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Abstract

We describe and explore a novel setting of active learning (AL), where there are
multiple target models to be learned simultaneously. In many real applications, the
machine learning system is required to be deployed on diverse devices with varying
computational resources (e.g., workstation, mobile phone, edge devices), which
leads to the demand of training multiple target models on the same labeled dataset.
However, it is generally believed that AL is model-dependent and untransferable,
i.e., the data queried by one model may be less effective for training another model.
This phenomenon naturally raises a question “Does there exist an AL method that
is effective for multiple target models?”. In this paper, we answer this question by
theoretically analyzing the label complexity of active and passive learning under
the setting with multiple target models, and conclude that AL does have potential to
achieve better label complexity under this novel setting. Based on this insight, we
further propose an agnostic AL sampling strategy to select the examples located in
the joint disagreement regions of different target models. The experimental results
on the OCR benchmarks show that the proposed method can significantly surpass
the traditional active and passive learning methods under this challenging setting.

1 Introduction

Data labeling is expensive due to the involving of human annotator. Active learning (AL) is one of
the main approaches to reduce the labeling cost [28]. It evaluates the utility of the unlabeled data
based on the target model, and actively queries the labels from the oracle for the examples that is the
most beneficial to the performance improvement of the target model.

Existing active learning methods assume that there is only one specific target model, and try to fit
it with least queries. However, in many real applications, the machine learning system is required
to be deployed on multiple types of devices with different resource constraints [6]. For example, a
speech recognition software needs to support diverse machines with varying hardware efficiency,
ranging from high-performance workstation to the mobile-phone. Due to the different computational
resources, the applicable model architectures vary a lot, e.g., a deep model which is well-performed
on the cloud server may not be deployed on the edge device. It thus raises the demand of training
multiple models with different complexity to accommodate these devices.

Given multiple target models, how to effectively improve them with least labeled data becomes a
practical and challenging problem. It is generally believed that AL is usually model-dependent and
untransferable [22, 24, 38], i.e., the best query strategy for different target models varies a lot [39]. In
other words, the data queried by one model may be less effective for training another model [22].
These observations imply that the existing active query strategies can hardly benefit all target models
simultaneously, and the design of AL algorithm for multi-models can be rather difficult. A natural
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question might be asked: “Does there exist an active learning method which queries a set of labeled
data, such that all the target models can be effectively trained with them?”

In this paper, we formally define the active learning for multiple target models problem, and reveal
the potential improvement of AL under this novel setting. Based on this insight, we further propose
an agnostic disagreement-based selection criterion. Specifically, we first define and analyze the label
complexity for both active and passive learning under the setting with multiple target models. This
label complexity characterizes the number of labeled examples sufficient to train an ε-good classifier
with probability at least 1 − δ for each target model. Moreover, we find that the label complexity
of single model has a close relation to that of multiple models under the realizable case, e.g., the
former provides an upper bound of the label complexity for multiple models, which also implies the
potential improvement of AL under this setting. To further explore the agnostic case, we propose
an active selection method DIAM (i.e., DIsagreement-based AL for Multi-models) to effectively
select the best examples that are beneficial to all target models. It prefers the data located in the joint
disagreement regions of different models, which is expected to have higher potential to reduce the
soft version space (i.e., the set of hypotheses with lower errors). Experiments are conducted on the
OCR benchmarks to validate the necessity of designing active query method under this practical
setting and the effectiveness of the proposed approach. The results show that the DIAM method can
significantly reduce the number of queries to achieve a higher mean accuracy for multiple models
compared to the traditional active and passive learning methods.

The rest of the paper is organized as follows. related work is first reviewed in the following section,
then we formally define the AL for multiple target models problem and provide a general result
to bridge the label complexity between single and multiple models. Then, we reveal the potential
improvement of AL under this novel setting. After that, an agnostic active selection criterion is
proposed and analyzed, followed by the empirical studies. And at last, we conclude this work.

2 Related work

Active learning has received much attention in recent years due to the greatly increasing demands of
labeling data to effectively train more complex models (e.g., deep models) [25]. One of the cores
of AL is how to evaluate the potential contribution to the performance improvement of the target
model for each candidate query. Most of existing criteria for active learning can be categorized into
informativeness and representativeness. The informativeness-based methods [13, 36, 17] prefer the
data which is near the decision boundary, and the representativeness-based methods [27, 30, 21]
impose the constraints to regularize the queried data to be dissimilar with each other or conform to the
latent data distribution. Many works also try to combine both criteria to obtain better performances
[11, 37, 31]. Beyond these hand-crafted selection criteria, several meta-active-learning methods
[18, 23, 35] are proposed to learn a generalizable query strategy across tasks. Most of the existing
active learning query strategies target on improving one specific target model. They are less applicable
to the multiple target models setting.

From the theoretical view, active learning theory has also been widely studied under certain conditions
(e.g., binary classification, finite VC dimension) [16]. One of the interested properties of an active
learning algorithm is the label complexity, which characterizes the number of queries needed to
obtain an ε-good classifier with probability at least 1− δ [14]. To bound this value, disagreement
coefficient [5, 4] and Shattering [15, 7] are two commonly used techniques. While most works deal
with the single model setting, Balcan et al. [3] study the label complexity of the hypothesis space
and its subclasses, which sheds light on this work. However, they mainly focus on how to construct
subclasses to achieve a certain label complexity, while we aim to find an effective active learning
algorithm on the given target models.

Recently, some AL studies tackle a related problem that the target model prior cannot be obtained.
In this setting, they will not only search the appropriate target model for the current task, but also
avoid noneffective querying. To this end, ALMS [1] either randomly labels data to calculate the
unbiased validation error for model selection, or queries by the expected error reduction to improve
the models. Active-iNAS [12] considers the deep learning setting, the authors on one hand perform
Neural Architecture Search (NAS) to find the appropriate model architecture, on the other hand query
the examples by the searched network. Recently, Tang and Huang [32] propose a unified framework
DUAL to solve this problem. They query the data that is beneficial to not only the winner model, but
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also the model search to identify the high potential model with least queries. All these methods try to
search effective model configurations, but not improve multiple target models, which are different
from our work.

3 Label Complexity of Single Model and Multiple Models

3.1 Notations and Definitions

Suppose the data is sampled from an unknown distribution DXY over the feature space X and label
space Y . Denote by DX the marginal data distribution, and DY the marginal label distribution. Given
a dataset with n instances, which includes a small labeled set L = {(xi, yi)}nl

i=1 with nl instances,
and a large unlabeled set U = {xi}nl+nu

i=nl+1 with nu instances, where nl � nu and n = nl + nu. At
each iteration, the active learning method will select a batch of b examples Q from U for querying.

In the single model setting, we are given a hypothesis space C before querying. While in the multiple
target models setting, there are k hypothesis spaces T = {Ci|i = 1, 2, . . . , k} with T̃ =

⋃k
i=1 Ci,

our goal is to actively query a set of examples to output a well-performed hypothesis ĥi from each
Ci, ∀i = 1, ..., k. We define the true error of a hypothesis as er(h) = Px∼DX

(h(x) 6= h∗(x)),
where h∗ is the target concept, h(x) is the model prediction on the data x. The empirical error of h
on L is defined by erL(h) = 1

|L|
∑

x∈L I[h(x) 6= h∗(x)], where I[·] is the indicator function. Let
ν = minh∈C er(h), and νi = minh∈Ci er(h), Log(a) = max{ln(a), 1}, ∀a > 0.

Here we introduce the definition of the pseudo-metric between hypotheses, which is frequently used
in the subsequent proof.
Definition 1. Pseudo-metric between Hypotheses: Given DX , the probability of disagreement
between two classifiers h1 and h2 is defined as d(h1, h2) = Px∼DX

(h1(x) 6= h2(x)).

Then we introduce the label complexity of AL for single target model [16].
Definition 2. Label Complexity of AL for Single Target Model: For any active learning algorithm
A, we say A achieves label complexity Λ on the hypothesis space C if, for every ε, δ ∈ (0, 1), every
distribution DXY over X × Y , and every integer t ≥ Λ (ε, δ,DXY ), if ht,δ is the classifier produced
by running A with budget t, then with probability at least 1− δ, er(ht,δ)− ν ≤ ε.

Now we formally define the label complexity of active learning for multiple target models. It is
defined on multiple hypothesis spaces, and the goal is to output an ε-good classifier for each target
model. Specifically, the label complexity for the AL with multiple target models is defined as
Definition 3. Label Complexity of AL for Multiple Target Models: Given a set of target models
T = {Ci|i = 1, 2, . . . , k}. For any active learning algorithm A, we say A achieves label complexity
Λ̃ for multiple target models if, for every ε, δ ∈ (0, 1), every distributionDXY over X ×Y , and every
integer t ≥ Λ̃ (ε, δ,DXY , T ), if {ht,δi ∈ Ci|i = 1, . . . , k} is the classifiers produced by running A
with budget t, then with probability at least 1− δ, er(ht,δi )− νi ≤ ε,∀i = 1, . . . , k.

In the following, we take the passive learning (PL), i.e., random sampling, as a trivial case of active
learning, and use the notations ΛAL, ΛPL and Λ̃AL, Λ̃PL to distinguish the label complexity of them,
respectively. We hide the superscript when the context is clear.

3.2 Translating the Label Complexity of Single Model to Multiple Models

Denote by Λi the label complexity of the i-th target model Ci. Trivially, the AL label complexity
for multiple models has Λ̃AL ≤

∑
i ΛALi (applying the AL algorithm A on each of the target model

i to get the result). For the passive learning, however, its label complexity for multiple models
has a much tighter upper bound Λ̃PL ≤ maxi ΛPLi . Because the data is randomly sampled, if
t ≥ maxi ΛPLi (ε, δ,DXY ) examples are queried, according to the definition of label complexity,
passive learning will output an ε-good classifier with probability at least 1− δ for each target model.
Such result implicitly indicates that the AL can hardly outperform PL under this setting.

To break this curse, the following theorem is provided to show that, we can expect a much better Λ̃AL

for AL under the realizable case (i.e., h∗ is in the combined hypothesis space T̃ ). It generally says
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that, given arbitrary set of target models T = {Ci|i = 1, 2, . . . , k}, if a learning method has label
complexity ΛAL on the combined hypothesis space T̃ , it also has the ability to output good classifiers
for each Ci, i.e., after querying at most t examples to output ε-good classifiers with probability at
least 1− δ for each Ci.
Theorem 1. Considering binary classification tasks and realizable case, given target models T =
{Ci|i = 1, 2, . . . , k}, assume that active learning algorithm A achieves label complexity Λ on T̃ .
Then, there exists an active learning algorithm A′ which achieves the label complexity Λ̃ such that
Λ̃ (ε, δ,DXY , T ) = Λ (ε/2, δ,DXY ).

Proof. Define an algorithmA′ that can output the required classifier ĥi ∈ Ci,∀i = 1, ..., k as follows.
First, run the algorithm A on (T̃ ,DXY ) to query t ≥ Λ(ε/2, δ,DXY ) labels and output a classifier
hA. According to the definition, d(hA, h

∗) is bounded by ε/2 with probability at least 1− δ. Then,
for any Ci, output the classifier ĥi ∈ Ci such that ĥi = arg minhi∈Ci d(hi, hA). Next, we prove that
er(ĥi)− νi ≤ ε holds with probability at least 1− δ.

To bound er(ĥi), it is equivalent to bound d(ĥi, h
∗) by Definition 1. Let h∗i = arg minhi∈Ci er(hi).

It is easy to verify that, d(·) satisfies triangle inequality in binary classification problems, i.e.,

d(ĥi, h
∗) ≤ d(ĥi, hA) + d(hA, h

∗). (1)

For the d(ĥi, hA), we know that ĥi = arg minhi∈Ci d(hi, hA), which means

d(ĥi, hA) ≤ d(h∗i , hA). (2)

Again, by the triangle inequality, we have

d(h∗i , hA) ≤ d(h∗i , h
∗) + d(h∗, hA). (3)

Combining Eq. (1)(2)(3), we have

d(ĥi, h
∗) ≤ d(h∗i , h

∗) + 2d(hA, h
∗). (4)

Since d(hA, h
∗) is bounded by ε/2 with probability at least 1− δ, we can get er(ĥi)− νi ≤ ε holds

with probability at least 1− δ.

Theorem 1 says that if we can find an active learning method to obtain a classifier hA ∈ T̃ such that
er(hA) ≤ ε/2 with probability 1 − δ, then we can obtain ε-good classifier ĥi with probability at
least 1− δ for Ci,∀i = 1, ..., k, where ĥi = arg minhi∈Ci d(hi, hA). This result provides a general
guarantee that if an algorithm can achieve a label complexity on the combined hypothesis space
of different models, it also can achieve a bounded label complexity on these models (i.e., the label
complexity for multiple models). It can be served as a baseline of AL under multi-models setting.

4 Potential Improvements of Active over Passive

Although Theorem 1 bridges the traditional label complexity to that of multiple models setting, it
does not reveal the improvement of active over passive learning. Next, we will show the potential of
AL under this setting in the realizable case.

According to the theoretical analysis of the passive learning algorithm empirical risk minimization
(ERM) [16] for single hypothesis space C with VC dimension d [34], we know that
Lemma 1. Considering the binary classification, given the hypothesis space C with VC dimension d.
The passive learning algorithm ERM achieves a label complexity ΛPL such that, for any DXY in
the realizable case, ∀ε, δ ∈ (0, 1),

ΛPL (ε, δ,DXY ) .

(
1

ε

)
(dLog(θ(ε)) + Log(1/δ)) . (5)

For the agnostic case, ERM achieves a label complexity ΛPL such that,

ΛPL (ν + ε, δ,DXY ) .

(
ν + ε

ε2

)
(dLog(θ(ν + ε)) + Log(1/δ)) , (6)

4



where θ(·) is the disagreement coefficient which is formally defined as

Definition 4. Disagreement Coefficient: For any r0 ≥ 0 and classifier h, define the disagreement
coefficient of h with respect to C on DXY as

θCh (r0) = sup
r>r0

P(DIS(BC(h, r)))

r
∨ 1.

Where ∨ is the max operator. For a set of hypotheses H, DIS(H) = {x ∈ X | ∃h, h′ ∈
H, s.t. h(x) 6= h′(x)}, and BH(h, r) = {g ∈ H | d(h, g) ≤ r}.

This value roughly characterizes the behavior of the size of disagreement region DIS(·) as a function
of the hypotheses within a radius r around the classifier h. As aforementioned, passive learning has
the label complexity for multiple models Λ̃PL ≤ maxi ΛPLi . We note that the target concept h∗ will
usually not be included by every hypothesis space Ci, thus its label complexity Λ̃PL will usually be
the agnostic form in Lemma 1 under the realizable case.

To show the potential of AL under this setting, we take the CAL method [9] as an example, which
is a representative and well-analyzed approach in the active learning literature [16]. CAL queries
the examples from the disagreement region of a set of consistent hypotheses, i.e., DIS(V ) = {x ∈
X | ∃h, h′ ∈ V s.t. h(x) 6= h′(x)}, where V = {h ∈ C |h(x) = h∗(x),∀x ∈ L}. It achieves
the label complexity O(θ(ε) log(1/ε) log(θ(ε) log(1/ε))) for the realizable case. According to
Theorem 1, it will have the following label complexity for the multiple target models

Corollary 1. Given target models T = {Ci|i = 1, 2, . . . , k}. Suppose T̃ has VC dimension d <∞.
CAL achieves a label complexity Λ̃AL for multiple target models such that, for DXY in the realizable
case, for any ∀ε, δ ∈ (0, 1),

Λ̃AL (ε, δ,DXY , T ) ≤ θT̃h∗(ε/2) Log(2/ε)

(
dLog(θT̃h∗(ε/2)) + Log

(
Log(2/ε)

δ

))
. (7)

Proof. By combining the label complexity of CAL for single model from [16] and Theorem 1, we
can get the result.

To reveal the potential improvement, note that the label complexity for passive learning heavily
depends on the property of the worst hypothesis space, i.e., the value of maxi minh∈Ci er(h). Assume
that maxi minh∈Ci er(h) > ε. Then according to Lemma 1 and Corollary 1, the label complexity
of passive learning for multiple target models Λ̃PL (ε, δ,DXY , T ) is Ω(2/ε). On the other side,
CAL has a label complexity Ω(Log(2/ε)), which implies the potential of the improvement of active
learning under this setting. We leave the guarantee of strict improvement of AL under this setting an
interesting future work. Next we further study the agnostic case (i.e., h∗ /∈ T̃ ).

5 An Agnostic Disagreement-based AL method for Multiple Models

Define the set Vi for each Ci as {h ∈ Ci |h(x) = h∗(x),∀x ∈ L}, we propose to query the examples
located in the joint disagreement regions for all Ci,∀i = 1, 2, . . . , k, i.e., DIS(V1) ∩ DIS(V2) ∩
. . .DIS(Vk). Intuitively, we know that Vi must be a subset of V , if such data exists, we can expect it
has higher potential to reduce V . This statement can be simply implied by the Bayesian formula.

Proposition 1. Considering binary classification problem. Given hypothesis space C. Let V+(x) =
{h ∈ V |h(x) = +1}, V−(x) = {h ∈ V |h(x) = −1}, where V = {h ∈ C |h(x) = h∗(x),∀x ∈
L}. Denote λ(x) = |V+(x)|

|V−(x)| , where | · | is the number of elements of a set. The ideal case is to query
the x which has λ(x) = 1. Given any sequences of subset V1, V2, . . . , Vk randomly sampled from
V , define the event Ex that data x falls into DIS(V1) ∩ DIS(V2) · · · ∩ DIS(Vk). According to the
Bayesian formula, we have

P(λ(x) = 1|Ex) =
P(Ex|λ(x) = 1)P(λ(x) = 1)

P(Ex)

≥ P(λ(x) = 1) .

(8)
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Algorithm 1 The DIAM-online Algorithm

Initialize: hyperparameter q, constants σi;
m← 0, V̂i ← Ci,∀i = 1, . . . , k.

Output: Any h ∈ V̂i,∀i = 1, . . . , k.

1: while Labeling budget is not run out do
2: m← m+ 1
3: Request an unlabeled data xm
4: if

∑
i I[xm ∈ DIS(V̂i)] ≥ q then

5: Query: L ← L ∪ {(xm, h∗(xm))}
6: end if
7: if log2m ∈ N then
8: V̂i ← {h ∈ V̂i| erL(h) −

ming∈V̂i
erL(g) ≤ σi}, ∀i = 1, . . . , k.

9: end if
10: end while

Algorithm 2 The DIAM-pool Algorithm

Initialize: labeled set L, unlabeled set U , hyper-
parameters σ̂i, V̂i ← Ci,∀i = 1, . . . , k.

Output: {ĥi|i = 1, . . . , k}.

1: while Labeling budget is not run out do
2: x∗ = arg max

x∈U

∑
i I[x ∈ DIS(V̂i)]

3: Query x∗ from the oralce: L ← L ∪
{(x∗, h∗(x∗)))}

4: U ← U \ {x∗}
5: for i = 1, . . . , k do
6: ĥi ← ming∈V̂i

erL(g)

7: V̂i ← {h ∈ V̂i|(erL(h)− ĥi) ≤ σ̂i}
8: end for
9: end while

Proof. Since each Vi is randomly sampled from V , P(Ex) will reach its maximum value when
λ(x) = 1, thus we have P(Ex|λ(x) = 1)/P(Ex) ≥ 1, which leads to the conclusion.

Following this principle, we would like to query the examples located in the joint disagreement
regions of Ci,∀i = 1, 2, . . . , k. However, since we have multiple target models, the target concept
h∗ might not be included by every Ci in practice, which turns the learning problem to the agnostic
setting. Inspired by the RobustCAL method [2], which is a disagreement-based AL algorithm for the
agnostic setting, we propose DIAM (i.e., DIsagreement-based AL for Multi-models) query strategy
for the multiple target models problem. Note that we define a new form of Vi as V̂i to tackle the noisy
setting, i.e., V̂i = {h ∈ Ci | erL(h) −ming∈Ci erL(g) ≤ σi}, where σi is a constant. To simplify
the theoretical analysis, we first propose an online version of DIAM, then we define the DIAM
method for the pool-based setting and empirically validate its effectiveness. They are summarized at
Algorithm 1 and 2, respectively. The hyperparameter q controls the conservativeness of the algorithm.
With a larger q, it will reject more less informative unlabeled data in the online setting.

Now let us analyze the DIAM method. Since we are considering the agnostic setting, it is necessary
to model the noise. Here we employ the commonly used Tsybakov noise condition [33].
Condition 1. [33, Tsybakov noise] For some a ∈ [1,∞) and α ∈ [0, 1], assume that f? achieves
infh∈C er(h), for every h ∈ C,

P (x : h(x) 6= f?(x)) ≤ a (er(h)− er (f?))
α
.

We assume that there exists pair of ai and αi for each target model Ci. Considering a conservative
situation that the hyperparameter q = 1, by further taking the constants σi in DIAM-online algorithm
as the same form in the RobustCAL method [16], which relates to the properties of the noise,
hypothesis space, and disagreement coefficient, we can have the following result. The proof is
deferred to the appendix.
Theorem 2. Considering agnostic setting and binary classification tasks. Given a set of target models
T = {Ci|i = 1, 2, . . . , k}, in which each Ci has VC dimensions di <∞ and meet Condition 1. Let
h∗i = arg minhi∈Ci er(hi). For any ε, δ ∈ (0, 1), if q = 1, DIAM-online algorithm achieves a label
complexity Λ̃ (ε, δ,DXY , T ) for multiple target models such that, for ai and αi as in Condition 1,
for any DXY , Λ̃ (ε, δ,DXY , T ) is no larger than

k∑
i=1

a2i θ
Ci
h∗
i

(aiε
αi) ε2αi−2

(
di Log

(
θCih∗

i
(aiε

αi)
)

+ Log

(
Log(ai/ε)

δ

))
Log(

1

ε
) , (9)

and no larger than,
k∑
i=1

θCih∗
i
(νi + ε)

(
ν2i
ε2

+ Log

(
1

ε

))(
di Log(θCih∗

i
(νi + ε)) + Log

(
Log(1/ε)

δ

))
. (10)
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Theorem 2 provides an upper bound of the label complexity of the DIAM-online method when q = 1.
It considers a general situation with arbitrary target models and data distributions, even the unlabeled
data will never fall into the joint disagreement regions. However, one may be more interested in the
situation that if we can always query the x such that

∑
i I[x ∈ DIS(V̂i)] = k. Next, we prove that if

such ideal situation exists, DIAM-online will achieve a better label complexity than applying CAL
on the multiple target models setting even under the realizable setting.

Theorem 3. Considering binary classification tasks and realizable case. Given a set of target models
T = {Ci|i = 1, 2, . . . , k}, in which each Ci has VC dimensions di <∞ and meet Condition 1, and
T̃ with VC dimension d < ∞. Assume that, if a data point falls into the disagreement region of
any Ci, it also falls into the disagreement regions of the others {Cj |j 6= i, j = 1, 2, . . . , k}. Assume
the m-th target model achieves the highest label complexity. Let h∗m = arg minhm∈Cm er(hm) and
νm = er(h∗m). For any δ ∈ (0, 1), ε ∈ (0, 1/e), h∗ ∈ T̃ . If νm ≤ ln 2

2 ε, DIAM-online achieves a
better upper bound of Λ̃ than that of applying CAL method on T̃ .

The key of the proof is comparing the disagreement coefficients defined on different functions and
hypothesis spaces, i.e., θCmh∗

m
and θT̃h∗ . We defer the proof to the appendix. Although Theorem 3

holds with somewhat strict conditions, we note that Theorem 1 only works in the realizable case,
while DIAM does not require this condition. Next, we discuss how to implement DIAM in the real
applications for deep models.

It is generally believed that finding the disagreed pair of classifiers from a set of hypotheses for a
given x is non-trivial. Most existing methods randomly sample functions from the hypothesis space
for validation, or turn to select the data close to the decision boundary (e.g., uncertainty), which can
be expensive or inaccurate. This problem becomes more prohibitive to the deep models.

To efficiently estimate the disagreement regions for the neural networks, we propose to exploit the
predictions of the unlabeled data during the later epochs in the training phase, typically after the
network converging. Recall the definition of disagreement region DIS(V̂i), we should firstly find the
hypotheses that are basically consistent with the labeled data, then validate whether there exists a pair
of hypotheses that disagree on the given unlabeled data. For the first characteristic, the models on
the later epochs, i.e., has smaller training errors, can represent the well-learned hypotheses. For the
second characteristic, if there exists models i, j from the later epochs such that the model trained at
epoch i has inconsistent prediction with the model trained at epoch j on the unlabeled data x, we can
say that the example x falls into DIS(V̂i).

More concretely, according to the training loss curve, we empirically take the models in the latter half
of the training epochs as the well-performed hypotheses set, and estimate the disagreement region
with them. Since there may be multiple examples have the same value of

∑
i I[x ∈ DIS(V̂i)], we

further calculate the vote entropy [10] of the well-performed hypotheses on the specific data, and
take it as the secondary sort key in the data selection phase. We also note that the query batch size in
deep learning is usually large. tT avoid overmuch information redundancy, we heuristically keep the
top-rated unlabeled data with 5 times the size of the batch size, and randomly sample 20% from it for
querying. We leave the more advanced diversity measurement a future work.

By applying the above heuristics to the deep models, DIAM method is quite efficient. It evaluates the
unlabeled data with the models trained with later epochs, which roughly takes the size of the well-
performed hypotheses set times of that of the entropy method to make the data selection. However,
we also note that the DIAM method has some limitations. It only considers the informativeness of the
unlabeled data, which may be less effective for the batch-mode selection. For the potential negative
social impact, DIAM may reduce the cost of training multiple malicious machine learning models.
Nevertheless, we believe the positive contribution is more significant.

6 Experiment

6.1 Empirical Settings

To construct the multiple target models scenario, we introduce the results of a recent NAS method
OFA [6], which tries to efficiently search model architectures for different devices by training only
one super-net. They report the searched effective architectures that meet the hardware constraints
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Figure 1: The learning curves with the mean accuracy of the target models of the compared methods.
The error bars indicate the standard deviation of the performances of target models.

of various machines on the GitHub 2, which is well suited to our problem setting. Specifically, we
take 12 specialized model architectures with different prediction accuracies and speeds that target on
Samsung S7 Edge, Samsung Note8 and Samsung Note10 as our target models. They are pruned from
a MobileNetV3 (which is the super-net), but have very different prediction time and accuracies. Their
Multiply-Accumulate Operations (MACs) range from 66M to 237M, which denote the diversity of
the architectures. The model specifications are listed in the appendix.

We compare the following query strategies in our experiments.

• DIAM: The proposed method of this paper, which queries the data located in the joint
disagreement regions of multiple target models.

• CAL [9]: Query the data falls into the disagreement region of any target models. It has a
bounded label complexity for the multiple target models setting according to Theorem 1.

• Entropy [20]: Query the data with the highest prediction entropies. We take the mean
entropies calculated by all target models to support the novel problem setting.

• Least Confidence [29]: Query the data with the least prediction confidence. We take the
mean values calculated by all target models to support the novel problem setting.

• Margin [26]: Query the data with the minimum prediction margin. We take the mean margin
values calculated by all target models to support the novel problem setting.

• Coreset [27]: Query the most representative data. The distance is calculated by the features
extracted by a pretrained MobileNetV3, which is the super-net in OFA [6].

• Random: Query data randomly. Note that this is a highly competitive baseline.

Since Optical Character Recognition (OCR) is one of the representative machine learning systems
that are required to be deployed on diverse devices, two commonly used hand-writing characters
classification benchmarks are employed in our experiments, i.e., the MNIST [19] and Kuzushiji-
MNIST [8] datasets. They are under the CC BY-SA 3.0 and CC BY-SA 4.0 licenses, respectively.
Here we consider the prevalent pool-based active learning setting. Specifically, we randomly take
3, 000 training data as our initially labeled data, and the rest as the unlabeled pool. At each iteration,
the compared sampling methods will select 1, 500 unlabeled examples for querying, then re-train the
models. The mean and standard deviation of the accuracies of multiple target models are reported.
Note that more results can be found in the appendix.

For the model training, We mainly follow the training configs of OFA. Specifically, the hyperparam-
eters are set by the default values in the project. For example, the learning rate is set by 7.5e − 3,
batch size is 128, SGD optimizer is employed with momentum 0.9. Since the initially labeled data is
limited, a small number of training epochs is taken to avoid over-fitting. Specifically, we employ the

2https://github.com/mit-han-lab/once-for-all . It is under the MIT license.

8

https://github.com/mit-han-lab/once-for-all


Table 1: The mean of the learning curves and the mean of standard deviation values with different
numbers of target models on the OCR benchmarks achieved by the compared methods (mean accuracy
± mean standard deviation). The best performance is highlighted in boldface.

Methods Number of Target Models
2 4 6 8 12

MNIST
DIAM 98.16± 0.13 97.29± 0.99 97.55± 0.85 97.34± 1.09 97.34± 1.04
CAL 97.79± 0.14 97.04± 0.92 97.24± 0.89 96.95± 1.07 96.98± 1.10

Entropy 97.83± 0.10 96.94± 1.01 97.15± 0.98 96.92± 1.06 96.98± 1.00
Margin 97.79± 0.13 96.94± 1.02 97.19± 0.96 96.81± 1.19 97.00± 1.02

Least conf. 97.84± 0.11 96.89± 1.02 97.23± 0.92 96.88± 1.05 96.96± 1.07
Coreset 97.64± 0.13 96.69± 1.07 97.03± 0.97 96.36± 1.82 96.56± 1.40
Random 97.81± 0.12 96.93± 0.97 97.21± 0.94 96.83± 1.12 97.03± 0.99

Kuzushiji-MNIST
DIAM 90.38± 0.21 85.76± 4.69 86.91± 4.38 86.23± 4.68 86.85± 4.25
CAL 87.06± 0.34 83.61± 4.29 84.70± 3.88 83.40± 4.32 83.31± 4.53

Entropy 87.09± 0.34 83.22± 4.16 84.39± 3.85 83.28± 4.28 83.33± 4.33
Margin 86.91± 0.35 83.20± 4.10 84.31± 4.03 83.11± 4.37 83.16± 4.29

Least conf. 86.71± 0.26 83.38± 4.25 84.36± 3.71 83.20± 4.42 83.04± 4.33
Coreset 87.49± 0.36 82.97± 5.16 84.80± 4.58 83.00± 4.93 82.91± 5.03
Random 87.34± 0.31 82.97± 4.38 84.22± 3.98 83.02± 4.19 83.26± 4.36

pretrained weights on the image-net dataset for initialization, then finetune 20 epochs on the labeled
data.

6.2 Results

We report the trend of mean accuracy of multiple target models with the number of queries increasing
in Fig. 1. The error bars indicate the standard deviation of the performances of multiple target models.
First of all, the high deviation of the performances of the initial point shows the diversity of the
target models, which symbolizes the practicability and difficulty of the experimental settings. It is
conceivable that different target models will have various preferences of training data due to the
diverse architectures. Under this challenging setting, it can be observed from the figure that our
method can significantly outperform the traditional active and passive learning methods. It shows
a great potential of improvements over the random sampling, which is a very competitive baseline
in this novel setting. This result sufficiently reveals the effectiveness of DIAM and the necessity
of designing active query method under this practical setting. The uncertainty-based methods, i.e.,
entropy, least confidence and margin, achieve comparable performances with random sampling.
These results meet our expectation. Because traditional AL methods are usually model-dependent,
i.e., the data queried by one model may be less effective for training another model. By taking the
mean uncertainty scores of diverse target models, the data selection may tend to be non-informative.
The coreset method is less stable than random. We note that coreset is still a model-based selection
method in deep learning. Because the features of the data will be optimized along with the training
procedures. Thus it may also suffer from the model dependence problem.

6.3 Study on Different Numbers of Target Models

We further explore the influence of the number of target models to the data selection methods. Due to
the space limitation, we report the mean of the learning curves and the mean of standard deviations
in Table 1, and defer the whole learning curves to the appendix. The results show that our method
can consistently outperform the other compared methods, which demonstrate its robustness to the
number of models. This property also denotes that the DIAM method has the potential to tackle
more challenging situations, i.e., improving sufficient numbers of target models simultaneously. It is
essential to the machine learning systems which have a wide range of applications. The performances
of the other compared methods have similar trends with more target models setting. It again verifies
that the traditional AL methods are usually model-dependent, and emphasizes the necessity of
designing novel selection approaches under this practical setting.
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7 Conclusion

In this paper, we propose to study active learning in a novel setting, where the task is to select and
label the most useful examples that are beneficial to multiple target models. We firstly analyze the
label complexity of active and passive learning to reveal the potential improvement of AL under
this novel setting. Based on this insight, we further propose an active selection criterion DIAM
that prefers the data located in the joint disagreement regions of different target models. Empirical
studies on the OCR benchmarks, which is one of the representative applications that are required to
accommodate different devices, show the effectiveness of the proposed method. In the future, we
will tackle more complex and important learning tasks (e.g., face recognition, object detection), and
design effective query strategies which incorporate both informativeness and representativeness under
the multiple target models setting.
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