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ABSTRACT

The performance of existing text style transfer models is severely limited by the
non-parallel datasets on which the models are trained. In non-parallel datasets,
no direct mapping exists between sentences of the source and target style; the
style transfer models thus only receive weak supervision of the target sentences
during training, which often leads the model to discard too much style-independent
information, or utterly fail to transfer the style.
In this work, we propose LaMer, a novel text style transfer framework based on
large-scale language models. LaMer first mines the roughly parallel expressions
in the non-parallel datasets with scene graphs, and then employs MLE training,
followed by imitation learning refinement, to leverage the intrinsic parallelism
within the data. On two benchmark tasks (sentiment & formality transfer) and a
newly proposed challenging task (political stance transfer), our model achieves
qualitative advances in transfer accuracy, content preservation, and fluency. Further
empirical and human evaluations demonstrate that our model not only makes
training more efficient, but also generates more readable and diverse expressions
than previous models.

1 INTRODUCTION
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Figure 1: Red and blue circles represent the source
and target texts respectively. (a) Existing methods
crucially ignore the inherit parallelism within the
data. (b) Our method first mines (roughly) parallel
expressions, then learns how to transfer style with
the self-supervision from the parallel expressions.

Text style transfer (TST) models learn how to
transfer the style of text from source to tar-
get while preserving the style-independent con-
tent (John et al., 2019; Fu et al., 2018). Ex-
isting TST methods perform well when trans-
ferring simple styles, such as sentiment; how-
ever, they tend to do a poor job on more abstract
and subtle styles, such as formality and political
stance (Lee et al., 2021; Fu et al., 2019b).

The lack of parallel datasets is one of the main
bottlenecks for text style transfer tasks. Parallel
datasets contain pairwise sentences that only dif-
fer in specific styles, while non-parallel datasets
typically contain a large corpora of sentences
with different styles, without direct one-to-one
mapping between sentences (Fu et al., 2019a;
Krishna et al., 2020). In real-world settings, it is
much easier to construct non-parallel datasets by collecting large quantities of non-parallel sentences
with different styles; conversely, carefully-aligned parallel TST datasets are much more costly to
construct, usually requiring human annotation, and are thus scarce.
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The lack of parallel datasets for style transfer tasks prompts researchers to develop unsupervised TST
methods trained on non-parallel datasets (Dai et al., 2019; Luo et al., 2019; Shen et al., 2017). Current
methods either rely on surface-level split of style- and content-bearing tokens (Li et al., 2018a; Castro
et al., 2017), or separate content and style vectors in latent space (John et al., 2019; Liu et al., 2020a;
Wang et al., 2019) — once style and content have been separated, they then swap styles leaving the
content unchanged. However, surface-level split is not reliable when the style cannot be extracted at
the token level (Sudhakar et al., 2019); latent-space disentanglement could also fail due to a lack of
pairwise supervision and results in discarding too much style-independent content (Reif et al., 2021).
However, these methods are less than ideal. As demonstrated in Figure 1 (a), they tend to learn the
mapping between source and target styles on the original randomly mapped sentence pairs, but fail to
take into account the inherent parallelism within the data (Krishna et al., 2020).

This paper presents LaMer, a novel self-supervised text style transfer framework built upon recent
text-to-text language models (LMs). As illustrated in Figure 1 (b), rather than accepting the random
mapping in the given non-parallel dataset, we first align sentences from source and target styles based
on their scene graphs, and then run conditional MLE training on LM to maximize the probability
of generating (roughly) parallel style sentences. As a final refinement step, we deploy reinforced
imitation learning with contrastive loss on the aligned data to further reward the best transfer
demonstration and penalize the others. In comparison with existing methods, LaMer fully exploits
the intrinsic parallelism within non-parallel data and innovatively applies the transfer learning power
of large-scale LMs to boost text-style transfer performance.

Our contributions can be outlined as follows: First, We present a language model based text style
transfer framework, LAMER, that achieves significant advances in two existing benchmark TST
tasks and one newly proposed challenging TST task. Human evaluations further confirm that LaMer
generation is not only more readable but also richer in diverse expressions than previous methods.
Second, We propose a new challenging text style transfer task, Political Stance Transfer, and release
a benchmark dataset, which includes news sentence-pairs describing the same fact but from opposite
political stances (i.e., liberal and conservative). The stances of the sentences are labeled by expert
human editors. Third, As part of LaMer, we introduce a simple but powerful method to create parallel
corpora from non-parallel data. We show that this method can be used as a general treatment to
improve existing TST models. Given the abundance of non-parallel corpora for different TST tasks,
this method has the potential to greatly impact the field of TST.

Code for LaMer is available at https://github.com/DapangLiu/LaMer.

2 APPROACH

LaMer is comprised of three main steps. First, we mine (roughly) parallels target style expressions
for each of the source style sentences based on their LM-based sentence embeddings and scene
graphs (§2.2). Second, we deploy MLE training on the text-to-text LM BART (Lewis et al., 2020b) to
maximize the probability of generating such roughly parallel sentences in target style (§2.3). Finally,
we use imitation learning to further refine the generation with the self-supervision from the mined
parallel demonstrations (§2.4).

2.1 NOTATION AND PROBLEM STATEMENT

For the task of binary text style transfer (src ↔ tgt), We denote the source and target style datasets as
Dsrc and Dtgt, which contain M and N sentences expressing two different styles respectively (i.e.,
Dsrc

= {ssrc
1 , s

src
2 , ...s

src
M}, Dtgt

= {stgt
1 , s

tgt
2 , ...s

tgt
N }). We also denote the tokens in source and target

sentences as {x1, x2, ..., xt} ∈ s
src
i and {y1, y2, ..., yt} ∈ s

tgt
j , for given source and target sentences

s
src
i and stgt

j . Given an input sentence ssrc of the source style, an ideal style transfer model should
be able to generate an appropriate, fluent target sentence ŝtgt, which is of the target style while
maintaining the style-independent content.

Existing methods learn a mapping frandom ∶ Dsrc
→ Dtgt without considering the self-parallelism

between Dsrc and Dtgt; LaMer, however, works on the assumption that m(≤M) sentences in Dsrc

have n parallels in Dtgt. The number of parallels n for each of the m sentences is variant but no more
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thanN . Therefore, the goal of LaMer can be framed as first identifying a parallel subset of the original
non-parallel dataset and learning a mapping on this dataset: fparallel ∶ D

src
m → Dtgt

n (m ≤M,n ≤ N).

2.2 MINING (ROUGHLY) PARALLEL SENTENCES

they had such an extensive menu and the beef was delicious .

overpriced menu, and mediocre beef .

nothing great on their menu

[they, menu, beef]

[they, menu, nothing, beef]

S-Emb. + SAS Alignment

Figure 2: An example of aligned parallels by
our scene graph based method. We underline
the scene entities and annotate how we compute
dOrder and dExist with ŝtgt+ and ŝtgt-.

In this work, we argue that the non-parallel text
style transfer datasets have inherent property of
parallelism. We outline in the following three ma-
jor strategies to mine roughly parallel sentences:

Random (RD). For each sentence ssrc
∈ Dsrc,

randomly pick k sentences from Dtgt as parallels.
This method mainly serves as an ablation to show
the effectiveness of other strategies.

Sentence Embedding (S-Emb.). Sentences that
only differ in linguistic style should have higher
semantic similarity than other unrelated sentences.
As a more advanced strategy, we leverage off-the-
shelf LMs (e.g., RoBERTa (Liu et al., 2019)) to
mine semantically similar sentences. We first en-
code every sentence in Dsrc and Dtgt with their
embeddings extracted from an LM. Then, for each

sentence ssrc
∈ Dsrc, we pick k most similar sentences from Dtgt through cosine similarity as parallels.

S-Emb. + Scene Alignment Score (S-Emb. + SAS). We add a scene graph based alignment step
to the sentence embedding method to leverage shared entities between source and target sentences.
Scene graph extraction has been successfully used in computer vision (Venugopalan et al., 2015;
Chen et al., 2020b) to guide (Pan et al., 2020) or judge (Anderson et al., 2016) diverse caption
generation. Inspired by the CV example and the observation that scene graphs of sentences with
similar content but different styles tend to have overlapping nodes, our algorithm highlights the shared
entities (nodes) of the sentence scene graph by running the scene graph parser released by Wu et al.
(2019)1, which outputs mined scenes graphs in subject-relation-object triplets. In our case, we only
consider the end nodes of these triplets (which are subj. and obj.) as the scenes entities. Figure 2
shows an example of mined sentences and corresponding scenes entities.

Let ∣e(ssrc)∣ and ∣e(stgt)∣ be the number of scene entities extracted from the source and target style
sentence, and ∣e(ssrc∩tgt)∣ be the number of their overlaps, we compute Scene Alignment Score
(SAS) as:

SAS(ssrc∣∣stgt) = 1

∣stgt∣ ⋅
(1 + β

2) ⋅ precision ⋅ recall
β2 ⋅ precision + recall

, (1)

where precision (= ∣e(ssrc∩tgt)∣
∣e(stgt)∣ ) and recall (= ∣e(ssrc∩tgt)∣

∣e(ssrc)∣ ) describe the portion of target and source
entities that are part of the overlap, and positive real factor β is chosen such that recall is considered
β times as important as precision in a specific domain. We also normalize SAS by the length of stgt,
since longer target sentence candidates are more likely to have higher SAS.

SAS serves as a complementary alignment metric to further filter the parallel sentences picked by the
previous sentence-embedding-based metric. The complete procedure of S-Emb. + SAS alignment is:

1. Encode each sentence in Dsrc and Dtgt as sentence embeddings via a pre-trained LM.

2. Compute cosine similarity between all sentence pairs (si, sj) where si ∈ Dsrc and sj ∈ Dtgt.

Pick the k most similar sentences s(k)j from Dtgt as parallel candidates for si.

1The scene graph parser can be found here: https://github.com/vacancy/SceneGraphParser
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3. For each sentence si ∈ Dsrc and its parallel candidates s(k)j , compute pairwise SAS by
Equation 1. Pick those sj whose SAS scores (with respect to si) are above a threshold p as
the final parallel sentences to si.

From empirical observations, we found that the selection of p and k is task-specific and has crucial
effects on the performance of LaMer. We explore the outcomes of different choices of k and p in §3.3.
Though SAS alignment LaMer relies on entity alignment for mining parallel corpora, other alignment
mechanisms, such as (multilingual) LM alignment (i.e., the S-Emb. method) can potentially be
used for transfer cases where entities may not be shared across styles (such as ancient v.s. modern
English (Xu et al., 2012), or even multilingual text style transfer (Krishna et al., 2021)).

2.3 CONDITIONAL TOKEN-LEVEL MLE TRAINING

After mining parallel sentences for a source sentence ssrc, from our corpus, we take the source
sentence ssrc as the condition, and preform a conditional token-level MLE training on the mined
parallels in the manner of standard autoregressive pre-training. Assuming for a certain source sentence
s

src we have n target parallels mined in the previous step (i.e., ssrc
→ {stgt

1 , s
tgt
2 , ...s

tgt
n }, n ≤ N ), the

MLE loss can be computed as:

JMLE = −
n

∑
i=1

∣stgt
k ∣
∑
t=1

y
(i)
t logLM(y1∶t−1∣ssrc), (2)

where yit ∈ s
tgt
i denotes the i-th step ground truth token belonging to the i-th target parallel sentence.

LM(y1∶t−1∣ssrc) is the LM output at t-th step (a distribution on the vocabulary) given the source
text and previous generation. We choose BART Lewis et al. (2020b) as the LM, which is already
pre-trained on several text-to-text tasks, and concatenate the source and target text with </s><s>
tokens pre-defined by BART as input data. At each step, with the supervision of ground truth target
tokens y(i)t , we minimize the MLE loss only at the target part. The LM is thus trained to maximize
the probability of generating tokens ŷt approaching to y(i)t .

Though the results produced are reasonable, solely relying on MLE training has several defects. First,
MLE treats all parallels of a certain source equally without penalizing low-quality demonstrations,
which not only makes the model less robust on noisy data, but also possible to be misled by negative
samples during local optimization. Second, token-level MLE does not pay special attention to scene
entities shared between the source and target, which we found take up the main portion in the
human written references (as demonstrated in §A.3). We are thus motivated to further improve the
performance using the self-supervision from the parallels.

2.4 REINFORCED IMITATION LEARNING BY CONTRAST

For all the mined target style parallels stgt of ssrc, we denote the one that has the highest similarity
score (with S-Emb.) or has the highest SAS (with S-Emb. + SAS) as the expert demonstration stgt+,
while the others are set as stgt-.

In the formulation of reinforcement learning, at each step t, the policy πθ observes the state y1∶t−1
(partially generated text), takes an action at = yt (pick a token), and transits to the next state
y1∶t. In the context of TST tasks, the policy can be interpreted as the LM-based generation model:
π̂ ∼ LM(at∣y1∶t−1, ssrc), and the set of stgt+ can be seen as the trajectory derived from an expert
policy π+, while stgt- is produced by an amateur policy π−. The goal of this step imitation learning
can thus be framed as learning a policy that has more probability to behave like π+ rather than π−,
which can be achieved by minimizing the contrastive loss:

JIL = max(ψ∗ [π+
, π̂] − ψ

∗ [π−
, π̂] +∆, 0), (3)

where ψ∗(⋅) is the distance measurement of two policies in terms of semantic coherence dSEM(⋅)
and scene preservation dPSV(⋅), such that ψ∗(⋅) = dSEM(⋅) + dPSV(⋅); and ∆ is a hyperparameter
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that controls the contrasting margin. The general form is inspired by the triplet loss (Schroff et al.,
2015) and recent in-batch constrastive learning (Gao et al., 2021): we encourage the learned policy π̂
to be more similar to the expert one π+ than the amateur one π− by at least margin ∆. dSEM(⋅) and
dPSV(⋅) are detailed below.

Sequence-level Semantic Coherence. For sequence ŝ generated under current learning policy π̂ and
a certain target style demonstration stgt, we encode them using bi-directional LM RoBERTa (Liu
et al., 2019), which is widely used as sentence encoder in related work (Reimers & Gurevych, 2019;
Li et al., 2020). Then, we take their negative cosine similarity as the distance for semantic coherence:

dSEM = − embT
ŝ⋅embstgt

∥embŝ∥∥embstgt∥ . Lower value in dSEM means the learned policy π̂ can produce similar quality
sequences in terms of semantics as target style demonstrations. It is a sequence-level measurement
since the encoding is based on the whole sentence.

Token-level Scene Preservation. In our context, legitimate target style parallels should preserve
most scene entities that appear in source style sentences. To explicitly promote the content preser-
vation performance of the current policy, we introduce a token-level distance dPSV. We first extract
scene entities from s

tgt+ and each of the stgt−, and then measure the differences in both the order
of appearance of the entities and the existence of the entities. Taking stgt+ as an example (sim-
ilar calculation is done on each of the stgt-), we compute: dPSV+ = αdOrder+ + (1 − α)dExist+ =

α∥e⃗(stgt+), e⃗(ssrc)∥Lev. + (1−α)∥e⃗(stgt+)− e⃗(stgt+ ∪ src)∥H
2 where e⃗(⋅) means the extracted scene

entities, e⃗(⋅) is its one-hot encoded vector, ∥x⃗, y⃗∥Lev. measures Levenshtein distance (Yujian & Bo,
2007), one type of edit distance, and for vectors e⃗(ssrc) and e⃗(stgt), we compute their hamming
distance3 (Norouzi et al., 2012). Lower dOrder+ means the appearing order of e⃗(ssrc) resemble e⃗(stgt+).
Similarly, lower dExist+ means e⃗(ssrc) and e⃗(stgt+) are mostly overlapped. Similar procedure applies
to dPSV− as well. We present more details about how we compute these distances in §A.4.

2.4.1 POLICY GRADIENT BY REINFORCE

We choose the REINFORCE algorithm (Williams, 1992) to optimize the current policy πθ. As
shown in Equation 4, we use greedy decoding results as the baseline (Rennie et al., 2017), and
sampling decoding for the exploration step, which mimics the actor-critic manner in reinforcement
learning (Fujimoto et al., 2018; Haarnoja et al., 2018). The policy gradient can thus be presented as:

▽θ J(θ) = −Eπθ
[▽θ log πθ ⋅ (J

sample
IL (stgt+

, s
tgt-) − J

greedy
IL (stgt+

, s
tgt-))] , (4)

where J sample
IL and Jgreedy

IL can be both calculated by Equation 3. We take the difference of two the
mode rewards as the advantage, feeding into the REINFORCE algorithm to optimize our policy πθ.
Finally, the output policy πθ is able to generate style transferred sequences resembling the expert
demonstrations stgt+. More details about the complete loop of policy gradient can be found in §A.5

Discussion: Imitation Learning, Reward-based RL, and MLE. Framing token-by-token text
generation as a sequential decision-making process, reward-based reinforcement learning (RL) has
achieved success in text generation by directly setting indifferentiable evaluation metrics such as
BLEU (Papineni et al., 2002) or ROUGE (Lin, 2004) as the reward function (Gong et al., 2019; Liu
et al., 2020b). In the context of TST tasks, however, instead of reward-based RL, we argue imitation
learning (IL) is a better choice, since: 1) it is challenging to design a uniform reward fitting a variety
of source style text (Chen et al., 2020a), and 2) it is also unnecessary to calculate an elaborately
designed reward. The roughly parallel target style sentences mined in the alignment step can naturally
serve as expert demonstrations (Li et al., 2018b). They are high-quality and cost-free, which can
greatly improve the sampling and learning efficiency of RL optimization.

A common obstacle of IL is known as covariate shift (Ross & Bagnell, 2010), which means IL can
provide a relatively good performance for the test cases similar to the demonstrations (used for policy
training), but it could still suffer from bad generalization for cases it never meets during training, as

2
α controls the weights assigned to dOrder and dExist; set by running repeated experiments ranging the α from

0 to 1 by 0.1, and picking the best-performing α with respect to GM: α = {0.4, 0.3, 0.1} for the three tasks.
3Hamming norm ∥v⃗∥H is defined as the number of non-zero entries of vector v⃗.
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the number of demonstrations is finite. Similar problems called exposure bias (Bengio et al., 2015;
Ranzato et al., 2016) also exists in MLE when the supervised data is scarce. We claim our token-level
MLE training on LMs can somewhat mitigate such problems, since the large-scale LMs are already
pre-trained on huge quantities of data across many domains as a prior.

3 EXPERIMENTS

3.1 DATASETS AND EXPERIMENTAL SETUP

Sentiment Transfer. We use the Yelp reviews dataset collected by Shen et al. (2017) which contains
250k negative sentences and 380k positive sentences, organized in non-parallel fashion. Li et al.
(2018a) released a small test set that has 500 human written references for both target sentiments, and
they are already one-on-one aligned with the source sentiment sentences.

Formality Transfer. A more challenging TST task is to modify the formality of a given sentence.
We use the GYAFC dataset (Rao & Tetreault, 2018), which contains formal and informal sentences
from two domains. In this paper, we choose the Family Relationship domain, which consists of about
52k training sentences, 5k development sentences, and 2.5k test sentences. Different from the Yelp
dataset, the test set of GYAFC has four human written references for each source style test case. Our
evaluation results for this task are reported as the average against the four references.

Political Stance Transfer. News outlets reporting the same event naturally meet the requirement of
style transfer data, which is aligned in content but different in style. We leverage Allsides.com4 as
an aggregator, where outlets reporting the same events with different political stances are already
organized and labeled by expert human editors. In total, we collect 2,298 full-length news articles
from 6/1/2012 to 4/1/2021 in pairs of liberal-conservative leaning. Though the data seems parallel
at the article level, in this work we focus on sentence level TST. We further split the articles into
about 56k sentence pairs as a non-parallel dataset for training (detailed in §A.2). These titles are
written by expert writers from liberal- or conservative-learning media outlets, and aligned by the
Allsides editors. For ethical consideration, we manually examined the articles to removing those
containing sensitive topics (such as hate speech). To adhere to the outlets’ TOS, we will release our
dataset as links to the articles (instead of the text), with the appropriate code to extract the content for
training purposes. A closer comparison of our proposed novel dataset with another political stance
TST dataset (Voigt et al., 2018) can be found in §A.1.

The detailed statistics of all three benchmark datasets and our experimental setup can be found in
§A.3. We have discussed the hyperparameter selection for the best performing LaMer in §3.3.

3.2 MAIN RESULTS ON TEXT STYLE TRANSFER PERFORMANCE

TST models should be able to transfer source style sentence to a target style, while maintaining the
style-independent content as much as possible. Most existing works evaluate their methods with
transfer accuracy (ACC; classification accuracy) and content-preservation (BLEU-ref ; token overlaps
with reference). In this work, besides using ACC and BLEU-ref, we also report more advanced
metrics–SIM and FL introduced by Krishna et al. (2020)–to further evaluate our method.

LaMer has competitive performance. Table 1 shows the main results comparing LaMer with eight
popular TST models on the three benchmark datasets. In addition to the independent ACC and
BLEU score5, we also report their geometric mean (GM) for direct comparison with the DualRL and
STRAP baselines; however, it should be noted that GM has not been well studied as an evaluation
metric for TST and is only included for comparison purposes. We also consider inverse PINC
scores (Chen & Dolan, 2011)—i-PINC—as a complementary metric of BLEU. i-PINC counts the
n-gram overlaps after removing the tokens shared between source and target style sentences, and thus
properly penalizes the Input Copy method (i-PINC = 0).

Compared with existing methods, LaMer performs better in terms of overall metric GM, and shows
particularly strong net transfer ability (since i-PINC does not count duplicated tokens between ssrc

4https://www.allsides.com/story/admin
5We use BLEU-ref, which computes average n-gram BLEU (n ranges from 1 to 4).
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Table 1: LaMer achieves competitive performance in three TST tasks. CAE (Shen et al., 2017),
DelRetrGen (Li et al., 2018a), DualRL (Luo et al., 2019), Style Transformer (Dai et al., 2019), Deep
Latent Seq (He et al., 2020) are popular TST models not built on LMs. TSF-DelRetGen (Sudhakar
et al., 2019), IMaT (Jin et al., 2019), and STRAP (Krishna et al., 2020) are recent LM-based TST
models. Input Copy directly copies the source style sentence as the transfer output. GM: Geometric
Mean of Transfer Accuracy (ACC) and BLEU. i-PINC measures net transfer ability by not counting
words that can be directly copied from the source style sentence, as discussed in §3.2. We color (

) the best results, and underline the second best, not including the Input Copy reference.
Sentiment

SAS = 0.73
Formality

SAS = 0.29
Political Stance

SAS = 0.30

Existing Methods ACC BLEU GM i-PINC ACC BLEU GM i-PINC ACC BLEU GM i-PINC

Input Copy (ref.) 7.4 61.7 21.4 0 1.9 54.6 10.2 0 7.5 17.8 11.6 0
CAE 70.5 6.0 20.6 1.2 39.5 35.8 37.6 5.9 31.5 5.1 12.7 1.4
DelRetrGen 65.4 11.8 27.8 4.8 61.9 14.8 30.3 6.6 93.8 3.5 18.1 6.2
Dual RL 85.6 21.2 42.5 4.0 71.1 31.9 47.9 7.2 91.8 8.1 27.3 5.7
Style Transformer 93.6 17.1 40.0 5.2 72.2 32.7 48.6 4.1 48.6 7.3 18.8 1.1
Deep Latent Seq 87.9 18.7 40.5 7.3 80.5 18.5 38.6 6.1 85.8 20.8 42.2 3.0

LM-based
TSF-DelRetGen 89.5 31.7 53.3 4.5 79.3 17.4 37.1 7.3 65.8 23.7 39.5 2.9
IMaT 95.9 22.5 46.5 3.3 72.1 28.2 45.1 12.7 82.9 19.5 40.2 5.3
STRAP 92.3 32.5 54.8 6.4 75.4 32.6 49.6 9.7 84.3 21.3 42.4 5.0

Ours: LaMer
w/. RD 97.1 19.8 43.8 2.5 64.2 20.4 36.2 5.5 75.9 10.1 27.7 6.1
w/. S-Emb. 90.1 40.6 60.5 5.6 65.1 33.8 46.9 10.9 78.2 22.1 41.6 9.2
w/. S-Emb. + SAS 97.0 34.1 57.5 9.6 76.5 39.2 54.8 13.3 82.7 30.5 50.2 13.6

and stgt). Among the three mining strategies we proposed in §2.2, the S-Emb. + SAS seems to offer
the best performance boosting in terms of content preservation, but shows no clear advantage on style
control accuracy. When comparing LaMer with the three LM-based models, we find the advantage
of LaMer mainly comes from the gain in content preservation (BLEU), which demonstrates the
effectiveness of our scene graph alignment. We also find some of the other TST models produce
low-fluency (i.e., high perplexity) transferred sentences (see Table 10 in §A.7), though we must note
that recent studies have shown perplexity to be a poor measure of fluency (Krishna et al., 2020; Mir
et al., 2019; Lee et al., 2021).

Table 2: Few-shot performance on Formality TST (only 1% training
data available) of LaMer and other LM-based baselines. We also
include a zero-shot TST method built on GPT-3 (Reif et al., 2021) for
reference. We annotate standard deviation next to the results as well.
Training Data (%) 1% (0% for GPT3) 100%

Method ACC SIM FL JA,S,F ACC SIM FL JA,S,F

TSF-DelRetGen 16.51.4 5.51.9 90.30.1 2.61.1 54.11.4 30.50.8 98.90.1 29.70.5
IMaT 35.90.4 22.10.2 23.00.4 3.20.7 59.51.2 39.71.1 99.60.1 37.40.2
STRAP 37.70.7 12.50.9 70.40.2 5.30.4 67.71.2 72.51.1 90.40.7 45.51.2
Ours: LaMer 48.80.4 27.40.6 89.80.1 13.50.3 66.40.5 74.30.3 97.80.1 53.20.1

GPT-3prompt TST 10.20.6 17.11.1 98.00.2 6.50.4 – – – –

Table 3: Compared with
other baselines, LaMer re-
quires neither extra data nor
training additional models.
Ext. Resource? Data Model

TSF-DelRetGen ! !

IMaT ! %

STRAP ! !

Ours: LaMer % %

GPT-3prompt TST % %

LaMer is robust in few-shot settings. LaMer learns the inherent parallelism within the unsuper-
vised data, which could be challenging in data scarce cases. Recent works have explored the limits
of TST in few-shot settings (Riley et al., 2021; Krishna et al., 2021), we conduct similar studies by
limiting the available training data (to 1%), aiming to answer whether or not LaMer can still provide
comparable performance as others. We consider LM-based baselines which show strong results
in Table 1. We also compare with a zero-shot prompt-based TST baseline built upon GPT-3 (Reif
et al., 2021) for reference. For evaluation metrics, we use the recently proposed J-score framework
(including ACCuracy, SIMilarity, and FLuency) (Krishna et al., 2020), which solves many of the
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Figure 3: Effect on performance when choosing different k and p for S-Emb. + SAS alignment.
We also annotate (with a star) the recommended settings which reaches best balance between style
control accuracy and content preservation BLEU score.

issues in existing metrics 6. As shown in Table 2, we find that LaMer achieves great performance
(J-score) in few-shot cases, partially because other baselines rely on external systems trained on
ample data;7 In extreme data hungry cases, the compromised external modules would propagate
errors to following parts as they are coupled. LaMer, instead, requires neither extra data nor additional
training on external systems (See Table 3), but fully leverages the self-supervision hidden in the
unsupervised data, which achieves robust performance even in few-shot scenarios.

IL refinement is crucial for LaMer content preservation. As shown in Table 4, the BLEU score
for LaMer drops substantially when the imitation learning refinement stage is totally removed (No
IL, MLE only), and we find this drop is higher for challenging style tasks (such as political stance
transfer), partially because the quality variance of their demonstrations is higher, i.e., a further
guidance towards good demonstrations will make a big difference. We also conducted further ablation
studies on components of IL: In general, removing dOrder seems to cause greater performance drop in
formality TST, while dExist seems important to successful political stance TST. Removing all scene
preservation distance sub-components (i.e., IL (dSEM)) leads to noticeable performance deterioration
across all three TST tasks. We take these ablation study results as evidence that the technologies we
propose for LaMer are all crucial.

Table 4: Further ablation on components of LaMer imitation learning (IL). dSEM: semantic coherence
distance, dOrder and dExist are sub-components of scene preservation distance dPSV. Removing all
IL modules (MLE only) will cause severe drop in content preservation (BLEU), especially for
challenging TST tasks (Formality and Political Stance TST).

Sentiment Formality Political Stance
Ablation on LaMer IL ACC BLEU ACC BLEU ACC BLEU

IL (dSEM + dOrder + dExist) 97.0 34.1 76.5 39.2 93.4 18.5
IL (dSEM + dOrder) 95.5 (↓1.5) 34.4 (↑0.3) 74.7 (↓1.8) 37.7 (↓1.5) 93.2 (↓0.2) 15.8 (↓2.7)
IL (dSEM + dExist) 96.5 (↓0.5) 33.9 (↓0.2) 72.6 (↓3.9) 34.1 (↓5.1) 92.7 (↓0.7) 17.1 (↓1.4)
IL (dSEM) 95.1 (↓1.9) 33.3 (↓0.8) 71.9 (↓4.6) 32.5 (↓6.7) 89.9 (↓0.5) 13.9 (↓4.6)

No IL (MLE Only) 93.1 (↓3.9) 33.2 (↓0.9) 68.7 (↓7.8) 27.2 (↓12.0) 89.8 (↓0.6) 8.8 (↓9.7)

3.3 CONFIGURING LAMER

The filtering parameter p and k are hyperparameters that are crucial for the construction of roughly
parallel datasets. Thus, for all three TST tasks, we evaluate LaMer performance given different
combination of p and k, as shown in Figure 3. We find there is a approximate trade-off relationship
between style control accuracy and content preservation BLEU score: In general, higher k (more
parallels) seems to improve accuracy but normally has lower BLEU, while for a fixed k, a proper

6E.g., BLEU score can be artificially high when directly copying source style sentence as the target style
generation, and perplexity is unbounded and discourages creative TST generation.

7E.g., TSF-DelRetGen requires training a classifier to locate style-carrying spans of text. STRAP fine-tunes
a GPT-2 model to learn how to paraphrase. IMaT trains a plain Seq2Seq model from scratch as an LM.
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p can be reached empirically. We annotate the recommended settings of p and k for the three TST
tasks we studied in this work.

3.4 HUMAN EVALUATION

We conducted human evaluation to answer: 1) “How good is LaMer’s SAS alignment?”, and 2) “How
is the quality of the style-transferred sentences?” (The exact questions and procedures are details in
§A.6.). We recruited 212 participants from MTurk. Most annotators agreed that SAS-aligned pairs
share similar style-independent content (Table 5). We conducted several one-way ANOVAs to test the
difference among the seven baselines and LaMer (political stance TST results shown in Table 6; see
Table 8 for sentiment TST and Table 9 for formality TST in §A.6). LaMer was significantly better
than next-best in all three perspectives (p < .05), and had the most ratings that where ≥ 5.

Table 5: Effectiveness of SAS align-
ment for mining weakly parallel sen-
tences. Similarity: “How much
the mined pairs are similar in style-
independent content?” SAS Align:

“How well SAS scores reflect such sim-
ilarity?” Ratings are on a 7 point
scale. All≥4: The ratio for which the
ratings are ≥ 4 for both questions.

Similarity SAS
TST Tasks MeanSD MeanSD All≥4
Sentiment 5.421.36 5.561.17 88%
Formality 5.581.14 5.741.09 82%
Political 5.451.17 5.431.16 74%

Table 6: Human evaluations on the political stance transfer task
(on a 7 point scale). We bold the highest average rating. LaMer
was rated significantly higher than the next-best method (p <
.05). All≥5: The ratio for which the ratings are ≥ 5 for all three
perspectives.

Political Stance Style Content Readability
Methods Mean SD Mean SD Mean SD All≥5
CAE 4.91 1.59 4.85 1.58 5.04 1.68 12%
DelRetrGen 5.14 1.60 4.93 1.63 4.96 1.60 11%
Dual RL 5.15 1.37 4.87 1.59 5.15 1.53 27%
Style Transformer 5.31 1.19 5.34 1.36 5.18 1.40 28%
Deep Latent Seq 5.42 0.57 5.29 1.20 5.30 1.26 25%
TSF-DelRetGen 4.87 0.65 5.23 1.14 5.20 1.13 15%
STARP 5.33 1.25 5.31 1.40 5.43 1.07 21%
Ours: LaMer 5.59 1.17 5.44 1.11 5.56 1.05 37%

4 RELATED WORK

Besides the baselines we have studies in the paper, we notice there are other TST methods focusing
on either latent vector manipulation (Liu et al., 2020a; Wang et al., 2019; John et al., 2019) or surface
level editing (Castro et al., 2017; Karadzhov et al., 2017; Mansoorizadeh et al.). LaMer differs from
them as it is learning to transfer with self-supervision mined from the unsupervised data, without
complicated manipulation or editing. The idea of mining roughly parallel demonstrations in LaMer
seems to echo the recent findings of retrieval-based generation systems (Lewis et al., 2020a; Lee
et al., 2019) — retrieving relevant documents from external resources (e.g., Wikipedia) as grounding
can improve the quality of generation (Lewis et al., 2020c; Guu et al., 2020). LaMer does not rely on
any external resources, but mines parallel demonstrations from the training data itself, and thus is
easier to deploy and alleviates potential bias.

5 CONCLUSION

We have proposed LaMer, a self-supervised text style transfer method built on large-scale LMs.
LaMer demonstrates the potential of leveraging self-parallelism within large non-parallel corpora,
which can guide efficient TST models development or even LM design. On three diverse TST tasks,
we show that LaMer performs better than eight existing methods while being robust to data scarcity.
Human evaluations further validate the advantage of our model compared to existing baselines.

Future work of LaMer could study how to extend to multilingual scenarios, or transfer the style
that essentially changes the form of language (e.g., ancient v.s. modern English). One could also
investigate combining the alignment module of LaMer with the text2text LM in one model, and
jointly train to further boost the performance. Another direction is to further study the integration
of LaMer with larger size foundation models, like GPT-3 175B to understand LaMers potential in
few-shot settings.
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6 ETHICS AND REPRODUCIBILITY STATEMENT

The goal of LaMer is to provide a simple but efficient general-purpose text style transfer framework
by leveraging large-scale pre-trained LMs. LaMer can generate text in a specified target style given
source style input, which can serve as a useful tool for social good. For example, LaMer can assist
language formalization (formality transfer), enable data anonymization (writing style transfer), or
depolarize politically biased text (Liu et al., 2022; 2021a), via transferring the identifiable style of the
input text.

The performance of LaMer depends on the pre-trained LM, which means that the generation of
LaMer can be affected by certain societal biases found in the pre-trained LM it is based on (e.g.,
BART) (Blodgett et al., 2020). Other negatives such as abusive language (Hancock et al., 2020), hate
speech (Kennedy et al., 2018), and dehumanization (Mendelsohn et al., 2020) are also prevalent in
the language data for LM pre-training. When deployed in real-world settings, LaMer may increase
the risk of reinforcing and propagating polarizing and toxic language in public space through people’s
dissemination (Waseem et al., 2017). Moreover, the generated text of LaMer could potentially be
included in the next iteration of large-scale LM training data collection, which may amplify offensive
stereotypes and overtly abusive views in the future LMs.

Though LaMer was developed as an “neutral” tool mainly for research purposes, it can also be used
in malicious ways such as generating sophisticated spam in a particular style “disguise”, which we
strongly discourage (Rae et al., 2021; Liu et al., 2021b). Due to the lack of fact checking systems
as a safety measure, LaMer is at the risk of generating seemingly coherent but counterfactual text
in a certain target style, which could further undermine social trust in computer-mediated forms of
communication (Liu et al., 2021c; Petroni et al., 2019). We thus recommend the users of LaMer to
integrate necessary safety checks into the actual systems.

In addition, our experiments and analysis are done when source and target style sentences are both in
English, and therefore we do not claim that our findings will generalize across all languages, although
our framework has the potential to be extended to other languages with necessary modifications.

Though it’s beyond the scope of this paper and our individual ability to address all above-mentioned
complications, we strongly encourage users of our system (and other TST models and systems based
on pre-trained language models) to acknowledge and beware of these issues.
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A APPENDIX

A.1 COMPARING WITH ANOTHER POLITICAL STANCE DATASET

Transferring political stance has also been studied in Voigt et al. (2018), where the author also
collected a dataset for political stance TST. Comparing with their dataset, we found ours has following
differences:

Language Formality: Their dataset is composed of comments on Facebook posts from members
of the United States Senate and House, while our dataset consists of sentences from news articles
written by professional reporters belonging to well-known media outlets (CNN, Fox News, etc.). The
text in the dataset of Voigt et al. (2018) tends to be more casual and oral (e.g., “congrats , lee !”).
Conversely, the text in our dataset is generally more formal and well-formed.

Completeness: Their dataset does not contain the original post to which the comments are responding,
which causes some potential ambiguity on its political stance labels especially when the comment
is generic (e.g., “happy birthday jerry : - )”). Most of the sentences in our dataset are complete
statements of certain facts. We also conducted an extra distillation step (described in Appendix A in
the supplementary document) to only keep the sentences that are salient to the article’s stance label.

Coverage: The comments in Voigt et al. (2018) are mainly from 2017-2018, while our dataset
collects nearly 10-year of articles from 6/1/2012 to 4/1/2021, which covers a wider range of societal
issues and events. In the released version of our data we will add the time stamps to the sentences for
customized filtering.

A.2 SENTENCE DISTILLATION FOR CONSTRUCTING POLITICAL STANCE DATASET

As mentioned in Section 3.1 of the paper, the articles collected from Allsides.com are already
manually aligned (based on their political ideology) by Allsides editors. We collected a total of
2,298 full-length news articles from opposite ideologies (i.e., liberal and conservative) grouped by
events. To create a sentence-level TST dataset for political stance transfer, we split the articles into
sentences and took their article-level ideologies (as assigned by the editors) as their sentence-level
stance labels. However, we found that not all sentences explicitly exhibit the stance label inherited
from their corresponding articles, so we implemented an additional distillation step to select those
sentences that are salient with respect to their assigned political stance.

Assuming we have an article with N sentences X = {x1, x2, ..., xN} and the title of the article xtitle,
we aim to find the subset of sentences Ddistill ⊂ X which all explicitly exhibit the assigned political
stance. To better describe our approach, we first introduce two concepts: (1) stance saliency, and (2)
distillation cost.

Stance Saliency. We compute the stance saliency vi for each sentence xi ∈ X\Ddistill, which is
a measure of how well xi exhibits a certain political stance. Ddistill is the set of sentences already
picked our distilled set. We assume that the stance exhibited in xtitle matches that of the article (as
assigned by the editors), Thus, we define stance saliency vi as the similarity between xi and the union
of xtitle and Ddistill, which is:

vi ∶= LCS(xi, xtitle ∪Ddistill), (5)

where LCS(⋅) is longest common sequence between the two input sequences. However, this metric
is biased towards longer sentences as they can have more tokens matched with the title. We address
this issue through the intriduction of a distilation cost, described below.

Distillation Cost. We assign a distillation cost wi to each sentence xi in an article. The cost is
simply the length of the sentence:

wi ∶= ∣xi∣. (6)
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Note that for both concepts our computation is based on lower-cased and lemmatized sentence tokens.
We use λ to denote the ratio of the sentences to be picked as distilled sentences in an article consisting
of N sentences, and define Wmax = λ ⋅∑N

i=0 wi as the maximum distillation cost allowed.

Now that for each sentence we have a stance saliency and a distillation cost, we aim to choose a set
of sentences as the distillation which have the highest possible sum of saliency for which the sum of
distillation costs is not greater than Wmax. Given a function ϕ(xi) = {1, 0} where 1 corresponds to
sentence xi being picked for the distilled set and 0 means otherwise, the objective of distillation can
be expressed as:

max
N

∑
i=1

vi ⋅ ϕ(xi) , s.t.
N

∑
i=1

wi ⋅ ϕ(xi) ≤Wmax . (7)

This is actually a NP-complete combinatorial optimization problem, called the Knapsack problem,
which we solve using dynamic-programming (DP). In general, the distillation strategy aggressively
picks sentences of high stance saliency while keeping the cost of distillation from exceeding the mask
cost limitation Wmax. The procedure is demonstrated in Algorithm 1 below.

Algorithm 1: Sentence Distillation for Political Stance Dataset
Input: article title xtitle, article sentences X , distillation ratio λ.

▷ Initialization
Init current distillation set Ddistill as ∅;
Init current distillation cost Wdistill with ∣xtitle∣;
▷ Multiple Rounds of Distillation
while Wdistill ≤Wmax do

Compute vi for each xi ∈ X\Ddistill with xtitle and Ddistill (by Equation 1);
Compute wi for each xi (by Equation 2);
Find best distillation strategy {ϕ(xi)} via DP with vi, wi and Wdistill (see Alg. 2);

▷ Update Distillation Results Every Step
Update current distillation set Ddistill = Ddistill ∪ {xi} whose ϕ(xi) = 1;
Update current distillation cost Wdistill in terms of updated Ddistill;

end
return distillation sentences set Ddistill;

Note that we initialize Wdistill with the length of title. At every iteration of the loop we solve the DP
problem with the limit set by current Wdistill, which is a variable that estimates how many sentences
are already in the distillation set (no more than Wmax). The DP-based algorithm used in Algorithm 1
for finding the best distillation strategy is shown is Algorithm 2 below.

A.3 STATISTICS OUR ALL THREE DATASETS, AND EXPERIMENTAL SETUP

We present more statistical details of all three datasets in Table 7. All of our experiments were run
on a single RTX-2080 GPU, with batch size 4 and 2/3/2 epochs for LaMer in the above three TST
tasks. Following previous work, we choose style control accuracy (ACC), BLEU score as our main
metrics. ACCs are judged by a pre-trained RoBERTa (Liu et al., 2019) classifier with F1 = {0.97,
0.86, 0.93} using the training data of the three TST tasks. About the J-score we calculate in few-shot
experiments, we use the models released by the author8.

A.4 ADDITIONAL DETAILS ABOUT TOKEN-LEVEL SCENE PRESERVATION

In this section, we provide additional details regarding how we compute the token-level scene
preservation dPSV. Figure 4 shows an example sentiment transfer task. For a given positive (source
style) sentence ssrc and its corresponding negative (target style) parallels stgt, we first extract their

8The evaluation scripts, and pre-trained models can be found here: http://style.cs.umass.edu/
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Sentiment Formality Political Stance
Training Data (S-Emb. + SAS) positive negative formal informal liberal conservative

# Sent Pairs 553,430 93,157 36,307
# Scene Entities 742,136 777,839 145,731 133,779 194,032 272,071
Avg. Sent Len 7.32 7.58 11.52 11.05 19.39 24.75
Avg. # Scene Ent. / Sent 1.34 1.41 1.56 1.44 5.34 7.49
Avg. # Scene Ent.src∩tgt (vs. RD) 0.95 (0.73) 0.49 (0.02) 0.96 (0.10)
Avg. SAS (vs. RD) 0.72 (0.55) 0.29 (0.01) 0.25 (0.01)

Human Reference positive negative formal informal liberal conservative

# Sent Pairs 500 1020 525
# Scene Entities 964 905 1,467 1,388 2,915 3,012
Avg. Sent Len 9.90 9.80 10.9 9.35 10.30 11.19
Avg. # Scene Ent. / Sent 1.93 1.81 1.44 1.36 5.58 5.76
Avg. # Scene Ent.src∩tgt 1.53 0.55 1.78
Avg. SAS 0.73 0.29 0.30

Table 7: Data statistics for the three TST tasks in this work: Sentiment, Formality, and Political Stance
Transfer. We compare the S-Emb. + SAS aligned data (the upper part), with the human-annotated
reference file (the bottom part). Notice that after alignment, the SAS of training data becomes
much closer to that of human reference, which demonstrates we successfully align the non-parallel
data into parallel form (comparable to the human reference). Among the three TST datasets, we
find the political stance TST has the longest sentence length (see Avg. Sent Len), and more scene
entities involved on average (see Avg. # Scene Ent. / Sent). Human written references also reveal
similar statistics (see the lower part of the table), which will potentially increase the difficulty for
entity-matched transfer. We thus consider the political stance TST as a more challenging task than
the other two.

Algorithm 2: DP-based Best Distillation Strategy Search
Input: stance saliency vi, distill cost wi, and current cost limit Wdistill.
Record the number of stance saliency M = ∣vi∣;
Init DP-table T [M + 1][Wdistill + 1] with all 0;
for i = 1, 2, . . . ,M do

for j = 1, 2, . . . ,Wdistill do
if j − wi−1 < 0 then

T [i][j] = T [i − 1][j];
Record distillation picking choice ϕ(xi);

else
T [i][j] = max(T [i − 1][j],
T [i − 1][j − wi−1] + vi−1);
Record distillation picking choice ϕ(xi);

end
end

end
{ϕ(xi)Mi=1} ← backtracking via records;
return best distillation strategy {ϕ(xi)Mi=1};

scene entities using the method by Wu et al. (2019) (Figure 4 (a)), and based on these entities we
compute two distances dOrder and dExist as sub-components of dPSV.

For dOrder, as shown in Figure 4 (b), we compare each of the stgt entities with the ssrc entities, and
measure how much stgt needs to be edited to make the two sets of entities from opposite styles
identical to each other. As mentioned in the paper, we use the Levenshtein distance as the edit
distance; whose set of edits operation is: 1) insertion of a single token, 2) deletion of a single token,
and 3) substitution of a single token. Each of these operations has unit cost, so the Levenshtein
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[they, menu, beef]
[0, 1, 1]

[1, 1, 1]

[they, menu, nothing, beef]

[menu, beef]

[nothing, menu]

[they, menu, beef]

[they, menu, beef]

[0, 1, 1, 0]

[1, 1, 0, 1]

they had an extensive menu and the beef

was delicious .

overpriced menu, and mediocre beef .

nothing great on their menu .

Positive

Negative

(a) (b)

Figure 4: (a) extraction of scene entities (underlined) from source sentence and parallel target
sentences. Sentences with a + correspond to stgt+, and those with a - correspond to stgt- (i.e., expert
and amateur demonstrations for imitation learning); (b) entity appearing order (dOrder, computed by
edit distance); and (c) entity existence (dExist, computed by hamming distance).

distance is equal to the minimum number of operations required to transform target style entities to
source style entities.

As shown in Figure 4 (c), we calculate another distance component, dExist, via hamming distance to
emphasize the the difference between the sets of entities in source and target sentences. We first get
the union of the entities from a pair of source and target sentences; based on the union set, we can
obtain the corresponding binary vector representations of both style entities: 1 means the entity exists
in a certain style sentence, and 0 otherwise. Note the binary vectors for each of the sentences will
be the same length (since it corresponds to the union of entities). Hamming distance measures the
difference between source and target sentences on the shared entities set (this was shown to be an
upper bound on the Levenshtein distance). Though there are overlaps between this metric and dOrder,
we use this metric to emphasize the difference in scene entities.

A.5 MORE DETAILS ABOUT POLICY GRADIENT

We detail our policy gradient algorithm in Algorithm 3. Note that J safe
IL is a safe-reward threshold. If

the greedy policy can already reach this threshold the policy will not be updated. Empirically we set
J

safe
IL to {0.8, 0.6, 0.4} for the three TST tasks (sentiment, formality, and political stance).

Algorithm 3: Imitating Learning of LaMer

Input: current policy πθ, expert policy trajectory stgt+, and amateur policy trajectory stgt-

Output: a learned policy πθ approaching to expert policy π+

▷ Get baseline via Greedy Decoding
ŝgreedy ← argmax π̂ ∼ LM(at∣y1∶t−1)t∈[1,T ];
Compute Jgreedy

IL with ŝgreedy, stgt+, and stgt- by Eq. 3;

if Jgreedy
IL ≤ J

safe
IL then

▷ No Optimization on Already Good Policies
Skip current step Imitation Learning;

▷ Exploration by Sampling Decoding
while i ≤ max exploration steps do

ŝ
(i)
sample ← sampling π̂ ∼ LM(at∣y1∶t−1)t∈[1,T ] ;

Compute J sample
IL with ŝ(i)sample, stgt+, and stgt- by Eq. 3;

▷ Optimize Policy by REINFORCE
Compute policy gradient as ▽θJ(θ) = −Eπθ

[▽θ log πθ ⋅ (J
sample
IL − J

greedy
IL )];

Update policy with policy gradient by taking K steps SGD (via Adam);
return πθ → π

+
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We choose the REINFORCE algorithm (Williams, 1992) to optimize the current policy πθ. One
known issue of the vanilla REINFORCE method is the instability of its optimization because of the
high variance of the gradients. A common remedy is to add a baseline function (i.e., a parameterized
value-network whose purpose is to estimate the unbiased future behavior of current policy (Ranzato
et al., 2016)). Rennie et al. (2017) introduce a better approach that estimates the baseline at test
time. They use the greedy decoding results as the baseline in their self-critic sequence training
algorithm. We adopt their method to provide the baseline, and add an exploration step using sampling
decoding. As shown in Algorithm 3, by iteratively switching between these two modes, we calculate
corresponding contrastive losses defined by Equation 3, and take the difference of two modes losses
as the advantage, feeding into the REINFORCE algorithm to optimize our policy πθ. Finally, the
output policy πθ can generate style transferred sequences resemble the expert demonstrations stgt+.

A.6 ADDITIONAL DETAILS ABOUT HUMAN EVALUATION

We provide more details about our human evaluation in this section. The results on sentiment TST
are shown in Table 8 and those of formality TST are shown in Table 9.

Details About Participants and Compensation. Participants (N=212) were all from the United
States and above 18 years old. Participants were required to have a HIT approval rate greater than
95%. The average age of the participants was 34.95 years-old (SD=9.90, Median=32). 141 of
the participants (66.5%) were male, and 71 female (33.5%). Participants received 14.41 years of
education on average (SD=4.46, Median=16). When asked to self-report their party affiliation, 52.4%
participants self-reported as Democratic, 35.3% participants were self-reported Republicans, and
12.3% participants identified as independent. Each participant was compensated 1 USD per task. The
average completion time per questionnaire was about 7.6 minutes as reported by the platform, which
results in a $7.9/hr wage, above the regional and federal minimum wage.

Table 8: Human judgement results (on a 7-point scale) of seven existing methods and LaMer on
sentiment transfer task. We bold the highest average rating. SD: Standard Deviation.

Sentiment Style Content Readability

Methods Mean SD Mean SD Mean SD

CAE (Shen et al., 2017) 5.09 1.49 4.79 1.56 4.84 1.50
DelRetrGen (Li et al., 2018a) 4.94 1.62 4.73 1.63 5.05 1.39
Dual RL (Luo et al., 2019) 5.43 1.40 4.89 1.73 5.10 1.40
Style Transformer (Dai et al., 2019) 5.09 1.55 4.71 1.56 5.04 1.50
Deep Latent Seq (He et al., 2020) 4.89 1.79 4.63 1.76 5.05 1.49
TSF-DelRetGen (Sudhakar et al., 2019) 4.66 1.35 4.73 1.24 5.30 1.13
STARP (Krishna et al., 2020) 5.50 1.20 4.65 1.40 5.33 1.20
Ours: LaMer 5.45 1.21 4.91 1.71 5.43 1.18

Table 9: Human judgement results (on a 7-point scale) of seven existing methods and LaMer on
formality transfer task. We bold the highest average rating. SD: Standard Deviation.

Formality Style Content Readability

Methods Mean SD Mean SD Mean SD

CAE (Shen et al., 2017) 5.17 1.59 5.09 1.67 4.89 1.64
DelRetrGen (Li et al., 2018a) 5.19 1.57 4.91 1.65 4.86 1.62
Dual RL (Luo et al., 2019) 5.49 1.27 5.13 1.29 5.36 1.31
Style Transformer (Dai et al., 2019) 5.25 1.38 5.22 1.37 5.26 1.37
Deep Latent Seq (He et al., 2020) 5.22 1.52 5.30 1.46 5.17 1.47
TSF-DelRetGen (Sudhakar et al., 2019) 4.86 1.25 5.23 1.24 5.20 1.49
STARP (Krishna et al., 2020) 5.33 1.21 4.65 1.37 5.39 1.20
Ours: LaMer 5.50 1.23 5.45 1.29 5.39 1.21

Details About Human Evaluation Procedure. We evaluate the style transferred sentences gener-
ated by baselines and our LaMer. The sentences are picked from the test set generations for the three
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tasks. Each participant was asked to read two sets of sentences (one set containing a source style
sentence, corresponding human-written target style sentence as ground-truth, and eight versions of
target style sentences generated by seven existing methods and LaMer for comparison). After reading
each set, they were asked to rate how well the generated sentences did in style control, readability,
and content preservation on a 7-point Likert scales. For example, for content preservation, they were
asked “How much do you agree with the following statement (1- Strongly disagree to 7- Strongly
agree): The machine-generated target style text preserves the context of the source style text well (i.e.
they talk about the same thing).”. Higher ratings correspond to better performance.

A.7 PERPLEXITY MEASURE OF LAMER AND OTHER BASELINES

In Table 10 we present the perplexity measure of LaMer and other baselines as a proxy for fluency. As
can be seen, certain methods, such as CAE and Style Transformer, have very high perplexity in more
challenging TST tasks (e.g., Political Stance), potentially because the task requires longer generation
and more entities involved in the sentences (see Table 7 for further discussions). However, it should
also be noted that prior work have shown perplexity to be a poor measure of fluency (Krishna et al.,
2020; Mir et al., 2019; Lee et al., 2021).

Table 10: Perplexity measure of LaMer and other baselines. We use GPT2-large as the judgement
LM, and bold the lowest perplexity (the best), and underline the second best.

Sentiment Formality Political Stance
Existing Methods PPL PPL PPL

Input Copy (ref.) 54.0 16.2 28.0
CAE 53.4 135.4 1869.0
DelRetrGen 18.5 30.3 86.0
Dual RL 17.0 31.9 141.2
Style Transformer 78.0 129.1 350.0
Deep Latent Seq 27.8 17.2 113.7

LM-based
TSF-DelRetrGen 52.1 24.5 102.3
IMaT 16.7 25.1 67.2
START 12.5 15.9 33.7

Ours: LaMer
w/. RD 13.9 13.6 32.3
w/. S-Emb. 11.4 13.5 47.6
w/. S-Emb. + SAS 13.3 11.7 33.5
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