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Abstract

A common approach to prediction and planning in partially observable domains is
to use recurrent neural networks (RNNs), which ideally develop and maintain a
latent memory about hidden, task-relevant factors. We hypothesize that many of
these hidden factors in the physical world are constant over time, changing only
sparsely. To study this hypothesis, we propose Gated L0 Regularized Dynamics
(GateL0RD), a novel recurrent architecture that incorporates the inductive bias
to maintain stable, sparsely changing latent states. The bias is implemented by
means of a novel internal gating function and a penalty on the L0 norm of latent
state changes. We demonstrate that GateL0RD can compete with or outperform
state-of-the-art RNNs in a variety of partially observable prediction and control
tasks. GateL0RD tends to encode the underlying generative factors of the environ-
ment, ignores spurious temporal dependencies, and generalizes better, improving
sampling efficiency and overall performance in model-based planning and rein-
forcement learning tasks. Moreover, we show that the developing latent states can
be easily interpreted, which is a step towards better explainability in RNNs.

1 Introduction

When does the meeting start? Where are my car keys? Is the stove turned off? Humans memorize
lots of information over extended periods of time. In contrast, classical planning methods assume
that the state of the environment is fully observable at every time step [1]. This assumption does not
hold for realistic applications, where generative processes are only indirectly observable or entities
are occluded. Planning in such Partially Observable Markov Decision Processes (POMDP) is a
challenging problem, because suitably-structured memory is required for decision making.

Recurrent neural networks (RNNs) are often used to deal with partial observability [2–4]. They
encode past observations by maintaining latent states, which are iteratively updated. However,
continuously updating the latent state causes past information to quickly “wash out”. Long-Short
Term Memory networks (LSTM, [5]) and Gated Recurrent Units (GRU, [6]) deal with this problem
by using internal gates. However, they cannot leave their latent states completely unchanged, because
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small amounts of information continuously leak through the sigmoidal gating functions. Additionally,
inputs typically need to pass through the latent state to affect the output, making it hard to disentangle
observable from unobservable information within their latent states.

Our hypothesis is that many generative latent factors in the physical world are constant over extended
periods of time. Thus, there might not be the need to update memory at every time step. For example,
consider dropping an object: If the drop-off point as well as some latent generative factors, such as
gravity and aerodynamic object properties, are known, iteratively predicting the fall can be reasonably
accomplished by a non-recurrent process. Similarly, when an agent picks up a key, it is sufficient to
memorize that the key is inside their pocket. However, latent factors typically do change significantly
and systematically at particular points in time. For example, the aerodynamic properties of an object
change drastically when the falling object shatters on the floor, and the location of the key changes
systematically when the agent removes it from their pocket.

These observations are related to assumptions used in causality research. A common assumption is
that the generative process of a system is composed of autonomous mechanisms that describe causal
relationships between the system’s variables [7–9]. When considering Markov Decision Processes,
it has been proposed that these mechanisms tend to interact sparsely in time and locally in space
[10, 11]. Causal models aim at creating dependencies between variables only when there exists a
causal relationship between them, in order to improve generalization [8]. Updating the latent state
of a model in every time step, on the other hand, induces the prior assumption that the generative
latent state typically depends on all previous inputs. Thus, by suitably segmenting the dependencies
of the latent variables over time, one can expect improved generalization across spurious temporal
dependencies.

Very similar propositions have been made for human cognition. Humans tend to perceive their stream
of sensory information in terms of events [12–16]. Event Segmentation Theory (EST) [16] postulates
a set of active event models, which encode event-respective aspects over extended periods of time
and switch individually at event transitions. To learn about the transitions and consolidate associated
latent event encodings, measurements of surprise and other significant changes in predictive model
activities, as well as latent state stability assumptions, have been proposed as suitable inductive event
segmentation biases [16–22]. Explicit relations to causality have been put forward in [23].

In accordance to EST and our sparsely changing latent factor assumption, we introduce Gated L0

Regularized Dynamics (GateL0RD). GateL0RD applies L0-regularized gates, inducing an inductive
learning bias to encode piecewise constant latent state dynamics. GateL0RD thus becomes able
to memorize task-relevant information over long periods of time. The main contributions of this
work can be summarized as follows. (i) We introduce a stochastic, rectified gating function for
controlling latent state updates, which we regularize towards sparse updates using the L0 norm.
(ii) We demonstrate that our network performs as good or better than state-of-the-art RNNs for
prediction or control in various partially-observable problems with piecewise constant dynamics.
(iii) We also show that the inductive bias leads to better generalization under distributional shifts.
(iv) Lastly, we show that the latent states can be easily interpreted by humans.

2 Background

Let fθ : X ×H → Y ×H be a recurrent neural network (RNN) with learnable parameters θ mapping
inputs1 xt ∈ X and ht−1 ∈ H the latent (hidden) state to the output ŷt ∈ Y and updated latent states
ht. The training dataset D consists of sequences of input-output pairs d = [(x1,y1), . . . , (xT ,yT )]
of length T . In this paper, we consider the prediction and control of systems that can be described
by a partially observable Markov decision process (POMDP) with state space S, action space A,
observations space O, and deterministic hidden transitions S ×A → S.2

1Notation: bold lowercase letters denote vectors (e.g., x). Vector dimensions are denoted by superscript (e.g.
x = [x1, x2, . . . , xn] ∈ Rn). Time or other additional information is denoted by subscript (e.g., xt).

2We treat the prediction of time series without any actions as a special case of the POMDP with A = ∅.
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3 L0-regularization of latent state changes

We want the RNN fθ to learn to solve a task, while maintaining piecewise constant latent states over
time. The network creates a dynamics of latent states ht when applied to a sequence: (ŷt,ht) =
fθ(xt,ht−1) starting from some h0. The most suitable measure to determine how much a time-series
is piecewise constant is the L0 norm applied to temporal changes. With the change in latent state as
∆ht = ht−1 − ht, we define the L0-loss as

LL0
(∆h) = ‖∆h‖0 =

∑

j=1

I(∆hj 6= 0), (1)

which penalizes the number of non-zero entries of the vector of latent state changes ∆h.

The regularization loss from Eq. 1 can be combine in the usual way with the task objective to yield
the overall learning objective L of the network:

L(D,θ) = Ed∼D
[∑

t

Ltask(ŷt,yt) + λLL0
(∆ht)

]
(2)

with (ŷt,ht) = fθ(xt,ht−1). The task-dependent loss Ltask(·, ·) can be, for instance, the mean-
squared error for regression or cross-entropy loss for classification. The hyperparameter λ controls
the trade-off between the task-based loss and the desired latent state regularization.

Unfortunately, we cannot directly minimize this loss using gradient-based techniques, such as
stochastic gradient descent (SGD), due to the non-differentiability of the L0-term. Louizos et al. [24]
proposed a way to learn L0 regularization of the learnable parameters of a neural network with SGD.
They achieve this by using a set of stochastic gates controlling the parameters’ usage. Each learnable
parameter θj that is subject to the L0 loss is substituted by a gated version θ′j = Θ(sj)θj where
Θ(·) is the Heaviside step function (Θ(s) = 0 if s ≤ 0 and 1 otherwise) and s is determined by a
distribution q(s|ν) with learned parameters ν. Thus, θ′j is only non-zero if sj > 0. This allows to
rewrite the L0 loss (Eq. 1) for θ′ as:

LL0
(θ′,ν) = ‖θ′‖0 =

∑

j

Θ(sj) with s ∼ q(s;ν), (3)

where parameters ν influence sparsity and are affected by the loss.

To tackle the problem of non-differentiable binary gates, we can use a smooth approximation as
a surrogate [24–26]. Alternatively, we can substitute its gradients during the backward pass, for
example using the straight-through estimator [27], which treats the step function as a linear function
during the backward pass, or approximate its gradients as in the REINFORCE algorithm [28].

To transfer this approach to regularize the latent state dynamics in an RNN, we require an internal
gating function Λ(·) ∈ [0, 1], which controls whether the latent state is updated or not. For instance:

ht = ht−1 + Λ(s)∆h̃t−1 with ∆h̃t−1 = h̃t − ht−1 (4)

where h̃ is the proposed new latent state and s is a stochastic variable depending on the current input
and previous latent state and the parameters, i.e. st ∼ q(st;xt,ht−1,ν). For brevity, we merge the
parameters ν into the overall parameter set, i.e. ν ⊂ θ. For computing Eq. 2 we need to binarize the
gate by applying the step function Θ(Λ(s)). Thus we can rewrite Eq. 2 as

L(D,θ) = Ed∼D
[∑

t

Ltask(ŷt,yt) + λ
∑

t

Θ(Λ(st))
]
. (5)

LSTMs and GRUs use deterministic sigmoidal gates for Λ in Eq. 4 to determine how to update
their latent state. However, it is not straight forward to apply this approach to them (detailed in
Suppl. A). Thus, we instead introduce a novel RNN, that merges components from GRUs and LSTMs,
to implement the proposed L0 regularization of latent state changes while still allowing the network to
make powerful computations. We name our network Gated L0 Regularized Dynamics (GateL0RD).
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(a) Illustration of the core of GateL0RD.
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Figure 1: Architecture overview. (a) GateL0RD with its three subnetworks. The gating function
controls the latent state update (red), the recommendation function computes a new latent state (blue)
and the output function computes the output (purple). (b) Gate-activation function Λ (ReTanh).
(c) Heaviside step function Θ and its gradient estimator. (d) Overall architecture.

4 GateL0RD

The core of GateL0RD implements the general mapping (ŷt,ht) = fθ(xt,ht−1) using three func-
tions, or subnetworks: (1) a recommendation network r, which proposes a new candidate latent
state, (2) a gating network g, which determines how the latent state is updated, and (3) an output
function, which computes the output based on the updated latent state and the input. The network is
systematically illustrated in Fig. 1a.

The overall processing is described by the following equations:

st ∼ N (g(xt,ht−1),Σ) (sample gate input) (6)
Λ(s) := max(0, tanh(s)) (new gating function) (7)
ht = ht−1 + Λ(st)� (r(xt,ht−1)− ht−1) (update or keep latent state) (8)
ŷt = p(xt,ht)� o(xt,ht), (compute output) (9)

where � denotes element-wise multiplication (Hadamard product).

We start with the control of the latent state in Eq. 8. Following Eq. 4, a new latent value is proposed
by the recommendation function r(xt,ht−1) and the update is “gated” by Λ(s). Importantly, if
Λ(s) = 0 no change to the latent state occurs. Note that the update in Eq. 8 is in principle equivalent
to the latent state update in GRUs [6], for which it is typically written as ht = Λ(s)� r(xt,ht−1) +
(1− Λ(s))� ht−1 with Λ(s) a deterministic sigmoidal gate.

Because we aim for piecewise constant latent states, the gating function Λ defined in Eq. 7 needs
to be able to output exactly zero. A potential choice would be the Heaviside function, i.e. either
copy the new latent state or keep the old one. This, however, does not allow any multiplicative
computation. So a natural choice is to combine the standard sigmoid gate of RNNs with the step-
function: Λ(s) = max(0, tanh(s)) which we call ReTanh (rectified tanh)3. Figure 1b shows the
activation function Λ depending on its input. The gate is closed (Λ(si) = 0) for all inputs si ≤ 0. A
closed gate results in a latent state that remains constant in dimension i, i.e., hit = hit−1. On the other
hand, for si > 0 the latent state is interpolated between the proposed new value and the old one.

The next puzzle piece is the input to the gate. Motivated from the L0 regularization in Eq. 1 we use a
stochastic input. However, in our RNN setting, it should depend on the current situation. Thus, we
use a Gaussian distribution for q with the mean determined by the gating network g(xt,ht−1) as
defined in Eq. 6. We chose a fixed diagonal covariance matrix Σ, which we set to Σi,i = 0.1. To
train our network using backpropagation, we implement the sampling using the reparametrization
trick [29]. We introduce a noise variable ε and compute the gate activation as

st = g(xt,ht−1) + ε with ε ∼ N (0,Σ). (10)

During testing we set ε = 0 to achieve maximally accurate predictions.
3Note that tanh(s) = 2 · sigmoid(2s)− 1.
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Finally the output ŷ is computed from the inputs and the new latent state ht in Eq. 9. Inspired
by LSTMs [5], the output is determined by a multiplication of a normal branch (p(xt,ht)) and a
sigmoidal gating branch (o(xt,ht)). We thus enable both additive as well as multiplicative effects of
xt and ht on the output, enhancing the expressive power of the piecewise constant latent states.

In our implementation, all subnetworks are MLPs. r, p use a tanh output activation; o uses a sigmoid;
g has a linear output. p, o are one-layer networks. By default, r, g are also one-layer networks.
However, when comparing against deep (stacked) RNNs, we increase the number of layers of r and g
to up to three (cf. Suppl. B).

We use the loss defined in Eq. 5. GateL0RD is fully differentiable except for the Heaviside step
function Θ in Eq. 5. A simple approach to deal with discrete variables is to approximate the
gradients by a differentiable estimator [25–27]. We employ the straight-through estimator [27], which
substitutes the gradients of the step function Θ by the derivative of the linear function (see Fig. 1c).

We use GateL0RD as a memory module of a more general architecture illustrated in Fig. 1d. The
network input is preprocessed by a feed-forward network fpre(xt). Similarly, its output is postpro-
cessed by an MLP fpost(ŷt) (i.e. a readout layer) before computing the loss. The latent state h0 of
GateL0RD could be initialized by 0. However, improvements can be achieved if the latent state is
instead initialized by a context network finit, a shallow MLP that sets h0 based on the first input
[30, 31].

In the Supplementary Material we ablate various components of GateL0RD, such as the gate activation
function Λ (Suppl. C.1), the gate stochasticity (Suppl. C.2), the context network finit (Suppl. C.3),
the multiplicative output branch o (Suppl. C.4), and compare against L1/L2-variants (Suppl. C.5).

5 Related Work

Structural regularization of latent updates: Pioneering work on regularizing latent updates was
done by Schmidhuber [32] who proposed the Neural History Compressor, a hierarchy of RNNs that
autoregressively predict their next inputs. Thereby, the higher level RNN only becomes active and
updates its latent states, if the lower level RNN fails to predict the next input. To structure latent state
updates, the Clockwork RNN [33] partitions the hidden neurons of an RNN into separate modules,
where each module operates at its own predefined frequency. Along similar lines, Phased LSTMs
[34] use gates that open periodically. The update frequency in Clockwork RNNs and Phased LSTMs
does not depend on the world state, but only on a predefined time scale.

Loss-based regularization of latent updates: For latent state regularization, Krueger and Memi-
sevic [35] have proposed using an auxiliary loss term that punishes the change in L2-norms of the
latent state, which results in piecewise constant norms but not dynamics of the hidden states.

Binarized update gates: Closely related to our ReTanh, Skip RNNs [36] use a binary gate to
determine latent state update decisions. Similarly, Gumbel-Gate LSTMs [37] replace sigmoid
input and forget gates with stochastic, binary gates, approximated by a Gumbel-Softmax estimator
[26]. Selective-Activation RNNs (SA-RNNs) [38] modify a GRU by masking the latent state
with deterministic, binary gate and also incentivize sparsity. However, for GRUs the network output
corresponds to the networks’ latent state, thus, a piecewise constant latent state will result in piecewise
constant outputs. All of these models were designed for classification or language processing tasks –
none were applied for prediction or control in a POMDP setup, which we consider here.

Attention-based latent state updates: Sparse latent state updates can also be achieved using at-
tention [39–41]. Neural Turing Machines [39] use an attention mechanism to update an external
memory block. Thereby, the attention mechanism can focus and only modify a particular locations
within the memory. Recurrent Independent Mechanisms (RIMs) [42] use a set of recurrent cells that
only sparsely interact with the environment and one another through competition and a bottleneck of
attention. Recent extensions explore the update of the cells and the attention parameters at different
time scales [43]. For RIMs the sparsity of the latent state changes is predefined via a hyperparameter
that sets the number of active cells. In contrast, our L0 loss implements a soft constraint.

Transformers: Transformers [41] omit memory altogether, processing a complete sequence for
every output at once using key-based attention. While this avoids problems arising from maintaining
a latent state, their self-attention mechanism comes with high computational costs. Transformers
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(a) Robot Remote Control (b) Shepherd (c) Pick&Place (d) MiniGrid
Figure 2: Simulations used to test GateL0RD. (a) and (b) are continuous 2D-control tasks: (a) requires
triggering the control of a robot by getting a remote control; (b) needs memorization of the sheep’s
position to capture it later. (c) is the Fetch Pick&Place environment [47] modified to become partially
observable and (d) shows a problem (DoorKey-8x8) of the Mini-Gridworld suite [48].

have shown breakthrough success in natural language processing. However, it remains challenging to
train them for planning or reinforcement learning applications in partially-observable domains [44].

6 Experiments

Our experiments offer answers to the following questions: (a) Does GateL0RD generalize better
to out-of-distribution inputs in partially observable domains than other commonly used RNNs? (b)
Is GateL0RD suitable for control problems that require (long-term) memorization of information?
(c) Are the developing latent states in GateL0RD easily interpretable by humans? Accordingly, we
demonstrate both GateL0RD’s ability to generalize from a 1-step prediction regime to autoregressive
N -step prediction (Sec. 6.1) and its prediction robustness when facing action rollouts from different
policies (Sec. 6.2). We then reveal precise memorization abilities (Sec. 6.3) and show that GateL0RD
is more sample efficient in various decision-making problems requiring memory (Sec. 6.4). Finally,
we examine exemplary latent state codes demonstrating their explainability (Sec. 6.5).

In our experiments we compare GateL0RD to LSTMs [5], GRUs [6], and Elman RNNs [45]. We use
the architecture shown in Fig. 1d for all networks, only replacing the core fθ. We examine the RNNs
both as a model for model-predictive control (MPC) as well as a memory module in a reinforcement
learning (RL) setup. When used for prediction, the networks received the input xt = (ot,at)
with observations ot ∈ O and actions at ∈ A at time t and were trained to predict the change in
observation, i.e. yt = ∆ot+1 (detailed in Suppl. B.1). During testing the next observational inputs
were generated autoregressively as ôt+1 = ot + ŷt. In the RL setting, the networks received as an
input xt = ot the observation ot ∈ O and were trained as an actor-critic architecture to produce both
policy and value estimations (detailed in Suppl. B.6). The networks were trained using Adam [46],
with learning rates and layer numbers determined via grid search for each network type individually
(cf. Suppl. B).

We evaluate GateL0RD in a variety of partially observable scenarios. In the Billiard Ball scenario a
single ball, simulated in a realistic physics simulator, is shot on a pool table with low friction from a
random position in a random direction with randomly selected velocity. The time series contain only
the positions of the ball. This is the only considered scenario without actions.

Robot Remote Control is a continuous control problem where an agent moves according to the
two-dimensional actions at (Fig. 2a). Once the agent reaches a fixed position (terminal), a robot in
another room is also controlled by the actions. The observable state ot is composed of the agent’s
position and the robot’s position. Thus, whether the robot is controlled or not is not observable
directly. When planning, the goal is to move the robot to a particular goal position (orange square).

Shepherd is a challenging continuous control problem that requires long-term memorization (Fig. 2b).
Here, the agent’s actions at are the two movement directions and a grasp action controlling whether
to pick up or drop the cage. The sheep starts at the top of the scene moving downwards with a
fixed randomly generated velocity. The sheep is then occluded by the wall, which masks its position
from the observation. If the agent reaches the lever, the gate inside the wall opens, and the sheep
appears again at the same horizontal position at the open gate. The goal is to get the sheep to enter
the previously placed cage. The challenge is to memorize the sheep’s horizontal position exactly
over a potentially long time to place the cage properly and to then activate the lever during mental
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Figure 3: Billiard Ball results: prediction errors when trained using teacher forcing (a), or using
scheduled sampling (b). GateL0RD’s prediction error (c) and mean number of gate openings (latent
state updates) (d) for different values of λ. Shaded areas show ± one standard deviation.

simulation. The seven-dimensional observation ot is composed of the height of the occluder and the
positions of all entities.

Fetch Pick&Place (OpenAI Gym v1, [47]) is a benchmark RL task where a robotic manipulator has
to move a randomly placed box (Fig. 2c). In our modified setting4, the observable state ot is composed
of the gripper- and object position and the relative positions of object and fingers with respect to the
gripper. The four-dimensional actions at control the gripper position and the opening of the fingers.

MiniGrid [48] is a gridworld suite with a variety of partially observable RL problems. At every time
t, the agent (red triangle in Fig. 2d) receives an image-like, restricted, ego-centric view (grey area)
as its observation ot (7 × 7 × 3-dimensional). It can either move forward, turn left, turn right, or
interact with objects via its one-hot-encoded actions at. The problems vary largely in their difficulty,
typically contain only sparse rewards, and often involve memorization, e.g., remembering that the
agent picked up a key. Suppl. B.7 details all examined MiniGrid environments.

6.1 Learning autoregressive predictions

First, we consider the problem of autoregressive N -step prediction in the Billiard Ball scenario.
Here, during testing the networks receive the first two ball positions as input and predict a sequence
of 50 ball positions. We first train the RNNs using teacher forcing, whereby the real inputs are fed to
the networks. Figure 3a shows the prediction error for autoregressive predictions. Only GateL0RD
with latent state regularization (λ = 0.001) is able to achieve reasonable predictions in this setup.
The other RNNs seem to learn to continuously update their estimates of the ball’s velocity based
on the real inputs. Because GateL0RD punishes continuous latent state updates, learning leads to
updates of the estimated velocity only when required, i.e. upon collisions, improving its prediction
robustness.

The problems of RNNs learning autoregressive prediction are well known [49, 50]. A simple
countermeasure is scheduled sampling [49], where each input is stochastically determined to be either
the last network’s output or the real input. The probability of using the network output increases over
time. While the prediction accuracy of all RNNs improves when trained using scheduled sampling,
GateL0RD (λ = 0.001) still achieves the lowest mean prediction error (see Fig. 3b).

How does the regularization affect GateL0RD? Figure 3c shows the prediction error for GateL0RD
for different settings of λ. While a small regularization (λ = 0.001) leads to the highest accuracy in
this scenario, similar predictions are obtained for different strengths (λ ∈ [0, 0.01]). Overly strong
regularization (λ = 0.1) degrades performance. Figure 3d shows the average gate openings per
sequence. As indented, λ directly affects how often GateL0RD’s latent state is updated: a higher
value results in fewer gate openings and, thus, fewer latent state changes. Note that even for λ = 0
GateL0RD learns to use fewer gates over time. We describe this effect in more detail in Suppl. D.1.

6.2 Generalization across policies

Particularly when priorities change or an agent switches behavior, different spurious temporal
correlations can occur in the resulting sensorimotor timeseries data. Consequently, models are needed

4We omit all velocities and the rotation of the object to make the scenario partially observable.
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Figure 4: Robot Remote Control results: prediction error on the test set (a) and on the generalization
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(c). Exemplary generalization sequence (d) showing the agent’s positions (top), the robot’s positions
(middle) with GateL0RD’s predictions shown as dots, and GateL0RD’s latent states (bottom).

that generalize across those correlations. We use the networks trained as predictive models for the
Robot Remote Control scenario to investigate this aspect.

In Robot Remote Control the training data is generated by performing rollouts with 50 time steps of
a policy that produces random but linearly magnitude-increasing actions. The actions’ magnitude
in the training data is positively correlated with time, which is a spurious correlation that does not
alter the underlying transition function of the environment in any way. We train the networks to
predict the sequence of observations given the initial observation and a sequence of actions. Thereby,
we test the networks using data generated by the same policy (test set) and generated by a policy
that samples uniformly random actions (generalization set). Additionally, we use the trained RNNs
for model-predictive control (MPC) using iCEM [51], a random shooting method that iteratively
optimizes its actions to move the robot to the given goal position.

As shown in Fig. 4a, GateL0RD (λ = 0.001) outperforms all other RNNs on the test set. When tested
on the generalization data, the prediction errors of the GRU and LSTM networks even increase over
the course of training. Only GateL0RD is able to maintain a low prediction error. Figure 4c shows
the MPC performance. GateL0RD yields the highest success rate.

Note that the lack of generalization is not primarily caused by the choice of hyperparameters: even
when the learning rate of the other RNNs was optimized for the generalization set, GateL0RD still
outperformed them (additional experiment in Suppl. D.3). Instead, GateL0RD’s better performance
is likely because it mostly encodes unobservable information within its latent state ht. This is shown
exemplarily in Fig. 4d (bottom row) and analyzed further in Suppl. D.5. The latent state remains
constant and only one dimension changes once the agent controls the robot’s position (middle row)
through its actions. Because the other RNNs also encode observable information, e.g. actions, within
their latent state, they are more negatively affected by distributional shifts and spurious dependencies.

GateL0RD’s improved generalization across temporal dependencies also holds for more compli-
cated environments. In an additional experiment in Suppl. D.7 we show similar effects for the
Fetch Pick&Place environment when trained on reach-grasp-and-transport sequences and tested to
generalize across timings of the grasp.
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Figure 5: Shepherd results: prediction error for 100-step predictions (a) and 1-step prediction errors
of the sheep’s x−position at the time step of reappearance (b). Success rate for capturing the sheep
using MPC (c). Shaded areas show standard deviation (a-b) or standard error (c).
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Figure 6: MiniGrid results: success rate in solving various tasks when GateL0RD replaces an LSTM
(vanilla) in a PPO architecture. Shaded areas depict the standard deviation.

6.3 Long-term memorization

We hypothesized that GateL0RD’s latent state update strategy fosters the exact memorization of
unobservable information, which we examine in the Shepherd task. We test the RNNs’ when
predicting sequences of 100 observations given the first two observations and a sequence of actions.
Again, we use the trained models for MPC using iCEM [51], aiming at catching the sheep by first
placing a cage and then pulling a lever. This is particularly challenging to plan because the sheep’s
horizontal position needs to be memorized before it is occluded for quite some time (> 30 steps) in
order to accurately predict and thus place the cage at the sheep’s future position.

Figure 5a shows the prediction errors during training. GateL0RD (λ = 0.0001) continuously achieves
a lower prediction error than the other networks. Apparently, it is able to accurately memorize the
sheep’s future position while occluded. To investigate the memorization we consider the situation
occurring during planning: the sequence of (past) observations is fed into the network and the
prediction error of the sheep’s horizontal position at the time of reappearance is evaluated (Fig. 5b).
Only GateL0RD reliably learns to predict where the sheep will appear when the lever is activated.
GRU and Elman RNNs do not noticeably improve in predicting the sheep’s position. LSTMs take
much longer to improve their predictions and do not reliably reach GateL0RD’s level of accuracy.
This is also reflected in the success rate when the networks are used for MPC (Fig. 5c). Only
GateL0RD manages to solve this challenging task with a mean success rate over 50%.

6.4 Sample efficiency in reinforcement learning

Now that we have outlined some of GateL0RD’s strengths in isolation, we want to analyze whether
GateL0RD can improve existing RL-frameworks when it is used as a memory module for POMDPs.
To do so, we consider various problems that require memory in the MiniGrid suite [48]. Previous
work [42, 43, 52] used Proximal Policy Optimization (PPO) [53] to solve the MiniGrid problems. We
took an existing architecture based on [52] (denoted as vanilla, detailed in Suppl. B.6) and replaced
the internal LSTM module with GateL0RD (λ = 0.01). Note, that we left the other hyperparameters
unmodified.

As shown in Fig. 6 the architecture containing GateL0RD achieves the same success rate or higher
than the vanilla baseline in all considered tasks. Additionally, GateL0RD is more sample efficient, i.e.,
it is able to reach a high success rate (Fig. 6) or high reward level faster (Suppl. D.9). The difference
in sample efficiency tends to be more pronounced for problems that require more training time. It
seems that the inductive bias of sparsely changing latent states enables GateL0RD to quicker learn to
encode task-relevant information, such as the pick-up of a key, within its latent states. Additional
experiments in Suppl. D.10 show that this can also translates to improved zero-shot policy transfer,
when the system is tested on a larger environment than it was trained on.

6.5 Explainability of the latent states

Lastly, we analyze the latent representations of GateL0RD, starting with Billiard Ball. Figure 7a
shows one exemplary ball trajectory in white and the prediction in red. Inputs for which at least one
gate opened are outlined in black. Figure 7b shows the corresponding latent states ht relative to
the initial latent state h0. GateL0RD updates two dimensions of its latent states around the points
of collisions to account for the changes in x- and y-velocity of the ball. For λ = 0.01 we find on
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Figure 7: Example sequences and latent states: (a) Billiard Ball trajectory for GateL0RD (λ = 0.01)
with real positions (white), provided inputs (blue), and predicted positions (red, saturation increasing
with time). The inputs for which at least one gate opened are outlined in black. (b) The latent states
for the trajectory for GateL0RD, GRU, and LSTM (cell states). (c) Fetch Pick&Place sequence with
real (solid) and predicted (dotted) positions of gripper (top) and object (middle) and GateL0RD’s
latent states (bottom). Latent states are shown relative to initialization, i.e. ht − h0.

average only two latent state dimensions change per sequence (see Suppl Suppl. D.1), which hints at
a tendency to encode x- and y-velocity using separate latent dimensions. In contrast, the exemplary
latent states of the GRU and LSTM networks shown in Fig. 7b are not as easily interpretable.

For Robot Remote Control, GateL0RD (λ = 0.001) updates only its latent state once it controls the
robot (exemplary shown in Fig. 4d). Thus, the latent state clearly encodes control over the robot.
We use the Fetch Pick&Place scenario as a higher-dimensional problem to investigate latent state
explainability when training on grasping sequences (detailed in Suppl. B.5). Here, GateL0RD updates
the latent state typically when the object is grasped (exemplary shown in Fig. 7c). This hints at an
encoding of ‘object transportation’ using one dimension. Other RNNs do not achieve such a clear
representation, neither in Robot Remote Control nor in Fetch Pick&Place (see Suppl. D.5 and D.7).

7 Discussion

We have introduced a novel RNN architecture (GateL0RD), which implements an inductive bias to
develop sparsely changing latent states. The bias is realized by a gating mechanism, which minimizes
the L0 norm of latent updates. In several empirical evaluations, we quantified and analyzed the
performance of GateL0RD on various prediction and control tasks, which naturally contain piecewise
constant, unobservable states. The results support our hypothesis that networks with piecewise
constant latent states can generalize better to distributional shifts of the inputs, ignore spurious time
dependencies, and enable precise memorization. This translates into improved performance for both
model-predictive control (MPC) and reinforcement learning (RL). Moreover, we demonstrated that
the latent space becomes interpretable, which is important for explainability reasons.

Our approach introduces an additional hyperparameter, which controls the trade-off between the
task at hand and latent space constancy. When chosen in favor of explainability, it can reduce the
in-distribution performance while improving its generalization abilities. When the underlying system
has continuously changing latent states, our regularization is counterproductive. As demonstrated by
an additional experiment in Suppl. D.8, the unregularized network performs well in such cases.

Our sparsity-biased gating mechanism segments sequences into chunks of constant latent activation.
These segments tend to encode unobservable, behavior-relevant states of the environment, such as if
an object is currently ‘under control’. Hierarchical planning and control methods require suitable,
temporally-extended encodings, such as options [54, 55]. Thus, a promising direction for future work
is to exploit the discrete hidden dynamics of GateL0RD for hierarchical, event-predictive planning.
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