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Abstract

We propose a neural agent to solve the naviga-
tion instruction following problem in a photo-
realistic environment. We explicitly align the
spatial information in both instruction and the
visual environment, including landmarks and
spatial relationships between the agent and
landmarks. Our method significantly improves
the baseline and is competitive with the SOTA
in unseen environments. The qualitative anal-
ysis shows that explicitly modeled spatial rea-
soning improves the explainability of the action
decisions and the generalizability of the model.

1 Introduction

Vision and Language Navigation (VLN) task (An-
derson et al., 2018) requires the agent to carry out
a sequence of actions in an indoor photo-realistic
simulated environment in response to correspond-
ing natural language instructions, as shown in fig-
ure 1. It is a challenging task because, apart from
understanding the language and vision modalities,
the agent needs to learn the connection between
them without explicit intermediate supervision.

To address this challenge, recent works start to
consider the semantic structure from both language
and vision sides. Hong et al. (2020a) train an im-
plicit entity- relationship graph allowing an agent
to learn the latent concepts and relationships be-
tween different components (scene, object and di-
rection). They use the object features extracted
from Faster-RCNN (Ren et al., 2015) instead of
only using ResNet visual features, which can easily
overfit to the training environment (Hu et al., 2019).
Although the grounding ability of their agent im-
proves, their experimental results show that the
object features do not help the navigation indepen-
dently unless their relationships to the scene and
direction are modeled. And we are left with the
question of how to achieve successful navigation
with object representations independently.

Figure 1: VLN Task Demonstration. The agent gen-
erates a navigation trajectory composed of navigable
viewpoints selected based on the given instruction and
the panoramic images at each step. The green arrow
shows the ground-truth navigable viewpoint.

Besides, the recent research finds that indoor nav-
igation agents rely on both landmark and direction
tokens in the instruction when making action deci-
sions (Zhu et al., 2021). To model landmarks, one
of the difficulties is letting the agent know which
landmarks it should pay attention to at each navi-
gation step. Previous works (Tan et al., 2019; Ma
et al., 2018; Wang et al., 2019; Zhu et al., 2020)
mainly use the surrounding visual information as a
clue to indicate the landmark tokens that the agent
should focus on. However, the semantics of in-
struction should also play an important role. For
example, with the understanding of the instruction
“go to the table with chair, and then walk towards
the door", the agent needs to give the same attention
to “table” and ‘“‘chair”, and less attention to “door”
at the first navigation step. In terms of direction
tokens, no method distinguishes the direction to-
kens related to motions, such as “turn left”, and the
spatial description of landmarks, such as “table on
the left”. However, modeling these different cases
explicitly can help explain the agent’s actions.

In this paper, we propose a neural agent, namely
Explicit Object Relation Alignment Agent (EXOR),
to explicitly align the spatial semantics between
instructions and the visual environment. Specif-
ically, we first select the important landmarks in
the instructions after splitting the long instruction
into spatial configurations (Dan et al., 2020; Zhang
et al., 2021). Then we obtain the most relevant ob-
jects in the visual environment based on their align-
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Figure 2: Model Architecture.

ments with the selected landmarks and use them to
enrich the image representation further. Besides,
we map the encoding of spatial relations between
the agent and landmarks in the instruction and the
encoding of the agent’s perspective based on its
angle with the images. None of the previous work
modeled the explicit spatial relations considering
the agent’s perspective for this task.

Our contribution is summarized as follows. 1.
Our agent learns to focus on the visual objects con-
ditioned on the landmarks in the instructions based
on their learnt explicit alignments. 2. We model
spatial relations between the agent and landmarks
from both instruction and visual environments to
enhance their alignments. 3. Our proposed method
improves the strong baseline and is competitive
with SOTA in the unseen environment; it improves
the spatial reasoning ability and explainability.

2 Related Work

The visual and textual co-grounding in the VLN
task is to learn the connection between instruction
and the visual environment. The early methods
(Anderson et al., 2018; Ma et al., 2018; Tan et al.,
2019; Wang et al., 2019) use attention mechanisms
to build language and vision connections in neural
navigation agents. The second branch of works (Hu
et al., 2019; Hao et al., 2020; Majumdar et al.,
2020; Hong et al., 2020a) obtains the pre-trained
vision and language representation based on the
transformer models to improve the navigation per-
formance largely. The third branch of works (Hong
et al., 2020b; Li et al., 2021; Qi et al., 2020; Zhang
et al., 2021) models the semantic structure from
both language and vision sides. In this paper, we
mainly compare with the third branch of works.

3 Method

Base Model Our model is built upon Environment
Dropout Agent (Tan et al., 2019), which uses an
LSTM-based sequence-to-sequence architecture.

In the base model, the language representation s is
obtained with an LSTM encoder. The image rep-
resentations are the concatenation of the ResNet
visual features and direction encoding. Formally,
the panoramic image features and candidate image
features are represented as fP and f¢ respectively.
The agent first attends to the panoramic image rep-
resentation fP with the previously hidden context
feature h;_1 of the LSTM decoder. The attended
panoramic image features are input to the LSTM
decoder to get the agent’s current state represen-
tation h;. The agent then uses h; to attend to the
instructions and makes action decisions by learn-
ing the connections between the weighted instruc-
tion and candidate images. As shown in figure 2,
our method is to model the alignments between
landmarks and objects and their spatial relations to
enrich the image features of the base model.

Landmark-object alignment and spatial rela-
tions modeling We describe four components of
this module as follows.

1) Spatial Configuration Representation We split
the long instructions into smaller sub-instructions
called spatial configurations. A spatial configu-
ration contains fine-grained spatial roles, such as
motion indicator, landmark, spatial indicator, trajec-
tor (Dan et al., 2020). For example, the instruction
"go to the bathroom and stop" can be split into two
spatial configurations, which are "go to the bath-
room" and "stop". In the first configuration, "go" is
the motion indicator; "bathroom" is the landmark.
In the second configuration, "stop” is the motion in-
dicator. We follow the method used in (Zhang et al.,
2021) to re-organize the contextual embedding of
tokens s into m spatial configuration representa-
tions C' = [C1,Cy ... C),]. The hidden context hy;
of the decoder then attends to the spatial configu-
rations C' to obtain the attended spatial configura-
tion weights denoted as 3 = softmax(CTW,h;),
where W, is the learned weights.

2) Landmark Selection Landmark phrases in in-
structions are split into groups per spatial config-
uration. We assign the attention weights of each
spatial configuration to all its included landmarks.
The attention weights of landmarks are the same if
they are in the same configuration. Then we sort all
weighted landmarks and select the top-% important
ones for the agent to focus on at each navigation
step. Formally, each configuration contains n land-
marks, denoted as L =< Ly, Ls,---, L, >. The
total number of landmarks is m * n in m spatial



configurations. After sorting all landmarks based
on the spatial configuration weights 3, we can ob-
tain top-k selected landmark representations, as
L =< El,ig, e ,f/k >. We get the best result
when k is 3 (see Appendix A.3 for the experiment).

3) Landmark-Object Alignment After getting top-
k landmarks, the next step is to align them with
the corresponding objects in the image. We use
Faster-RCNN to detect 36 objects in each image,
and the object representation of the i-th image is
O; = [0i,1,0i2,-,0i36]. We compute the co-
sine similarity scores between the j-th landmark in
top-k landmarks and all objects in the i-th image,
and select the object with the highest similarity
score as the most relevant object to the j-th land-
mark, as OAi,L]. = max(cos_sim(L;, 0;)). Then
the aligned objects in the i-th image are denoted
0; = [OAi,Ll,OAi,LQ, . Osz] We get k aligned
objects since we have top-k landmarks. Finally, we
concatenate the aligned object representations with
the candidate image features f¢, and the i-th candi-
date image feature is updated as f¢ = [f¢; OF].

4) Landmark-Object Relation Alignment On the
text side, there are mainly three different cases
of spatial relations used in the navigation instruc-
tions. Case 1. Motions verbs, such as “turn left to
the table"; Case 2. Relative spatial relationships
between agent and landmarks, such as “table on
your left"; Case 3. Spatial relationships between
landmarks, such as “vase on the table". This work
mainly investigates the spatial relations from the
agent’s perspective, and we only model the first
two cases. We extract "landmark-relation" pairs
for each landmark in the instructions (based on
syntactic rules). For Case 1, we pair the spatial
relation with all landmarks in the configuration.
For example, “turn left to the table with chair”,
the extracted pairs are {table-left} and {chair-left}.
For Case 2, we pair the relation with the related
landmark. For example, “go to the sofa on the
right.”, the extracted pair is {sofa-right}. We en-
code the spatial relations for the landmarks in six
bits [left, right, front, back, up, down]. The bit
is set to 1 for the landmark if its paired relation
has the corresponding value. On the image side,
we encode the six spatial relations too. We obtain
the spatial relations of objects in the visual envi-
ronment based on the relative angle, the difference
between the agent’s initial direction and the navi-
gable direction. The spatial relations are the same
for all objects if they are in the same image.

Formally, for the obtained top-k land-
marks, we denote their spatial encoding as
RE = [RFRE, - RE]. For the top-k objects
aligned with those landmarks, the spatial rela-
tions in i-th navigable image are represented
as RY = [Rgl,ng,---,Riok]. We compute
the inner product of the spétial encoding be-
tween top-k landmarks and the top-k aligned
objects to obtain the spatial similarity score
between the instruction and the i-th image, that
is, simf’ = RY . RY. Then we concatenate
each aligned object spatial encoding with the

corresponding similarity score, denoted as Oz R=
O . oimnR O . ¢imnR O . imR
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Finally, we further concatenate O; r with the
candidate image features f;” which is concatenated
with the aligned object features , and i-th candidate
images features is updated as ff = Af; (A)Z-,g]. The
updated image representations are then used to
make action decisions for the agent.

4 Experiments

Dataset We use Room-Room(R2R) dataset (An-
derson et al., 2018) built upon the Matterport3D
dataset. It contains 7198 paths and 21567 instruc-
tions with an average length of 29 words. The
whole dataset is divided into training, seen valida-
tion, unseen validation, and unseen test set.
Evaluation Metrics We mainly report three eval-
uation metrics. Success Rate (SR), Success
rate weighted by normalized inverse Path Length
(SPL) (Anderson et al., 2018), and the Success
weighted by normalized Dynamic Time Warp-
ing (SDTW) (Ilharco et al., 2019). Appendix A.1
shows their detailed description.

Results and Analysis Table 1 shows the perfor-
mance of our model compared with baselines and
other competitive models on unseen validation and
test set. Our result is better than the baseline model
even with their augmented data (Tan et al., 2019)
(Row#1 and Row#2), showing our improved gen-
eralizability. We obtain significantly better results
than SpC-NAYV, which models the semantic struc-
ture in both language and image modalities. Com-
pared with OAAM, which learns the object-vision
matching with the augmented data, we get much
better SDTW, showing that our agent can genuinely
follow the instruction to the destination. However,
Ent-Rel (SOTA) achieves better results, for which
we provide further analysis in the next section.



Val Unseen Test(Unseen)
Method SR 1 SPLtT SDTW{ SR1 SPL 1
Env-Drop (Tan et al., 2019) 047 043 - - -

Env-Drop* 0.50 0.48 0.37 0.50 0.47
SpC-NAV (Zhang et al., 2021) 045 0.42 - 046 0.44
OAAM* (Qi et al., 2020) 0.54 0.50 0.39 0.53  0.50
Ent-Rel (Hong et al., 2020a)  0.52  0.50 0.46 0.51 0.48
EXOR (ours) 0.52 049 0.46 049 0.46

o) I e S

Table 1: Experimental Results Comparing with Baseline
Models (* means data augmentation).

Ent-Rel EXOR(ours)

SRT SPLT SRt SPL?T

1 Mask Scene 047 044 048 0.46
2 No Mask 0.52 050 0.50 048

Table 2: Results on Scene & Object Alignment.

Val Seen Val Unseen
Method SRt SPLT SDTW1T SRt SPLT SDTW1
Baseline  0.55 0.53 049 047 043 0.37
Obj 0.59 0.55 0.52 050 048 0.43
Obj+Rel  0.60 0.58 053 052 049 0.46
Obj+Rel_v 0.59 0.56 052 0.52 047 0.44

Table 3: Ablation Study.

Scene & Object Alignment Ent-Rel(Hong et al.,
2020a) distinguishes the landmarks which are
scenes from objects. Scene tokens describe the lo-
cation at a coarse level, such as “bathroom", while
object tokens describe the exact landmarks, such
as “table". To evaluate the agent’s performance
given the instructions with only object tokens, we
mask all scene tokens in the instructions and exper-
iment on Ent-Rel and our model. Table 2 shows
the experimental results in the unseen validation
set. Compared with Ent-Rel, our model performs
slightly better given the instruction with only ob-
ject tokens but worse with scene and object tokens.
One of the reasons is that Faster-RCNN often does
not detect the scenes. For example, the aligned
object labels in the image for the landmark "bed-
room" are “floor", “roof"”, “wall", which are only
parts of the bedroom. Our explicit modeling of the
alignment between landmarks and objects can be
easily applied to other VLN neural agents to enrich
the visual representation. For Ent-Rel, our method
not only can enrich their visual features, but the
explicitly extracted spatial relations can also reduce
the redundancy of their built entity relation graph.
Potentially, our method can be helpful to improve
the performance and explainability of their model.
Ablation Study Table 3 shows the ablation study
results. Row#1 is the baseline model. Row#2 (Obyj)
shows that explicitly modeling important land-
marks and aligned objects improve the performance
compared to the baseline. Rel (row#3) is the result
after modeling the spatial relation tokens describ-
ing the relative relation between agent and land-
mark. Rel_v (row#4) is the result after modeling the
spatial relations in motions. The improved SDTW
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(a) Enter the “door” to the small “table” with a “painting” above.
v1: [door-door; table-table; painting-wall]
v2: [door-door; table-wall; painting-wall]
v3: [door-door; table-table; painting-picture]

(b) Head towards the “doors” on the left towards “kitchen”.
v1:left; v2:right; v3:right

Sy e m
ot Pass e pianoand e pctarson el
[T i

C) The green boxes are spatial configurations; darker green means higher weights;
g P g g g g
yellow boxes are the selected landmarks; the orange arrows are the path.

Figure 3: Qualitative Examples. Blue bounding boxes
are the aligned objects. Green arrow is the selected
correct viewpoint. v is the viewpoint, the alignment
between landmarks and objects is [landmark-object].

shows the modeling of spatial relations can help
the agent to follow the instructions. However, the
spatial terms directly describing the landmark are
more helpful than the spatial terms in motions.
Qualitative Analysis Figure 3 shows qualitative
analysis examples. The selected k-important land-
marks are “door”, “table”, “painting” in figure 3a.
The agent makes a correct decision by selecting
the viewpoint that contains the objects aligned with
all three landmarks. Figure 3b shows an example
after modeling spatial relations. Although three
navigable viewpoints have the object "door"”, the
agent selects the aligned object with the “left” di-
rection. However, we find that relation alignments
will be helpful when the object alignments are done
correctly. Appendix A.4 shows the extra analysis.
Also, in figure 3c, we provide an example to vi-
sualize the navigation process using the selected
landmark based on the spatial configurations.

5 Conclusion

In this paper, we select the important landmarks
from the linguistic instructions and design a neural
model to let the agent focus on the aligned objects
with the important landmarks. We also explicitly
model the spatial relations between the agent and
the landmarks from the agent’s perspective on both
instruction and image sides. Our experiments show
that both explicit object-landmark alignments and
the spatial relations modeling improve the results.



References

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce,
Mark Johnson, Niko Siinderhauf, Ian Reid, Stephen
Gould, and Anton Van Den Hengel. 2018. Vision-
and-language navigation: Interpreting visually-
grounded navigation instructions in real environ-
ments. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages
3674-3683.

Soham Dan, Parisa Kordjamshidi, Julia Bonn, Archna
Bhatia, Zheng Cai, Martha Palmer, and Dan Roth.
2020. From spatial relations to spatial configurations.
In Proceedings of the 12th Language Resources and
Evaluation Conference, pages 5855-5864.

Weituo Hao, Chunyuan Li, Xiujun Li, Lawrence Carin,
and Jianfeng Gao. 2020. Towards learning a generic
agent for vision-and-language navigation via pre-
training. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition,

pages 13137-13146.

Yicong Hong, Cristian Rodriguez, Yuankai Qi, Qi Wu,
and Stephen Gould. 2020a. Language and visual
entity relationship graph for agent navigation. Ad-
vances in Neural Information Processing Systems,

33:7685-7696.

Yicong Hong, Cristian Rodriguez, Qi Wu, and Stephen
Gould. 2020b. Sub-instruction aware vision-and-
language navigation. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 3360-3376.

Ronghang Hu, Daniel Fried, Anna Rohrbach, Dan Klein,
Trevor Darrell, and Kate Saenko. 2019. Are you
looking? grounding to multiple modalities in vision-
and-language navigation. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 6551-6557.

Gabriel Ilharco, Vihan Jain, Alexander Ku, Eugene Ie,
and Jason Baldridge. 2019. General evaluation for in-
struction conditioned navigation using dynamic time
warping. arXiv preprint arXiv:1907.05446.

Jialu Li, Hao Tan, and Mohit Bansal. 2021. Improving
cross-modal alignment in vision language navigation
via syntactic information. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 1041-1050.

Chih-Yao Ma, Jiasen Lu, Zuxuan Wu, Ghassan AlRegib,
Zsolt Kira, Richard Socher, and Caiming Xiong.
2018. Self-monitoring navigation agent via auxil-
iary progress estimation.

Arjun Majumdar, Ayush Shrivastava, Stefan Lee, Peter
Anderson, Devi Parikh, and Dhruv Batra. 2020. Im-
proving vision-and-language navigation with image-
text pairs from the web. In European Conference on
Computer Vision, pages 259-274. Springer.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language processing

(EMNLP), pages 1532-1543.

Yuankai Qi, Zizheng Pan, Shengping Zhang, Anton
van den Hengel, and Qi Wu. 2020. Object-and-action
aware model for visual language navigation. In Com-
puter Vision—-ECCV 2020: 16th European Confer-
ence, Glasgow, UK, August 23-28, 2020, Proceed-
ings, Part X 16, pages 303-317. Springer.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun. 2015. Faster r-cnn: Towards real-time object
detection with region proposal networks. Advances
in neural information processing systems, 28:91-99.

Hao Tan, Licheng Yu, and Mohit Bansal. 2019. Learn-
ing to navigate unseen environments: Back transla-
tion with environmental dropout. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2610-2621.

Xin Wang, Qiuyuan Huang, Asli Celikyilmaz, Jianfeng
Gao, Dinghan Shen, Yuan-Fang Wang, William Yang
Wang, and Lei Zhang. 2019. Reinforced cross-modal
matching and self-supervised imitation learning for
vision-language navigation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 6629-6638.

Yue Zhang, Quan Guo, and Parisa Kordjamshidi. 2021.
Towards navigation by reasoning over spatial config-
urations. arXiv preprint arXiv:2105.06839.

Wang Zhu, Hexiang Hu, Jiacheng Chen, Zhiwei Deng,
Vihan Jain, Eugene Ie, and Fei Sha. 2020. Babywalk:
Going farther in vision-and-language navigation by
taking baby steps. In Proceedings of the 58th An-
nual Meeting of the Association for Computational

Linguistics, pages 2539-2556.

Wanrong Zhu, Yuankai Qi, Pradyumna Narayana, Ka-
zoo Sone, Sugato Basu, Xin Eric Wang, Qi Wu,
Miguel Eckstein, and William Yang Wang. 2021.
Diagnosing vision-and-language navigation: What
really matters. arXiv preprint arXiv:2103.16561.



A Appendix

A.1 Evaluation Metric

We mainly report three evaluation metrics. (1) Suc-
cess Rate (SR): the percentage of the cases where
the predicted final position lays within 3m from
the goal location. (2) Success rate weighted by
normalized inverse Path Length (SPL) (Anderson
et al., 2018): normalizes Success Rate by trajec-
tory length. It considers both the effectiveness and
efficiency of navigation performance. (3) the Suc-
cess weighted by normalized Dynamic Time Warp-
ing (SDTW) (Ilharco et al., 2019): penalizes devia-
tions from the referenced path and also considers
the success rate.

A.2 Implementation Details

We use PyTorch to implement our model. The
contextual embedding is 512-d. We use 300-d
GloVe (Pennington et al., 2014) embedding to rep-
resent motion indicator, landmark, and object label.
The optimizer is ADAM, and the learning rate is
le — 4 with a batch size of 32.

A.3 The Number of Selected Landmarks

We experimented to find the best number of impor-
tant landmarks the agent should select. Figure 4
shows the SPL results with different k values on
validation seen and unseen dataset. We find that the
best result is obtained when k is 3. It also shows
that letting the agent focus on only one landmark
or all landmarks in the instruction will hurt their
navigation performance. Table4 shows the statis-
tics on the extracted spatial configurations on train
and validation seen/unseen dataset. On average,
each instruction can be split into about four spatial
configurations, and about 76% of spatial config-
urations contain landmarks. If so, selecting top3
landmarks means that the agent mainly focuses on
the landmark-object alignment in 3 spatial configu-
rations at most at each navigation step.

sPL
3

top-k

Figure 4: SPL Results with Different K Values.

Train Val Seen Val Unseen

1 Instructions 14025 1021 2349
2 Configs 58277 4301 9625
3 Configs with Landmark 44053 3225 7303
4 Configs with relation 13543 1142 2566

Table 4: Statistics of Spatial Configuration

(@) Walk past the “kitchen” towards the “dining room”. Stop before you reach the
“table”.

v1: [kitchen-room; dining room-room; table-table]

v2: [kitchen-kitchen; dining room-room; table-kitchen]

i

(b) Turn right toward “bathroom™. Stop at the top of the steps.
vl:left; v2:right;

Figure 5: Extra Qualitative Examples
A.4 Extra Qualitative Examples

Figure 5a shows another example of landmark and
object alignments. It contains two spatial configu-
rations: “walk past the kitchen towards the dining
room” and “stop before you reach the table”. In
the first configuration, the landmarks are “kitchen’
and “dining room”; in the second configuration, the
landmark is “table”. By merely using the visual
environment as a clue for viewpoint selection, the
agent will select the second navigable viewpoint
because of its detected “kitchen” view. However,
based on the instruction semantics, the “kitchen” is
an object the agent passes by, and the "table" is the
final goal. In some cases, our method can handle
such situations by using the selected landmarks. In
this example, the model allows the agent to focus
on the aligned object such as “table”, which appear
later in the spatial configuration. It increases the
probability of selecting the first viewpoint. Also,
we find that relation alignments modeling will be
helpful only when the object alignments are done
correctly. If the object alignments fail, for example,
when the agent makes mistakes during navigation
or the aligned objects can not be detected, model-
ing relations can worsen the situation. For instance,
in figure 5b, for both navigable viewpoints, the ob-
ject “bathroom” can not be detected, and in this
case, further modeling relations leads to making
wrong decisions.



