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ABSTRACT

Recent advances in semi-supervised learning (SSL) demonstrate that a combi-
nation of consistency regularization and pseudo-labeling can effectively improve
image classification accuracy in the low-data regime. Compared to classifica-
tion, semantic segmentation tasks require much more intensive labeling costs.
Thus, these tasks greatly benefit from data-efficient training methods. However,
structured outputs in segmentation render particular difficulties (e.g., designing
pseudo-labeling and augmentation) to apply existing SSL strategies. To address
this problem, we present a simple and novel re-design of pseudo-labeling to gener-
ate well-calibrated structured pseudo labels for training with unlabeled or weakly-
labeled data. Our proposed pseudo-labeling strategy is network structure agnos-
tic to apply in a one-stage consistency training framework. We demonstrate the
effectiveness of the proposed pseudo-labeling strategy in both low-data and high-
data regimes. Extensive experiments have validated that pseudo labels generated
from wisely fusing diverse sources and strong data augmentation are crucial to
consistency training for semantic segmentation. The source code is available at
https://github.com/googleinterns/wss.

1 INTRODUCTION

Image semantic segmentation is a core computer vision task that has been studied for decades.
Compared with other vision tasks, such as image classification and object detection, human an-
notation of pixel-accurate segmentation is dramatically more expensive. Given sufficient pixel-
level labeled training data (i.e., high-data regime), the current state-of-the-art segmentation models
(e.g., DeepLabv3+ (Chen et al., 2018)) produce satisfactory segmentation prediction for common
practical usage. Recent exploration demonstrates improvement over high-data regime settings with
large-scale data, including self-training (Chen et al., 2020a; Zoph et al., 2020) and backbone pre-
training (Zhang et al., 2020a).

In contrast to the high-data regime, the performance of segmentation models drop significantly, given
very limited pixel-labeled data (i.e., low-data regime). Such ineffectiveness at the low-data regime
hinders the applicability of segmentation models. Therefore, instead of improving high-data regime
segmentation, our work focuses on data-efficient segmentation training that only relies on few pixel-
labeled data and leverages the availability of extra unlabeled or weakly annotated (e.g., image-level)
data to improve performance, with the aim of narrowing the gap to the supervised models trained
with fully pixel-labeled data.

Our work is inspired by the recent success in semi-supervised learning (SSL) for image classifica-
tion, demonstrating promising performance given very limited labeled data and a sufficient amount
of unlabeled data. Successful examples include MeanTeacher (Tarvainen & Valpola, 2017), UDA
(Xie et al., 2019), MixMatch (Berthelot et al., 2019b), FeatMatch (Kuo et al., 2020), and FixMatch
(Sohn et al., 2020a). One outstanding idea in this type of SSL is consistency training: making
predictions consistent among multiple augmented images. FixMatch (Sohn et al., 2020a) shows
that using high-confidence one-hot pseudo labels obtained from weakly-augmented unlabeled data
to train strongly-augmented counterpart is the key to the success of SSL in image classification.

∗Work done during internship at Google Cloud AI Research.
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However, effective pseudo labels and well-designed data augmentation are non-trivial to satisfy for
semantic segmentation. Although we observe that many related works explore the second condition
(i.e., augmentation) for image segmentation to enable consistency training framework (French et al.,
2020; Ouali et al., 2020), we show that a wise design of pseudo labels for segmentation has great
veiled potentials.

In this paper, we propose PseudoSeg, a one-stage training framework to improve image semantic
segmentation by leveraging additional data either with image-level labels (weakly-labeled data) or
without any labels. PseudoSeg presents a novel design of pseudo-labeling to infer effective struc-
tured pseudo labels of additional data. It then optimizes the prediction of strongly-augmented data
to match its corresponding pseudo labels. In summary, we make the following contributions:

• We propose a simple one-stage framework to improve semantic segmentation by using a
limited amount of pixel-labeled data and sufficient unlabeled data or image-level labeled
data. Our framework is simple to apply and therefore network architecture agnostic.

• Directly applying consistency training approaches validated in image classification ren-
ders particular challenges in segmentation. We first demonstrate how well-calibrated soft
pseudo labels obtained through wise fusion of predictions from diverse sources can greatly
improve consistency training for segmentation.

• We conduct extensive experimental studies on the PASCAL VOC 2012 and COCO datasets.
Comprehensive analyses are conducted to validate the effectiveness of this method at not
only the low-data regime but also the high-data regime. Our experiments study multiple
important open questions about transferring SSL advances to segmentation tasks.

2 RELATED WORK

Semi-supervised classification. Semi-supervised learning (SSL) aims to improve model perfor-
mance by incorporating a large amount of unlabeled data during training. Consistency regularization
and entropy minimization are two common strategies for SSL. The intuition behind consistency-
based approaches (Laine & Aila, 2016; Sajjadi et al., 2016; Miyato et al., 2018; Tarvainen & Valpola,
2017) is that, the model output should remain unchanged when the input is perturbed. On the other
hand, the entropy minimization strategy (Grandvalet & Bengio, 2005) argues that the unlabeled
data can be used to ensured classes are well-separated, which can be achieved by encouraging the
model to output low-entropy predictions. Pseudo-labeling (Lee, 2013) is one of the methods for
implicit entropy minimization. Recently, holistic approaches (Berthelot et al., 2019b;a; Sohn et al.,
2020a) combining both strategies have been proposed and achieved significant improvement. By re-
designing the pseudo label, we propose an efficient one-stage semi-supervised learning framework
of semantic segmentation for consistency training.
Semi-supervised semantic segmentation. Collecting pixel-level annotations for semantic seg-
mentation is costly and prone to error. Hence, leveraging unlabeled data in semantic segmentation
is a natural fit. Early methods utilize a GAN-based model either to generate additional training
data (Souly et al., 2017) or to learn a discriminator between the prediction and the ground truth
mask (Hung et al., 2018; Mittal et al., 2019). Consistency regularization based approaches have also
been proposed recently, by enforcing the predictions to be consistent, either from augmented input
images (French et al., 2020; Kim et al., 2020), perturbed feature embeddings (Ouali et al., 2020), or
different networks (Ke et al., 2020). Recently, Luo & Yang (2020) proposes a dual-branch training
network to jointly learn from pixel-accurate and coarse labeled data, achieving good segmentation
performance. To push the performance of state of the arts, iterative self-training approaches (Chen
et al., 2020a; Zoph et al., 2020; Zhu et al., 2020) have been proposed. These methods usually assume
the available labeled data is enough to train a good teacher model, which will be used to generate
pseudo labels for the student model. However, this condition might not satisfy in the low-data
regime. Our proposed method, on the other hand, realizing the ideas of both consistency regular-
ization and pseudo-labeling in segmentation, consistently improves the supervised baseline in both
low-data and high-data regimes.
Weakly-supervised semantic segmentation. Instead of supervising network training with accurate
pixel-level labels, many prior works exploit weaker forms of annotations (e.g., bounding boxes (Dai
et al., 2015), scribbles (Lin et al., 2016), image-level labels). Most recent approaches use image-
level labels as the supervisory signal, which exploits the idea of class activation map (CAM) (Zhou
et al., 2016). Since the vanilla CAM only focus on the most discriminative region of objects, dif-
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Figure 1: Overview of unlabeled data training branch. Given an image, the weakly augmented
version is fed into the network to get the decoder prediction and Self-attention Grad-CAM (SGC).
The two sources are then combined via a calibrated fusion strategy to form the pseudo label. The
network is trained to make its decoder prediction from strongly augmented image to match the
pseudo label by a per-pixel cross-entropy loss.

ferent ways to refine CAM have been proposed, including partial image/feature erasing (Hou et al.,
2018; Wei et al., 2017; Li et al., 2018), using an additional saliency estimation model (Oh et al.,
2017; Huang et al., 2018; Wei et al., 2018), utilizing pixel similarity to propagate the initial score
map (Ahn & Kwak, 2018; Wang et al., 2020), or mining and co-segment the same category of ob-
jects across images (Sun et al., 2020; Zhang et al., 2020b). While achieving promising results using
the approaches mentioned above, most of them require a multi-stage training strategy. The refined
score maps are optimized again using a dense-CRF model (Krähenbühl & Koltun, 2011), and then
used as the target to train a separate segmentation network. On the other hand, we assume there ex-
ists a small number of fully-annotated data, which allows us to learn stronger segmentation models
than general methods without needing pixel-labeled data.

3 THE PROPOSED METHOD

In analogous to SSL for classification, our training objective in PseudoSeg consists of a supervised
loss Ls applied to pixel-level labeled data Dl, and a consistency constraint Lu applied to unlabeled
data Du 1. Specifically, the supervised loss Ls is the standard pixel-wise cross-entropy loss on the
weakly augmented pixel-level labeled examples:

Ls =
1

N × |Dl|
∑
x∈Dl

N−1∑
i=0

CrossEntropy (yi, fθ(ω(xi))) , (1)

where θ represents the learnable parameters of the network function f and N denotes the number
of valid labeled pixels in an image x ∈ RH×W×3. yi ∈ RC is the ground truth label of a pixel i
in H×W dimensions, and fθ(ω(xi)) ∈ RC is the predicted probability of pixel i, where C is the
number of classes to predict and ω(·) denotes the weak (common) data augmentation operations
used by Chen et al. (2018).

During training, the proposed PseudoSeg estimates a pseudo label ỹ ∈ RH×W×C for each strongly-
augmented unlabeled data x in Du, which is then used for computing the cross-entropy loss. The
unsupervised objective can then be written as:

Lu =
1

N × |Du|
∑
x∈Du

N−1∑
i=0

CrossEntropy (ỹi, fθ(β ◦ ω(xi))) , (2)

where β(·) denotes a stronger data augmentation operation, which will be described in Section 3.2.
We illustrate the unlabeled data training branch in Figure 1.

3.1 THE DESIGN OF STRUCTURED PSEUDO LABELS

The next important question is how to generate the desirable pseudo label ỹ. A straightforward solu-
tion is directly using the decoder output of a trained segmentation model after confidence threshold-

1For simplicity, here we illustrate the method with unlabeled data and then show it can be easily adapted to
use image-level labeled data in Section 3.2.
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ing, as suggested by Sohn et al. (2020a); Zoph et al. (2020); Xie et al. (2020); Sohn et al. (2020b).
However, as we demonstrate later in the experiments, the generated pseudo hard/soft labels as well
as other post-processing of outputs are barely satisfactory in the low-data regime, and thus yield
inferior final results. To address this issue, our design of pseudo-labeling has two key insights. First,
we seek for a distinct yet efficient decision mechanisms to compensate for the potential errors of
decoder outputs. Second, wisely fusing multiple sources of predictions to generate an ensemble and
better-calibrated version of pseudo labels.
Starting with localization. Compared with precise segmentation, learning localization is a simpler
task as it only needs to provide coarser-grained outputs than pixel level of objects in images. Based
on this motivation, we improve decoder predictions from the localization perspective. Class activa-
tion map (CAM) (Zhou et al., 2016) is a popular approach to provide localization for class-specific
regions. CAM-based methods (Hou et al., 2018; Wei et al., 2017; Ahn & Kwak, 2018) have been
successfully adopted to tackle a different weakly supervised semantic segmentation task from us,
where they assume only image-level labels are available. In practice, we adopt a variant of class
activation map, Grad-CAM (Selvaraju et al., 2017) in PseudoSeg.
From localization to segmentation. CAM estimates the strength of classifier responses on lo-
cal feature maps. Thus, an inherent limitation of CAM-based approaches is that it is prone to at-
tending only to the most discriminative regions. Although many weakly-supervised segmentation
approaches (Ahn & Kwak, 2018; Ahn et al., 2019; Sun et al., 2020) aim at refining CAM local-
ization maps to segmentation masks, most of them have complicated post-processing steps, such as
dense CRF (Krähenbühl & Koltun, 2011), which increases the model complexity when used for con-
sistency training. Here we present a computationally efficient yet effective refinement alternative,
which is learnable using available pixel-labeled data.

Although CAM only localizes partial regions of interests, if we know the pairwise similarities be-
tween regions, we can propagate the CAM scores from the discriminative regions to the rest un-
attended regions. Actually, it has been shown in many works that the learned high-level deep fea-
tures are usually good at similarity measurements of visual objects. In this paper, we find hypercol-
umn (Hariharan et al., 2015) with a learnable similarity measure function works fairly effective.

Given the vanilla Grad-CAM output for all C classes, which can be viewed as a spatially-flatten 2-D
vector of weight m ∈ RL×C , where each row mi is the response weight per class for one region i.
Using a kernel functionK(·, ·) : RH×RH → R that measures element-wise similarity given feature
h ∈ RH of two regions, the propagated score m̂i ∈ RC can be computed as follows

m̂i =

mi +

L−1∑
j=0

eK(Wkhi,Wvhj)∑L−1
k=0 e

K(Wkhi,Wvhk)
mj

 ·Wc. (3)

The goal of this function is to train Θ = {Wk,Wv ∈ RH×H ,Wc ∈ RC×C} in order to propagate
the high value in m to all adjacent elements in the feature space RH (i.e., hypercolumn features)
to region i. Adding mi in equation 3 indicates the skip-connection. To compute propagated score
for all regions, the operations in equation 3 can be efficiently implemented with self-attention dot-
product (Vaswani et al., 2017). For brevity, we denote this efficient refinement process output as self-
attention Grad-CAM (SGC) maps in RH×H×C . Figure 6 in Appendix A specifies the architecture.
Calibrated prediction fusion. SGC maps are obtained from low-resolution feature maps. It is then
resized to the desired output resolution, and thus not sufficient at delineating crisp boundaries. How-
ever, compared to the segmentation decoder, SGC is capable of generating more locally-consistent
masks. Thus, we propose a novel calibrated fusion strategy to take advantage of both decoder and
SCG predictions for better pseudo labels.

Specifically, given a batch of decoder outputs (pre-softmax logits) p̂ = fθ(ω(x)) and SGC maps m̂
computed from weakly-augmented data ω(x), we generate the pseudo labels ỹ by

F(p̂, m̂) = Sharpen
(
γ Softmax

(
p̂

Norm(p̂, m̂)

)
+ (1− γ) Softmax

(
m̂

Norm(p̂, m̂)

)
, T

)
. (4)

Two critical procedures are proposed to use here to make the fusion process successful. First,
p̂ and m̂ are from different decision mechanisms and they could have very different degrees of

overconfidence. Therefore, we introduce the operation Norm(a, b) =

√∑|a|
i (a2i + b2i ) as a nor-
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Input Grad-CAM SGC map Decoder Decoder (strong) Pseudo label
Figure 2: Visualization of pseudo labels and other predictions. The generated pseudo label by
fusing the predictions from the decoder and SGC map is used to supervise the decoder (strong)
predictions of the strongly-augmented counterpart.

malization factor. It alleviates the over-confident probability after softmax, which could unfavor-
ably dominate the resulted γ-averaged probability. Second, the distribution sharpening operation
Sharpen(a, T )i = a

1/T
i /

∑C
j a

1/T
j adjusts the temperature scalar T of categorical distribution

(Berthelot et al., 2019b; Chen et al., 2020b). Figure 2 illustrates the predictions from different
sources. More importantly, we investigate the pseudo-labeling from a calibration perspective (Sec-
tion 4.3), demonstrating that the proposed soft pseudo label ỹ leads to a better calibration metric
comparing to other possible fusion alternatives, and justifying why it benefits the final segmentation
performance.
Training. Our final training objective contains two extra losses: a classification loss Lx, and a
segmentation lossLsa. First, to compute Grad-CAM, we add a one-layer classification head after the
segmentation backbone and a multi-label classification loss Lx. Second, as specified in Appendix A
(Figure 6), SGC maps are scaled as pixel-wise probabilities using one-layer convolution followed by
softmax in equation 3. Learning Θ to predict SGC maps needs pixel-labeled data Dl. It is achieved
by an extra segmentation loss Lsa between SGC maps of pixel-labeled data and corresponding
ground truth. All the loss terms are jointly optimized (i.e., Lu + Ls + Lx + Lsa), while Lsa only
optimizes Θ (achieved by stopping gradient). See Figure 7 in the appendix for further details.

3.2 INCORPORATING IMAGE-LEVEL LABELS AND AUGMENTATION

The proposed PseudoSeg can easily incorporate image-level label information (if available) into our
one-stage training framework, which also leads to consistent improvement as we demonstrate in
experiments. We utilize the image-level data with two following steps. First, we directly use ground
truth image-level labels to generate Grad-CAMs instead of using classifier outputs. Second, they are
used to increase classification supervision beyond pixel-level labels for the classifier head.

For strong data augmentation, we simply follow color jittering operations from SimCLR (Chen
et al., 2020b) and remove all geometric transformations. The overall strength of augmentation can
be controlled by a scalar (studied in experiments). We also apply once random CutOut (DeVries
& Taylor, 2017) with a region of 50 × 50 pixels since we find it gives consistent though minor
improvement (pixels inside CutOut regions are ignored in computing losses).

4 EXPERIMENTAL RESULTS

We start by specifying the experimental details. Then, we evaluate the method in the settings of using
pixel-level labeled data and unlabeled data, as well as using pixel-level labeled data and image-level
labeled data, respectively. Next, we conduct various ablation studies to justify our design choices.
Lastly, we conduct more comparative experiments in specific settings.

To evaluate the proposed method, we conduct the main experiments and ablation studies on the PAS-
CAL VOC 2012 dataset (VOC12) (Everingham et al., 2015), which contains 21 classes including
background. The standard VOC12 dataset has 1,449 images as the training set and 1,456 images
as the validation set. We randomly subsample 1/2, 1/4, 1/8, and 1/16 of images in the standard
training set to construct the pixel-level labeled data. The remaining images in the standard training
set, together with the images in the augmented set (Hariharan et al., 2011) (around 9k images), are
used as unlabeled or image-level labeled data. To further verify the effectiveness of the proposed
method, we also conduct experiments on the COCO dataset (Lin et al., 2014). The COCO dataset
has 118,287 images as the training set, and 5,000 images as the validation set. We evaluate on the
80 foreground classes and the background, as in the object detection task. As the COCO dataset
is larger than VOC12, we randomly subsample smaller ratios, 1/32, 1/64, 1/128, 1/256, 1/512, of
images from the training set to construct the pixel-level labeled data. The remaining images in the
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Figure 3: Improvement over the strong supervised baseline, in a semi-supervised setting (w/
unlabeled data) on VOC12 val (left) and COCO val (right).

training set are used as unlabeled data or image-level labeled data. We evaluate the performance us-
ing the standard mean intersection-over-union (mIoU) metric. Implementation details can be found
in Appendix B.

4.1 EXPERIMENTS USING PIXEL-LEVEL LABELED DATA AND UNLABELED DATA

Improvement over a strong baseline. We first demonstrate the effectiveness of the proposed
method by comparing it with the DeepLabv3+ model trained with only the pixel-level labeled data.
As shown in Figure 3 (a), the proposed method consistently outperforms the supervised training
baseline on VOC12, by utilizing the pixel-level labeled data and the unlabeled data. The proposed
method not only achieves a large performance boost in the low-data regime (when only 6.25% pixel-
level labels available), but also improves the performance when the entire training set (1.4k images)
is available. In Figure 3 (b), we again observe consistent improvement on the COCO dataset.
Comparisons with the others. Next, we compare the proposed method with recent state of the arts
on both the public 1.4k/9k split (in Table 1) and the created low-data splits (in Table 2), on VOC12.
Our method compares favorably with the others.

Table 1: Comparison with state of the arts on VOC12 val set (w/ pixel-level labeled data and
unlabeled data). We use the official training set (1.4k) as labeled data, and the augmented set (9k)
as unlabeled data.

Method Network mIoU (%)

GANSeg (Souly et al., 2017) VGG16 64.10
AdvSemSeg (Hung et al., 2018) ResNet-101 68.40
CCT (Ouali et al., 2020) ResNet-50 69.40

PseudoSeg (Ours) ResNet-50 71.00
PseudoSeg (Ours) ResNet-101 73.23

Table 2: Comparison with state of the arts on VOC12 val set (w/ pixel-level labeled data and
unlabeled data) using low-data splits. The exact numbers of pixel-labeled images are shown in
brackets. All the methods use ResNet-101 as backbone except CCT (Ouali et al., 2020), which uses
ResNet-50. * indicates implementation from Ke et al. (2020), ** indicates implementation from
French et al. (2020).

Method 1/2 (732) 1/4 (366) 1/8 (183) 1/16 (92)

AdvSemSeg (Hung et al., 2018) 65.27 59.97 47.58 39.69
CCT (Ouali et al., 2020) 62.10 58.80 47.60 33.10
*MT (Tarvainen & Valpola, 2017) 69.16 63.01 55.81 48.70
GCT (Ke et al., 2020) 70.67 64.71 54.98 46.04
**VAT (Miyato et al., 2018) 63.34 56.88 49.35 36.92
CutMix (French et al., 2020) 69.84 68.36 63.20 55.58

PseudoSeg (Ours) 72.41 69.14 65.50 57.60
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Figure 4: Improvement over the strong supervised baseline, in a semi-supervised setting (w/
image-level labeled data) on VOC12 val (left) and COCO val (right).

Table 3: Comparison with state of the arts on VOC12 val
set (w/ pixel-level labeled data and image-level labeled
data). We use the official training set (1.4k) as labeled data,
and the augmented set (9k) as image-level labeled data.

Method Model Network mIoU (%)

WSSN (Papandreou et al., 2015) DeepLab-CRF VGG16 64.60
GAIN (Li et al., 2018) DeepLab-CRF-LFOV VGG16 60.50
MDC (Wei et al., 2018) DeepLab-CRF-LFOV VGG16 65.70
DSRG (Huang et al., 2018) DeepLabv2 VGG16 64.30
GANSeg (Souly et al., 2017) FCN VGG16 65.80
FickleNet (Lee et al., 2019) DeepLabv2 ResNet-101 65.80
CCT (Ouali et al., 2020) PSP-Net ResNet-50 73.20

PseudoSeg (Ours) DeepLabv3+ ResNet-50 73.80

Table 4: Comparison with state of the
arts on VOC12 val set with pixel-level
labeled data and image-level labeled
data. Four ratios of pixel-level labeled
examples are tested. Both CCT (Ouali
et al., 2020) and our method use
ResNet-50 as backbone.

Split CCT PseudoSeg

1/2 66.80 73.51
1/4 67.60 71.79
1/8 62.50 69.15
1/16 51.80 65.44

4.2 EXPERIMENTS USING PIXEL-LEVEL LABELED DATA AND IMAGE-LEVEL LABELED DATA

Similar to semi-supervised learning using pixel-level labeled data and unlabeled data, we first
demonstrate the efficacy of our method by comparing it with a strong supervised baseline. As
shown in Figure 4, the proposed method consistently improves the strong baseline on both datasets.
In Table 3, we evaluate on the public 1.4k/9k split. The proposed method compares favorably with
the other methods. Moreover, we further compare to best compared CCT on the created low-data
splits (in Table 4). Both experiments show that the proposed PseudoSeg is more robust than the
compared method given less data. On all splits on both datasets, using pixel-level labeled data and
image-labeled data shows higher mIoU than the setting using pixel-level labeled data and unlabeled
data.

4.3 ABLATION STUDY

In this section, we conduct extensive ablation experiments on VOC12 to validate our design choices.
How to construct pseudo label? We investigate the effectiveness of the proposed pseudo labeling.
Table 5 demonstrates quantitative results, indicating that using either decoder output or SGC alone
gives an inferior performance. Naively using decoder output as pseudo labels can hardly work
well. The proposed fusion consistently performs better, either with or without additional image-level
labels. To further answer why our pseudo labels are effective, we study from the model calibration
perspective. We measure the expected calibration error (ECE) (Guo et al., 2017) scores of all the
intermediate steps and other fusion variants. As shown in Figure 5 (a), the proposed fusion strategy
(denoted as G in the figure) achieves the lowest ECE scores, indicating that the significance of jointly
using normalization with sharpening (see equation 4) compared with other fusion alternatives. We
hypothesize using well-calibrated soft labels makes model training less affected by label noises. The
comprehensive calibration study is left as a future exploration direction.
Using hypercolumn feature or not? In Figure 5 (b), we study the effectiveness of using hypercol-
umn features instead of the last feature maps in equation 3. We conduct the experiments on the 1/16
split of VOC12. As we can see, hypercolumn features substantially improve performance.
Soft or hard pseudo label? How to utilize predictions as pseudo labels remains an active question
in SSL. Next, we study whether we should use soft or hard one-hot pseudo labels. We conduct
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Table 5: Comparison to alternative pseudo labeling strategies. We conduct experiments using
1/4, 1/8, 1/16 of the pixel-level labeled data, the exact numbers of images are shown in the brackets.

Source Using image-level labels 1/4 (366) 1/8 (183) 1/16 (92)

Decoder only - 70.22 69.35 53.20
SGC only - 67.07 62.61 53.42
Calibrated fusion - 73.79 73.13 67.06
Decoder only X 73.95 73.05 67.54
SGC only X 71.73 67.57 64.26
Calibrated fusion X 75.29 74.70 71.22
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Figure 5: Ablation studies on different factors. See Section 4.3 for complete details.

the experiments in the setting where pixel-level labeled data and image-level labeled data are avail-
able. As shown in Figure 5 (c), using all predictions as soft pseudo label yields better performance
than selecting confident predictions. This suggests that well-calibrated soft pseudo labels might be
important in segmentation than over-simplified confidence thresholding.
Temperature sharpening or not? We study the effect of temperature sharpening in equation 4.
We conduct the experiments in the setting where pixel-level labeled data and image-level labeled
data are available. As shown in Figure 5 (d), temperature sharpening shows consistent and clear
improvements.
Strong augmentation strength. In Figure 5 (e), we study the effects of color jittering in the strong
augmentation. The magnitude of jittering strength is controlled by a scalar (Chen et al., 2020b).
We conduct the experiments in the setting where pixel-level labeled data and unlabeled data are
available. If the magnitude is too small, performance drops significantly, suggesting the importance
of strong augmentation.
Impact of different feature backbones. In Figure 5 (f), we compare the performance of using
ResNet-50, ResNet-101, and Xception-65 as backbone architectures, respectively. We conduct the
experiments in the setting where pixel-level labeled data and unlabeled data are available. As we can
see, the proposed method consistently improves the baseline by a substantial margin across different
backbone architectures.

4.4 COMPARISON WITH SELF-TRAINING

Several recent approaches (Chen et al., 2020a; Zoph et al., 2020) exploit the Student-Teacher self-
training idea to improve the performance with additional unlabeled data. However, these methods
only apply self-training in the high-data regime (i.e., sufficient pixel-labeled data to train teachers).
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Table 6: Comparison with self-training. We use our supervised baseline as the teacher to generate
one-hot pseudo labels, following Zoph et al. (2020).

Method Using image-level labels 1/4 (366) 1/8 (183) 1/16 (92)

Supervised (Teacher) - 70.20 64.00 56.03
Self-training (Student) - 72.85 69.88 64.20

PseudoSeg (Ours) - 73.79 73.13 67.06
PseudoSeg (Ours) X 75.29 74.70 71.22

Here we compare these methods in the low-data regimes, where we focus on. To generate offline
pseudo labels, we closely follow segmentation experiments in Zoph et al. (2020): pixels with a
confidence score higher than 0.5 will be used as one-hot pseudo labels, while the remaining are
treated as ignored regions. This step is considered important to suppress noisy labels. A student
model is then trained using the combination of unlabeled data in VOC12 train and augmented sets
with generated one-hot pseudo labels and all the available pixel-level labeled data. As shown in
Table 6, although the self-training pretty well improves over the supervised baseline, it is inferior
to the proposed method 2. We conjecture that the teacher model usually produces low confidence
scores to pixels around boundaries, so pseudo labels of these pixels are filtered in student training.
However, boundary pixels are important for improving the performance of segmentation (Kirillov
et al., 2020). On the other hand, the design of our method (online soft pseudo labeling process)
bypass this challenge. We will conduct more verification of this hypothesis in future work.

4.5 IMPROVING THE FULLY-SUPERVISED METHOD WITH ADDITIONAL DATA

We have validated the effectiveness of the proposed method in the low-data regime. In this section,
we want to explore whether the proposed method can further improve supervised training in the full
training set using additional data. We use the training set (1.4k) in VOC12 as the pixel-level labeled
data. The additional data contains additional VOC 9k (V9k), COCO training set (Ctr), and COCO
unlabeled data (Cu). More training details can be found in Appendix D. As shown in Table 7, the
proposed PseudoSeg is able to improve upon the supervised baseline even in the high-data regime,
using additional unlabeled or image-level labeled data.

Table 7: Improving fully supervised model with extra data. No test-time augmentation is used.

Method Baseline PseudoSeg (w/o image-level labels) PseudoSeg (w/ image-level labels)

Extra data - Ctr+Cu Ctr + Cu + V9k Ctr Ctr + V9k
mIoU (%) 76.96 77.40 (+0.44) 78.20 (+1.24) 77.80 (+0.84) 79.28 (+2.32)

5 DISCUSSION AND CONCLUSION

The key to the good performance of our method in the low-data regime is the novel re-design of
pseudo-labeling strategy, which pursues a different decision mechanism from weakly-supervised
localization to “remedy” weak predictions from segmentation head. Then augmentation consis-
tency training progressively improves segmentation head quality. For the first time, we demon-
strate that, with well-calibrated soft pseudo labels, utilizing unlabeled or image-labeled data sig-
nificantly improves segmentation at low-data regimes. Further exploration of fusing stronger and
better-calibrated pseudo labels worth more study as future directions (e.g., multi-scaling). Although
color jittering works within our method as strong data augmentation, we have extensively explored
geometric augmentations (leveraging STN (Jaderberg et al., 2015) to align pixels in pseudo labels
and strongly-augmented predictions) for segmentation but find it not helpful. We believe data aug-
mentation needs re-thinking beyond current success in classification for segmentation usage.
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APPENDIX

A SELF-ATTENTION GRAD-CAM

We elaborate the detailed pipeline of generating Self-attention Grad-CAM (SGC) maps (equation 3)
in Figure 6. To construct the hypercolumn feature, we extract the feature maps from the last two con-
volutional stages of the backbone network and concatenate them together. We then project the hy-
percolumn feature to two separate low-dimension embedding spaces to construct “key” and “query”,
using two 1 × 1 convolutional layers. An attention matrix can then be computed via matrix multi-
plication of “key” and “query”. To construct “value”, we compute Grad-CAM for each foreground
class and then concatenate them together. This results in a H ×W × (C − 1) score map, where the
maximum score of each category is normalized to one separately. We then use image-level labels
(either from classifier prediction or ground truth annotation) to set the score maps of non-existing
classes to be zero. For each pixel localization, we use one to subtract the maximum score to con-
struct the background score map, which is then concatenated with the foreground score maps to
form “value” (H ×W ×C). The attention score matrix can then be used to reweight and propagate
the scores in “value”. The propagated score is added back to the “value” score map, and the pass
through a 1× 1 convolution (w/ batch normalization) to output the SGC map.

Grad-CAM

Hypercolumn 
feature
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3072
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H

W
H 1×1 conv

1×1 conv

transpose
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H × W

H × W

Attention 
Score
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Self-attention 
Grad-CAM (SGC)

skip-connection

Figure 6: Diagram of Self-attention Grad-CAM (SGC) .

B IMPLEMENTATION DETAILS

We implement our method on top of the publicly available official DeepLab codebase.3 Unless spec-
ified, we adopt the DeepLabv3+ model with Xception-65 (Chollet, 2017) as the feature backbone,
which is pre-trained on the ImageNet dataset (Russakovsky et al., 2015). We train our model follow-
ing the default hyper-parameters (e.g., an initial learning rate of 0.007 with a polynomial learning
rate decay schedule, a crop size of 513× 513, and an encoder output stride of 16), using 16 GPUs 4.
We use a batch size of 4 for each GPU for pixel-level labeled data, and 4 for unlabeled/image-level
labeled data. For VOC12, we train the model for 30,000 iterations. For COCO, we train the model
for 200,000 iterations. We set γ = 0.5 and T = 0.5 unless specified. We do not apply any test time
augmentations.

C LOW-DATA SAMPLING IN PASCAL VOC 2012

Unlike random sampling in image classification, it is difficult to sample uniformly in a low-data
case for semantic segmentation due to the imbalance of rare classes. To avoid the missing classes at
extremely low data regimes, we repeat the random sampling process for 1/16 three times (while en-
suring each class has a certain amount) and report the results. We use Split 1 in the main manuscript.
All splits will be released to encourage reproducibility. The results of all the three splits are shown
as in Table 8.

3https://github.com/tensorflow/models/tree/master/research/deeplab
4We do not adopt synchronous batch normalization, which is known can improve performance generally.
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Figure 7: Training. For each network component, we show the loss supervision and the
corresponding data.

Table 8: Full results of 1/16 split in VOC12.

Method Using image-level labels Split 1 Split 2 Split 3

Supervised - 56.03 56.87 55.92
PseudoSeg (Ours) - 67.06 64.12 66.09
PseudoSeg (Ours) X 71.22 68.11 69.72

D HIGH-DATA EXPERIMENTAL SETTINGS

Here we provide more details about the experiments in Section 4.5. Since we have a lot more
unlabeled/image-level labeled data, we adopt a longer training schedule (90,000 iterations) 5. We
also adopt a slightly different fusion strategy in this setting by using T = 0.7 and γ = 0.3.

E COMPARISON WITH WEAKLY-SUPERVISED APPROACHES

In Table 9, we benchmark recent weakly supervised semantic segmentation performance on PAS-
CAL VOC 2012 val set. Instead of enforcing the consistency between different augmented images
as we do, these approaches tackle the semantic segmentation task from a different perspective, by
exploiting the weaker annotations (image-level labels). As we can see, by exploiting the image-
level labels with careful designs, weakly-supervised semantic segmentation methods could achieve
reasonably well performance. We believe that both perspectives are feasible and promising for
low-data regime semantic segmentation tasks, and complementary to each other. Therefore, these
designs could be potentially integrated into our framework to generate better pseudo labels, which
leads to improved performance.

Table 9: Benchmarking state-of-the-art weakly supervised semantic segmentation methods.
All the methods use image-level labels from VOC12 training (1.4k) and augmented (9k) sets.

Method Pixel-level labeled data mIoU (%)

FickleNet (Lee et al., 2019) - 64.9
IRNet (Ahn et al., 2019) - 63.5
OAA+ (Jiang et al., 2019) - 65.2
SEAM (Wang et al., 2020) - 64.5
MCIS (Sun et al., 2020) - 66.2

PseudoSeg (Ours) 1/16 (92) 71.22

5Note that a longer training schedule does not improve the supervised baseline.
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F PERFORMANCE ANALYSIS FOR TEMPERATURE SHARPENING

We conduct an additional performance analysis for temporal sharpening. We conduct experiments
over T on the 1/16 split of VOC using pixel-level labeled data and image-level labeled data. As
shown in Table 10, adopting a T < 1 for distribution sharpening generally leads to improved per-
formance.

Table 10: Performance analysis over T.

Temperature (T) mIoU (%)

0.1 71.11
0.3 70.11
0.5 (default) 71.22
0.7 72.37
1.0 (no sharpening) 68.15

G EXPERIMENTS ON CITYSCAPES

In this section, we conduct additional experiments on the Cityscapes dataset (Cordts et al., 2016).
The Cityscapes dataset contains 50 real-world driving sequences. Among these video sequences,
2,975 frames are selected as the training set, and 500 frames are selected as the validation set.
Following previous common practice, we evaluate on 19 semantic classes.
Comparison with state of the art. We compare our method with the current state-of-the-art
method (French et al., 2020), in the setting of using pixel-level labeled and unlabeled data. We ran-
domly subsample 1/4, 1/8, and 1/30 of the training set to construct the pixel-level labeled data, using
the first random seed provided by French et al. (2020). Both French et al. (2020) and our method
use ResNet-101 as the feature backbone and DeepLabv3+ (Chen et al., 2018) as the segmentation
model. As shown in Table 11, the proposed method achieves promising results on all the three label
ratios.

Table 11: Experiments on Cityscapes (w/ pixel-level labeled data and unlabeled data).

Method 1/4 (744) 1/8 (372) 1/30 (100)

CutMix (French et al., 2020) 68.33 65.82 55.71
PseudoSeg (Ours) 72.36 69.81 60.96

Per-class performance analysis. Next, we provide per-class performance break down analysis. We
compare our method with the supervised baseline on the 1/30 split, using pixel-level labeled data and
unlabeled data. As shown in Table 12, the distribution of the labeled pixels is severely imbalanced.
Although our method does not in particular address the data imbalance issue, our method improves
upon the supervised baseline on most of the classes (except for “Wall” and “Pole”).

Table 12: Per-class performance analysis on Cityscapes (w/ pixel-level labeled data and
unlabeled data).

Class Road Sidewalk Building Wall Fence Pole Traffic light Traffic sign Vegetation Terrain
Pixel ratio (%) 36.36 5.61 20.99 0.53 0.98 1.19 0.14 0.51 19.61 1.29

Supervised 96.03 71.26 87.53 19.75 29.11 52.19 50.19 68.09 89.93 45.79
PseudoSeg (Ours) 96.64 75.06 88.63 19.67 34.09 51.75 58.19 69.95 90.43 50.48

Class Sky Person Rider Car Truck Bus Train Motorcycle Bicycle
Pixel ratio (%) 3.70 1.10 0.16 6.49 0.38 0.13 0.23 0.06 0.54

Supervised 91.01 74.12 43.91 89.91 7.68 14.19 17.78 25.86 69.88
PseudoSeg (Ours) 92.99 75.16 46.09 91.60 20.39 26.30 22.13 43.96 71.30

Discussion. Although the scene layouts are quite similar for all the full images, it is still feasible to
generate different image-level labels through a more aggressive geometric data augmentation (e.g.,
scaling, cropping, translation, etc.). In practice, standard segmentation preprocessing steps only
crop a sub-region of the whole training images. It only contains partial images with a certain subset
of image labels, making the training batches have diverse image-level labels (converted from pixel-
level labels, in the fully-labeled+unlabeled setting). Moreover, in the fully-labeled+weakly-labeled

15



Published as a conference paper at ICLR 2021

setting, in practice, we can collect diverse Internet images and weakly label them, instead of weakly
labeling images from Cityscapes.

H QUALITATIVE RESULTS

We visualize several model prediction results for PASCAL VOC 2012 (Figure 8) and COCO (Fig-
ure 9). As we can see, the supervised baseline struggles to segment some of the categories and small
objects, when trained in the low-data regime. On the other hand, PseudoSeg utilizes unlabeled or
weakly-labeled data to generate more satisfying predictions.
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Input Ground truth Supervised Ours (unlabeled) Ours (img. label)
Figure 8: Qualitative results of PASCAL VOC 2012. Models are trained with 1/16 pixel-level
labeled data in the training set.
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Input Ground truth Supervised Ours (unlabeled) Ours (img. label)
Figure 9: Qualitative results of COCO. Models are trained with 1/512 pixel-level labeled data in
the training set. Note that white pixel in the ground truth indicates this pixel is not annotated for
evaluation.

18


