the environment dynamics. Instead of modeling the entire dynamics, we ask questions
about outcomes in the future under a policy π [Schmidhuber, 1997]. In this paper, these questions
are random and represented by a randomly initialized neural network Zφ that maps observations to
features Zφ : O → Rd, here referred to as pseudo-rewards. At time step t, the current observation ot
is mapped to the pseudo-rewards zt+1 ∈ Rd. To capture the outcome of a question across time, we
are interested in the discounted pseudo-return Gzt for a sequence of pseudo-reward random variables
Zt+1, Zt+2 . . . given by

Gzt =

∞∑
k=0

γkz · Zt+k+1, (5)

where γz is a scalar discount factor. Pseudo-rewards and returns are random variables due to
the stochasticity in the policy and/or environment dynamics. Similarly, the pseudo-value(s) of an
observation under the policy π is given by

vπ,z (o) = Eπ

[ ∞∑
k=0

γkzZφ (Ot+k) | Ot = o

]
. (6)

This value function is known as a general value function [Sutton et al., 2011].

TD-Error as Intrinsic Curiosity Reward Our exploration mechanism rewards the agent for
taking actions that generate unknown outcomes under fixed random questions. To that end, we train
a separate (recurrent) neural network, which we call the predictor, to predict these pseudo-values.
Concretely, the predictor v̂π,z : H → Rd maps histories of observationsH to values. We focus on a
predictor that is trained on-policy. One motivating factor for this is that it couples the prediction task
to the current policy, which creates an incentive to vary the policy for additional exploration. As a
target we use the (truncated) λ-return, which can be recursively expressed as

Gzt (λ) = Zt+1 + γz(1− λz)v̂π,z (Ht+1) + γzλG
z
t+1. (7)

Here, λz ∈ [0, 1] is the usual parameter that allows us to balance the bias-variance trade off by
interpolating between TD(0) and Monte Carlo estimates of the pseudo-return [Sutton, 1988]. The
intrinsic reward of RC-GVF at time step t is then defined as the error between the output of the
predictor and the truncated λ-pseudo-return

Ri(ot) = ‖Gzt (λ)− v̂π,z (ht) ‖2, (8)

where ht = o1:t. Using Gzt (λ) as the target links the prediction task and the intrinsic reward to the
agent’s policy, thereby encouraging behavioral exploration.

Effective Horizon and RND as a Special Case The effective horizon over which predictions are
considered depends on the choice of the discount factor γz . We obtain an intrinsic reward matching
RND (Equation 2) for the special case of γz = 0, which yields Gzt = Zt+1. The larger γz , the more
pronounced is the contribution of the current policy to the prediction problem.

4 Experiments

We compare RC-GVF and RND on four procedurally generated environments from Mini-
Grid [Chevalier-Boisvert et al., 2018]: KeyCorridor-S3R3, ObstructedMaze-2Dl, MultiRoom-N7-S8,
and MultiRoom-N10-S4. Exploration in these environments is particularly challenging due to partial
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(a) KeyCorridor-S3R3
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(b) MultiRoom-N10-S4
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(c) ObstructedMaze-2Dl
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(d) MultiRoom-N7-S8

Figure 1: Average return of RC-GVF and RND on the selected Minigrid environments (with no
entropy regularization).

observability, sparse rewards, and the procedural generation of mazes and objects. Additional details
about the environments are available in Appendix A.

To avoid confounding factors from combining different exploration strategies, we mainly focus on the
exploration behaviour in the absence of entropy regularization. For comparison with previous works,
we also include an analysis with entropy regularization. Moreover, to study the benefit of RC-GVF
in isolation, we also consider a setting where the agent only receives intrinsic rewards to guide its
behaviour. Finally, we conduct an experiment to study the influence of the RC-GVF discount factor
(γz) on the agent’s performance.

Implementation We use Proximal Policy Optimization (PPO) [Schulman et al., 2017] as our base
agent. This agent is trained to maximize the expected sum of a weighted combination of intrinsic and
extrinsic rewards. At each time step t, the agent receives a reward Rt = Re(st) + βRi(ot). Here
Re(st) is the extrinsic reward from the environment, Ri(ot) is the intrinsic reward generated from
either RND or RC-GVF, and β ∈ R+ is a hyperparameter to balance the weighting of intrinsic and
extrinsic rewards.

The agent consists of an actor and a critic, both share convolution layers followed by an
LSTM [Hochreiter and Schmidhuber, 1997], with separate multi-layer perceptron (MLP) heads
for the actor and critic. The pseudo-reward generator is implemented as a convolutional neural
network whose output is flattened to a vector. As per the original implementation of RND [Burda
et al., 2019a], the predictor has the same architecture as that of the pseudo-reward generator. In the
case of RC-GVF, the predictor is recurrent, consisting of three convolutional layers followed by an
LSTM with a linear output layer. More details about the neural architectures and implementation are
available in Appendix B.

Evaluation We present the results averaged over 10 independent runs for RC-GVF and RND on
each problem. The best hyper-parameter configuration for each approach and environment was
identified by a grid search with three seeds per configuration (see Appendix C).

Unless mentioned otherwise, all figures report the mean as a solid line and the shading indicates 95%
bootstrapped confidence intervals for the 10 seeds.

4



0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Frames 1e6

0

2

4

6

8

10

12

14

Cu
m

ul
at

iv
e 

su
cc

es
se

s

RC-GVF
RND

(a) KeyCorridor-S3R3
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(b) MultiRoom-N10-S4
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(c) ObstructedMaze-2Dl
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(d) MultiRoom-N7-S8

Figure 2: Cumulative number of times the agent successfully solves the environment, while only
receiving intrinsic rewards. Shading indicates 95% bootstrapped confidence intervals over 6 seeds.

Results Figure 1 presents our results on the MiniGrid environments when no entropy regularization
is used. We observe that RC-GVF appears more sample efficient than RND on the KeyCorridor
environment. In the ObstructedMaze environment we see that our approach is more stable across
independent runs. Both approaches are comparable and slightly unstable in the Multi-Room envi-
ronments (N10-S4 and N7-S8). We note that in a previous empirical comparison with IMPALA
[Espeholt et al., 2018] instead of PPO as the base agent (i.e. as in this paper), RND was not able to
reach any extrinsic reward states on these MultiRoom tasks [Raileanu and Rocktäschel, 2020].

One explanation for the findings in Figure 1 could be that the tasks in the Multi-Room environments
are inherently suited to RND’s intrinsic reward of covering as many states as possible. The extrinsic
reward in these environments requires visiting most states. Similarly, the better performance of
RC-GVF in KeyCorridor and ObstructedMaze could be due to a greater need to try out different
behaviours (finding the key, unlocking doors, picking up objects). Indeed, this variation in behaviors
is encouraged by the policy dependence in RC-GVF.

Figure 2 presents an analysis of the number of episodes in which the agent successfully completes
a task (i.e. it receives any extrinsic reward). To measure the exploration effect independent of
extrinsic reward maximization, in this setting the agent receives only intrinsic rewards to guide its
behaviour. It can be observed how RC-GVF completes the task more often on the KeyCorridor and
ObstructedMaze environments, again indicating that RC-GVF could be better suited to explore the
kinds of environments which benefit from policy diversity and higher entropy.

In the MultiRoom environments, we observe mixed results. It can be seen how an agent trained solely
with the RND bonus reaches the goal state more frequently in the N10-S4 environment as compared
to an agent trained with our bonus. We believe that the reason behind the reduced performance of
RC-GVF is tied to the exploration mechanism driven by altering the policy. In these environments
the goal state (with non-zero rewards) has a visually unique appearance (see Figure 7) that potentially
produces large intrinsic rewards in the case of RND, whereas RC-GVF is also incentivized by
behavioral exploration, reducing the tendency to follow the precise policy to revisit that state.

Additional Analysis We carry out an experiment to study the influence of the GVF discount factor
γz on RC-GVF’s performance in the KeyCorridor-S3R3 environment. Here γz can be viewed as
interpolating between RND (γz = 0) and variations of RC-GVF with increasingly more emphasis
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Figure 3: Performance of RC-GVF with different
discount factors (γz) on the KeyCorridor-S3R3
environment (with no entropy regularization).
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Figure 4: We see that with the entropy regulariza-
tion, both methods improve and are comparable
on the KeyCorridor-S3R3 environment.

on longer horizon predictions. Since the choice of GVF discount factor impacts the magnitude of
the pseudo-returns, the best intrinsic reward coefficient (β) was selected separately for each value
of γz through a grid search (see Appendix C). Figure 3 presents the results of this experiment. We
observe that the lower discount factors γz ∈ {0.007, 0.07, 0.25} generally perform similarly to RND
(shown as γz = 0), with only γz = 0.007 performing slightly better than expected. Increasing the
GVF discount factor–and therefore the horizon considered for the value function predictions–appears
to have a positive impact on the agent’s performance in this setting.

In the previous experiments we have focused on settings without entropy regularization, to avoid
confounding multiple exploration mechanisms. To compare with previous works, we conduct an
experiment on KeyCorridor-S3R3 with entropy regularization. In Figure 4, we see that the perfor-
mance of both approaches improves with the introduction of the entropy term. RND’s improvement
is more pronounced in comparison to RC-GVF. This suggests that RC-GVF requires less entropy
regularization due to promoted behavioral diversity.

5 Conclusion

We developed an intrinsic reward approach to exploration inspired by ideas from state novelty bonuses
and artificial curiosity. We introduced RC-GVF, based on general value functions, which derives
intrinsic rewards from the long term prediction error of random questions under the current policy.
The discount factor of these general value functions allows us to control the horizon over which
predictions are considered. Our approach includes RND as a special case when the discount factor is
zero.

Our experiments on four procedurally generated partially observable environments indicate that our
approach could be beneficial in environments that require behavioural exploration.

Limitations While the incorporation of the current policy into the prediction task can have benefits
in behavioral exploration, it can also lead to over-exploration. Alternatives to this on-policy version
of RC-GVF include an off-policy variant or policy-conditioned GVFs [Harb et al., 2020, Faccio et al.,
2021]. Another potential improvement can come from a distributional perspective to obtain intrinsic
rewards. This may be important as RC-GVF does not account for the inherent variance in the pseudo-
return even for a fixed policy. Furthermore, in comparison to RND, where the predictor belongs
to same model class as the pseudo-reward generator, we need to select a predictor of appropriate
complexity.

Future work In the future, we aim to compare RC-GVF with transition dynamics based curiosity
approaches [Burda et al., 2019b]. Further generalizations are possible; such as moving beyond
random pseudo-rewards, general value functions under different policies, and introducing time or
state dependent discounting.
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