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Abstract

We propose a neural agent to solve the naviga-001
tion instruction following problem in a photo-002
realistic environment. We explicitly align the003
spatial information in both instruction and the004
visual environment, including landmarks and005
spatial relationships between the agent and006
landmarks. Our method significantly improves007
the baseline and is competitive with the SOTA008
in unseen environments. The qualitative anal-009
ysis shows that explicitly modeled spatial rea-010
soning improves the explainability of the action011
decisions and the generalizability of the model.012

1 Introduction013

Vision and Language Navigation (VLN) task (An-014

derson et al., 2018) requires the agent to carry out015

a sequence of actions in an indoor photo-realistic016

simulated environment in response to correspond-017

ing natural language instructions, as shown in fig-018

ure 1. It is a challenging task because, apart from019

understanding the language and vision modalities,020

the agent needs to learn the connection between021

them without explicit intermediate supervision.022

To address this challenge, recent works start to023

consider the semantic structure from both language024

and vision sides. Hong et al. (2020a) train an im-025

plicit entity- relationship graph allowing an agent026

to learn the latent concepts and relationships be-027

tween different components (scene, object and di-028

rection). They use the object features extracted029

from Faster-RCNN (Ren et al., 2015) instead of030

only using ResNet visual features, which can easily031

overfit to the training environment (Hu et al., 2019).032

Although the grounding ability of their agent im-033

proves, their experimental results show that the034

object features do not help the navigation indepen-035

dently unless their relationships to the scene and036

direction are modeled. And we are left with the037

question of how to achieve successful navigation038

with object representations independently.039

Go to the clock on the wall. Go between the blue 
couch and counter. Go to the table with a plant on it.Instruction

Navigable
Viewpoints

Panoramic
Images

Navigation
Steps

Figure 1: VLN Task Demonstration. The agent gen-
erates a navigation trajectory composed of navigable
viewpoints selected based on the given instruction and
the panoramic images at each step. The green arrow
shows the ground-truth navigable viewpoint.

Besides, the recent research finds that indoor nav- 040

igation agents rely on both landmark and direction 041

tokens in the instruction when making action deci- 042

sions (Zhu et al., 2021). To model landmarks, one 043

of the difficulties is letting the agent know which 044

landmarks it should pay attention to at each navi- 045

gation step. Previous works (Tan et al., 2019; Ma 046

et al., 2018; Wang et al., 2019; Zhu et al., 2020) 047

mainly use the surrounding visual information as a 048

clue to indicate the landmark tokens that the agent 049

should focus on. However, the semantics of in- 050

struction should also play an important role. For 051

example, with the understanding of the instruction 052

“go to the table with chair, and then walk towards 053

the door", the agent needs to give the same attention 054

to “table” and “chair”, and less attention to “door” 055

at the first navigation step. In terms of direction 056

tokens, no method distinguishes the direction to- 057

kens related to motions, such as “turn left”, and the 058

spatial description of landmarks, such as “table on 059

the left”. However, modeling these different cases 060

explicitly can help explain the agent’s actions. 061

In this paper, we propose a neural agent, namely 062

Explicit Object Relation Alignment Agent (EXOR), 063

to explicitly align the spatial semantics between 064

instructions and the visual environment. Specif- 065

ically, we first select the important landmarks in 066

the instructions after splitting the long instruction 067

into spatial configurations (Dan et al., 2020; Zhang 068

et al., 2021). Then we obtain the most relevant ob- 069

jects in the visual environment based on their align- 070
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Figure 2: Model Architecture.
ments with the selected landmarks and use them to071

enrich the image representation further. Besides,072

we map the encoding of spatial relations between073

the agent and landmarks in the instruction and the074

encoding of the agent’s perspective based on its075

angle with the images. None of the previous work076

modeled the explicit spatial relations considering077

the agent’s perspective for this task.078

Our contribution is summarized as follows. 1.079

Our agent learns to focus on the visual objects con-080

ditioned on the landmarks in the instructions based081

on their learnt explicit alignments. 2. We model082

spatial relations between the agent and landmarks083

from both instruction and visual environments to084

enhance their alignments. 3. Our proposed method085

improves the strong baseline and is competitive086

with SOTA in the unseen environment; it improves087

the spatial reasoning ability and explainability.088

2 Related Work089

The visual and textual co-grounding in the VLN090

task is to learn the connection between instruction091

and the visual environment. The early methods092

(Anderson et al., 2018; Ma et al., 2018; Tan et al.,093

2019; Wang et al., 2019) use attention mechanisms094

to build language and vision connections in neural095

navigation agents. The second branch of works (Hu096

et al., 2019; Hao et al., 2020; Majumdar et al.,097

2020; Hong et al., 2020a) obtains the pre-trained098

vision and language representation based on the099

transformer models to improve the navigation per-100

formance largely. The third branch of works (Hong101

et al., 2020b; Li et al., 2021; Qi et al., 2020; Zhang102

et al., 2021) models the semantic structure from103

both language and vision sides. In this paper, we104

mainly compare with the third branch of works.105

3 Method106

Base Model Our model is built upon Environment107

Dropout Agent (Tan et al., 2019), which uses an108

LSTM-based sequence-to-sequence architecture.109

In the base model, the language representation s is 110

obtained with an LSTM encoder. The image rep- 111

resentations are the concatenation of the ResNet 112

visual features and direction encoding. Formally, 113

the panoramic image features and candidate image 114

features are represented as fp and f c respectively. 115

The agent first attends to the panoramic image rep- 116

resentation fp with the previously hidden context 117

feature ht−1 of the LSTM decoder. The attended 118

panoramic image features are input to the LSTM 119

decoder to get the agent’s current state represen- 120

tation ht. The agent then uses ht to attend to the 121

instructions and makes action decisions by learn- 122

ing the connections between the weighted instruc- 123

tion and candidate images. As shown in figure 2, 124

our method is to model the alignments between 125

landmarks and objects and their spatial relations to 126

enrich the image features of the base model. 127

Landmark-object alignment and spatial rela- 128

tions modeling We describe four components of 129

this module as follows. 130

1) Spatial Configuration Representation We split 131

the long instructions into smaller sub-instructions 132

called spatial configurations. A spatial configu- 133

ration contains fine-grained spatial roles, such as 134

motion indicator, landmark, spatial indicator, trajec- 135

tor (Dan et al., 2020). For example, the instruction 136

"go to the bathroom and stop" can be split into two 137

spatial configurations, which are "go to the bath- 138

room" and "stop". In the first configuration, "go" is 139

the motion indicator; "bathroom" is the landmark. 140

In the second configuration, "stop" is the motion in- 141

dicator. We follow the method used in (Zhang et al., 142

2021) to re-organize the contextual embedding of 143

tokens s into m spatial configuration representa- 144

tions C = [C1, C2 . . . Cm]. The hidden context ht 145

of the decoder then attends to the spatial configu- 146

rations C to obtain the attended spatial configura- 147

tion weights denoted as β = softmax(CTWcht), 148

where Wc is the learned weights. 149

2) Landmark Selection Landmark phrases in in- 150

structions are split into groups per spatial config- 151

uration. We assign the attention weights of each 152

spatial configuration to all its included landmarks. 153

The attention weights of landmarks are the same if 154

they are in the same configuration. Then we sort all 155

weighted landmarks and select the top-k important 156

ones for the agent to focus on at each navigation 157

step. Formally, each configuration contains n land- 158

marks, denoted as L =< L1, L2, · · · , Ln >. The 159

total number of landmarks is m ∗ n in m spatial 160
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configurations. After sorting all landmarks based161

on the spatial configuration weights β, we can ob-162

tain top-k selected landmark representations, as163

L̃ =< L̃1, L̃2, · · · , L̃k >. We get the best result164

when k is 3 (see Appendix A.3 for the experiment).165

3) Landmark-Object Alignment After getting top-166

k landmarks, the next step is to align them with167

the corresponding objects in the image. We use168

Faster-RCNN to detect 36 objects in each image,169

and the object representation of the i-th image is170

Oi = [oi,1, oi,2, · · · , oi,36]. We compute the co-171

sine similarity scores between the j-th landmark in172

top-k landmarks and all objects in the i-th image,173

and select the object with the highest similarity174

score as the most relevant object to the j-th land-175

mark, as Ôi,Lj = max(cos_sim(L̃j , Oi)). Then176

the aligned objects in the i-th image are denoted177

Ôi = [Ôi,L1 , Ôi,L2 , · · · , Ôi,Lk
]. We get k aligned178

objects since we have top-k landmarks. Finally, we179

concatenate the aligned object representations with180

the candidate image features f c, and the i-th candi-181

date image feature is updated as f̂ c
i = [f c

i ; Ô
c
i ].182

4) Landmark-Object Relation Alignment On the183

text side, there are mainly three different cases184

of spatial relations used in the navigation instruc-185

tions. Case 1. Motions verbs, such as “turn left to186

the table"; Case 2. Relative spatial relationships187

between agent and landmarks, such as “table on188

your left"; Case 3. Spatial relationships between189

landmarks, such as “vase on the table". This work190

mainly investigates the spatial relations from the191

agent’s perspective, and we only model the first192

two cases. We extract "landmark-relation" pairs193

for each landmark in the instructions (based on194

syntactic rules). For Case 1, we pair the spatial195

relation with all landmarks in the configuration.196

For example, “turn left to the table with chair",197

the extracted pairs are {table-left} and {chair-left}.198

For Case 2, we pair the relation with the related199

landmark. For example, “go to the sofa on the200

right.”, the extracted pair is {sofa-right}. We en-201

code the spatial relations for the landmarks in six202

bits [left, right, front, back, up, down]. The bit203

is set to 1 for the landmark if its paired relation204

has the corresponding value. On the image side,205

we encode the six spatial relations too. We obtain206

the spatial relations of objects in the visual envi-207

ronment based on the relative angle, the difference208

between the agent’s initial direction and the navi-209

gable direction. The spatial relations are the same210

for all objects if they are in the same image.211

Formally, for the obtained top-k land- 212

marks, we denote their spatial encoding as 213

RL̂ = [RL̂
1 , R

L̂
2 , · · · , RL̂

k ]. For the top-k objects 214

aligned with those landmarks, the spatial rela- 215

tions in i-th navigable image are represented 216

as RÔ
i = [RÔ

i,1, R
Ô
i,2, · · · , RÔ

i,k]. We compute 217

the inner product of the spatial encoding be- 218

tween top-k landmarks and the top-k aligned 219

objects to obtain the spatial similarity score 220

between the instruction and the i-th image, that 221

is, simR
i = RL̂ · RÔ

i . Then we concatenate 222

each aligned object spatial encoding with the 223

corresponding similarity score, denoted as Ôi,R = 224

[[RÔ
i,1; sim

R
i,1], [R

Ô
i,2; sim

R
i,2], · · · , [RÔ

i,k; sim
R
i,k]]. 225

Finally, we further concatenate Ôi,R with the 226

candidate image features f̂ c
i which is concatenated 227

with the aligned object features , and i-th candidate 228

images features is updated as ˆ̂
f c
i = [f̂ c

i ; Ôi,g]. The 229

updated image representations are then used to 230

make action decisions for the agent. 231

4 Experiments 232

Dataset We use Room-Room(R2R) dataset (An- 233

derson et al., 2018) built upon the Matterport3D 234

dataset. It contains 7198 paths and 21567 instruc- 235

tions with an average length of 29 words. The 236

whole dataset is divided into training, seen valida- 237

tion, unseen validation, and unseen test set. 238

Evaluation Metrics We mainly report three eval- 239

uation metrics. Success Rate (SR), Success 240

rate weighted by normalized inverse Path Length 241

(SPL) (Anderson et al., 2018), and the Success 242

weighted by normalized Dynamic Time Warp- 243

ing (SDTW) (Ilharco et al., 2019). Appendix A.1 244

shows their detailed description. 245

Results and Analysis Table 1 shows the perfor- 246

mance of our model compared with baselines and 247

other competitive models on unseen validation and 248

test set. Our result is better than the baseline model 249

even with their augmented data (Tan et al., 2019) 250

(Row#1 and Row#2), showing our improved gen- 251

eralizability. We obtain significantly better results 252

than SpC-NAV, which models the semantic struc- 253

ture in both language and image modalities. Com- 254

pared with OAAM, which learns the object-vision 255

matching with the augmented data, we get much 256

better SDTW, showing that our agent can genuinely 257

follow the instruction to the destination. However, 258

Ent-Rel (SOTA) achieves better results, for which 259

we provide further analysis in the next section. 260

3



Val Unseen Test(Unseen)
Method SR ↑ SPL↑ SDTW↑ SR ↑ SPL ↑

1 Env-Drop (Tan et al., 2019) 0.47 0.43 - - -
2 Env-Drop* 0.50 0.48 0.37 0.50 0.47
3 SpC-NAV (Zhang et al., 2021) 0.45 0.42 - 0.46 0.44
4 OAAM* (Qi et al., 2020) 0.54 0.50 0.39 0.53 0.50
5 Ent-Rel (Hong et al., 2020a) 0.52 0.50 0.46 0.51 0.48
6 EXOR (ours) 0.52 0.49 0.46 0.49 0.46

Table 1: Experimental Results Comparing with Baseline
Models (* means data augmentation).

Ent-Rel EXOR(ours)
SR↑ SPL↑ SR↑ SPL↑

1 Mask Scene 0.47 0.44 0.48 0.46
2 No Mask 0.52 0.50 0.50 0.48

Table 2: Results on Scene & Object Alignment.
Val Seen Val Unseen

Method SR↑ SPL↑ SDTW↑ SR↑ SPL↑ SDTW↑
1 Baseline 0.55 0.53 0.49 0.47 0.43 0.37
2 Obj 0.59 0.55 0.52 0.50 0.48 0.43
3 Obj+Rel 0.60 0.58 0.53 0.52 0.49 0.46
4 Obj+Rel_v 0.59 0.56 0.52 0.52 0.47 0.44

Table 3: Ablation Study.

Scene & Object Alignment Ent-Rel(Hong et al.,261

2020a) distinguishes the landmarks which are262

scenes from objects. Scene tokens describe the lo-263

cation at a coarse level, such as “bathroom", while264

object tokens describe the exact landmarks, such265

as “table". To evaluate the agent’s performance266

given the instructions with only object tokens, we267

mask all scene tokens in the instructions and exper-268

iment on Ent-Rel and our model. Table 2 shows269

the experimental results in the unseen validation270

set. Compared with Ent-Rel, our model performs271

slightly better given the instruction with only ob-272

ject tokens but worse with scene and object tokens.273

One of the reasons is that Faster-RCNN often does274

not detect the scenes. For example, the aligned275

object labels in the image for the landmark "bed-276

room" are “floor", “roof", “wall", which are only277

parts of the bedroom. Our explicit modeling of the278

alignment between landmarks and objects can be279

easily applied to other VLN neural agents to enrich280

the visual representation. For Ent-Rel, our method281

not only can enrich their visual features, but the282

explicitly extracted spatial relations can also reduce283

the redundancy of their built entity relation graph.284

Potentially, our method can be helpful to improve285

the performance and explainability of their model.286

Ablation Study Table 3 shows the ablation study287

results. Row#1 is the baseline model. Row#2 (Obj)288

shows that explicitly modeling important land-289

marks and aligned objects improve the performance290

compared to the baseline. Rel (row#3) is the result291

after modeling the spatial relation tokens describ-292

ing the relative relation between agent and land-293

mark. Rel_v (row#4) is the result after modeling the294

spatial relations in motions. The improved SDTW295

(a) Enter the “door” to the small “table” with a “painting” above.
v1: [door-door; table-table; painting-wall]
v2: [door-door; table-wall; painting-wall]
v3: [door-door; table-table; painting-picture]

(b) Head towards the “doors” on the left towards “kitchen”.
v1:left; v2:right; v3:right

Go straight. Pass the piano and the pictures on the wall

Head down to the bedroom. Stop by bed.

Go straight. Pass the piano and the pictures on the wall

Head down to the bedroom. Stop by bed.

Go straight. Pass the piano and the pictures on the wall

Head down to the bedroom. Stop by bed.

Go straight. Pass the piano and the pictures on the wall

Head down to the bedroom. Stop by bed.

Go straight. Pass the piano and the pictures on the wall

Head down to the bedroom. Stop by bed.

step1

step2

step3

step4

step5

(c) The green boxes are spatial configurations; darker green means higher weights;
yellow boxes are the selected landmarks; the orange arrows are the path.

Figure 3: Qualitative Examples. Blue bounding boxes
are the aligned objects. Green arrow is the selected
correct viewpoint. v is the viewpoint, the alignment
between landmarks and objects is [landmark-object].

shows the modeling of spatial relations can help 296

the agent to follow the instructions. However, the 297

spatial terms directly describing the landmark are 298

more helpful than the spatial terms in motions. 299

Qualitative Analysis Figure 3 shows qualitative 300

analysis examples. The selected k-important land- 301

marks are “door”, “table”, “painting” in figure 3a. 302

The agent makes a correct decision by selecting 303

the viewpoint that contains the objects aligned with 304

all three landmarks. Figure 3b shows an example 305

after modeling spatial relations. Although three 306

navigable viewpoints have the object "door", the 307

agent selects the aligned object with the “left” di- 308

rection. However, we find that relation alignments 309

will be helpful when the object alignments are done 310

correctly. Appendix A.4 shows the extra analysis. 311

Also, in figure 3c, we provide an example to vi- 312

sualize the navigation process using the selected 313

landmark based on the spatial configurations. 314

5 Conclusion 315

In this paper, we select the important landmarks 316

from the linguistic instructions and design a neural 317

model to let the agent focus on the aligned objects 318

with the important landmarks. We also explicitly 319

model the spatial relations between the agent and 320

the landmarks from the agent’s perspective on both 321

instruction and image sides. Our experiments show 322

that both explicit object-landmark alignments and 323

the spatial relations modeling improve the results. 324
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A Appendix423

A.1 Evaluation Metric424

We mainly report three evaluation metrics. (1) Suc-425

cess Rate (SR): the percentage of the cases where426

the predicted final position lays within 3m from427

the goal location. (2) Success rate weighted by428

normalized inverse Path Length (SPL) (Anderson429

et al., 2018): normalizes Success Rate by trajec-430

tory length. It considers both the effectiveness and431

efficiency of navigation performance. (3) the Suc-432

cess weighted by normalized Dynamic Time Warp-433

ing (SDTW) (Ilharco et al., 2019): penalizes devia-434

tions from the referenced path and also considers435

the success rate.436

A.2 Implementation Details437

We use PyTorch to implement our model. The438

contextual embedding is 512-d. We use 300-d439

GloVe (Pennington et al., 2014) embedding to rep-440

resent motion indicator, landmark, and object label.441

The optimizer is ADAM, and the learning rate is442

1e− 4 with a batch size of 32.443

A.3 The Number of Selected Landmarks444

We experimented to find the best number of impor-445

tant landmarks the agent should select. Figure 4446

shows the SPL results with different k values on447

validation seen and unseen dataset. We find that the448

best result is obtained when k is 3. It also shows449

that letting the agent focus on only one landmark450

or all landmarks in the instruction will hurt their451

navigation performance. Table4 shows the statis-452

tics on the extracted spatial configurations on train453

and validation seen/unseen dataset. On average,454

each instruction can be split into about four spatial455

configurations, and about 76% of spatial config-456

urations contain landmarks. If so, selecting top3457

landmarks means that the agent mainly focuses on458

the landmark-object alignment in 3 spatial configu-459

rations at most at each navigation step.460

Figure 4: SPL Results with Different K Values.

Train Val Seen Val Unseen
1 Instructions 14025 1021 2349
2 Configs 58277 4301 9625
3 Configs with Landmark 44053 3225 7303
4 Configs with relation 13543 1142 2566

Table 4: Statistics of Spatial Configuration

(a) Walk past the “kitchen” towards the “dining room”. Stop before you reach the
“table”.
v1: [kitchen-room; dining room-room; table-table]
v2: [kitchen-kitchen; dining room-room; table-kitchen]

(b) Turn right toward “bathroom”. Stop at the top of the steps.
v1:left; v2:right;

Figure 5: Extra Qualitative Examples

A.4 Extra Qualitative Examples 461

Figure 5a shows another example of landmark and 462

object alignments. It contains two spatial configu- 463

rations: “walk past the kitchen towards the dining 464

room” and “stop before you reach the table”. In 465

the first configuration, the landmarks are “kitchen’ 466

and “dining room”; in the second configuration, the 467

landmark is “table”. By merely using the visual 468

environment as a clue for viewpoint selection, the 469

agent will select the second navigable viewpoint 470

because of its detected “kitchen” view. However, 471

based on the instruction semantics, the “kitchen” is 472

an object the agent passes by, and the "table" is the 473

final goal. In some cases, our method can handle 474

such situations by using the selected landmarks. In 475

this example, the model allows the agent to focus 476

on the aligned object such as “table”, which appear 477

later in the spatial configuration. It increases the 478

probability of selecting the first viewpoint. Also, 479

we find that relation alignments modeling will be 480

helpful only when the object alignments are done 481

correctly. If the object alignments fail, for example, 482

when the agent makes mistakes during navigation 483

or the aligned objects can not be detected, model- 484

ing relations can worsen the situation. For instance, 485

in figure 5b, for both navigable viewpoints, the ob- 486

ject “bathroom” can not be detected, and in this 487

case, further modeling relations leads to making 488

wrong decisions. 489
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