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ABSTRACT

Recent works have revealed that backdoor attacks against Deep Reinforcement
Learning (DRL) could lead to abnormal action selection of the agent, which may
result in failure or even catastrophe in crucial decision processes. However, ex-
isting attacks only consider single-agent RL systems, in which the only agent can
observe the global state and have full control of the decision process. In this paper,
we explore a new backdoor attack paradigm in cooperative multi-agent reinforce-
ment learning (CMARL) scenarios, where a group of agents coordinate with each
other to achieve a common goal, while each agent can only observe the local state,
e.g., StarCraft II (Vinyals et al. (2017)). In the proposed MARNet attack frame-
work, we carefully design a pipeline of trigger design, action poisoning and re-
ward hacking modules to accommodate the cooperative multi-agent momentums.
In particular, as only a subset of agents can observe the triggers in their local ob-
servations, we maneuver their actions to the worst actions suggested by an expert
policy model. Since the global reward in CMARL is aggregated by individual
rewards from all agents, we propose to modify the reward in a way that boosts
the bad actions of poisoned agents (agents who observe the triggers) but mitigates
the influence on non-poisoned agents. We conduct extensive experiments on two
classical MARL algorithms VDN (Sunehag et al. (2018)) and QMIX (Rashid et al.
(2018)), in two popular CMARL games Predator Prey (Boehmer et al. (2020)) and
SMAC (Samvelyan et al. (2019)). The results show that MARNet outperforms
baselines extended from single-agent DRL backdoor attacks TrojDRL (Kiourti
et al. (2020)) and Multitasking learning (Ashcraft & Karra (2021)) by reducing
the utility under attack by as much as 100%. We apply fine-tuning as a defense
against MARNet, and demonstrate that fine-tuning cannot entirely eliminate the
effect of the attack.

1 INTRODUCTION

Backdoor attacks are effective and stealthy attacks against deep learning models. First implemented
in classification neural networks (Gu et al. (2017); Chen et al. (2017)), backdoored models can
accurately classify clean inputs but misbehave for inputs with specially-designed triggers. Recent
works show that deep reinforcement learning models are also vulnerable to backdoor attacks (Yang
et al. (2019); Gao et al. (2020); Kiourti et al. (2020)). A backdoored DRL agent will choose a
non-optimal action or even the worst action when encountering the triggers, which may lead to se-
vere consequences in crucial RL tasks. A line of backdoor attacks against DRL has been proposed
(Kiourti et al. (2020); Wang et al. (2021); Ashcraft & Karra (2021)), but almost all existing works
consider the single-agent scenario, where the agent is able to observe the global state and control the
entire decision process. There is a lack of backdoor attacks in the context of multi-agent reinforce-
ment learning (MARL), especially cooperative MARL (CMARL). As far as we are concerned, there
is only one work for two-agent competitive MARL backdoor attacks (Wang et al. (2021)), which is
similar to single-agent RL attacks as the two agents rival with each other, and there is only one work
briefly discussing the CMARL backdoor attacks (Ashcraft & Karra (2021)).

To fill up this research gap, we explore a new paradigm of backdoor attacks in the context of
CMARL, where multiple agents cooperate with each other to achieve a common goal. Compared
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Figure 1: Overview of our proposed backdoor attack in the context of CMARL scenarios.

with backdoor attacks in single-agent RL scenarios, backdoor attacks in CMARL scenarios are faced
with unique challenges.

Local observation vs. global observation. In single-agent RL scenarios, it is usually assumed that
the agent is able to observe the global state. Unfortunately, in CMARL, the agents are scattered
in the environments, and each agent can only observe the local state, which is a small part of the
global state. The triggers used to activate the backdoor can always be perceived by the agent in
the former case but are unlikely to be observed by all agents in the latter case. Popular MARL
algorithms like VDN (Sunehag et al. (2018)) and QMIX (Rashid et al. (2018)) are designed to deal
with local observations and are widely deployed in autonomous driving (Dosovitskiy et al. (2017);
Cao et al. (2013)), robot swarms (Hüttenrauch et al. (2019)), and online video games. To the best
of our knowledge, the vulnerability of these CMARL algorithms under backdoor attacks has never
been investigated.

Global reward vs. individual reward. In classification tasks, backdoors are injected by changing the
label of malicious inputs (inputs with triggers) to the targeted label or any wrong label. In RL tasks,
backdoors are injected by hacking the rewards of actions when the environment contains triggers. By
assigning a high reward to actions that are actually bad in the malicious environment, the agents will
learn to choose these actions and end up in failure. In single-agent RL scenarios, the global reward
is directly fed back to the agent to train the policy network. However, CMARL algorithms usually
adopt the centralised training decentralised executing (CTDE) (Oliehoek et al. (2008); Kraemer &
Banerjee (2016); Foerster et al. (2018)) framework, where the global reward is aggregated based on
the rewards from all agents, including poisoned and non-poisoned agents, and the policy network is
trained centrally and shared by all agents for action selection. The reward aggregation in CMARL
complicates the backdoor injection process.

To address these challenges, we propose a novel backdoor attack strategy against value-
decomposition CMARL, named MARNet, which enables agents to behave normally when the en-
vironment is clean but induces abnormal behaviors with the presence of triggers. MARNet features
special designs in all of the three modules in its pipeline, namely, trigger design, action poisoning,
and reward hacking.

Trigger design. Existing DRL backdoor attacks introduce the influence of triggers by directly
altering the observation of the single agent (Kiourti et al. (2020)) or controlling the actions of the
agent (Wang et al. (2021)). We adopt a more general and practical strategy by embedding the
triggers in the environment with low visibility. We leverage both in-distribution triggers (Wang
et al. (2020b); Wang et al. (2021)) and out-of-distribution triggers (Kiourti et al. (2020)) in the
environment to activate the backdoor.
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Action poisoning. Unlike existing methods (Kiourti et al. (2020)) that make the agent choose a
specific action or a random action that is not optimal, we aim to force the agent to play the worst
possible action when observing triggers to degrade the utility to a large extent. We design an action
poisoning method which determines the worst possible action according to an expert policy model.
The proposed method can pinpoint the worst action with much less overhead than existing works
(Wang et al. (2021); Ashcraft & Karra (2021)).

Reward hacking. To accommodate the CTDE framework in CMARL scenarios, we design a new
reward hacking algorithm that manipulates the global reward during centralized training. Since the
global reward judges the behaviors of all agents, we differentiate the contributions of non-poisoned
agents (observe no triggers) and poisoned agents (observe some triggers).

We implement and evaluate the proposed MARNet attack with extensive evaluations. We conduct
experiments in two popular CMARL games, namely Predator Prey (Boehmer et al. (2020)) and
SMAC (Samvelyan et al. (2019)), against two commonly-used CMARL algorithms, namely VDN
(Sunehag et al. (2018)) and QMIX (Rashid et al. (2018)). Results verify that our proposed attack
outperforms extensions of existing single-agent DRL backdoor attacks by reducing the utility under
attack by as much as 100%. Ablation study confirms the necessity of each design module. We
also demonstrate that common defense strategy fine-tuning can mitigate the utility drop but cannot
eliminate the attack effect.

Our work reveals the vulnerability of CMARL algorithms to backdoor attacks, which may spur
research in related areas to improve the security of CMARL algorithms in critical applications, e.g.,
autonomous driving.

2 BACKGROUND

2.1 MULTI-AGENT REINFORCEMENT LEARNING

Reinforcement learning (RL) solves problems that can be formulated as Markov Decision Processes
(MDP) 〈S,A, P, r, γ〉, where S is the state space, A is the action space, P is the state transition
probabilities, r is the reward function, and γ ∈ [0, 1) is a discount factor. With unknown state
transition probabilities, the agent interacts with the environment to gradually learn an optimal policy
π that can maximize the total accumulative reward (i.e., utility).

Deep Reinforcement Learning (DRL) is proposed to deal with exorbitantly large state spaces of
complicated MDPs. Deep Neural Networks (DNN) are used to represent the agent’s functions (e.g.
value function, Q-value function, and policy function). Deep Q-Learning (Mnih et al. (2015)) ex-
tends the traditional Q-learning algorithm by using a neural network to represent the Q-valueQ(s, a)
that estimates the accumulative reward at state s when taking action a. The Q-network is trained
and updated by minimizing the TD error using the ε-greedy approach.

L(θ) =

b∑
i=1

(yi −Q(s, a; θ))
2
), (1)

where θ represents the parameters of the Q-network, b is the number of sample batches of the replay
memory, and yi = r + γmaxa′ Q(s′, a′; θ−), in which θ− represents the parameters of a target
network periodically copied from θ.

Multi-agent reinforcement learning (MARL) emerges to tackle partially observable Markov Deci-
sion Process (POMDP) problems, where a single agent cannot observe the panorama of the en-
tire environment. In this case, multiple agents cooperate to make decisions based on cooperative
multi-agent reinforcement learning (CMARL), which can be formulated as a Dec-POMDP tuple
G = 〈S,U, P, r, Z,O, n, γ〉 (Oliehoek & Amato (2016)), where S represents the global state of the
environment, U is the set of actions of all agents, Z is the set of individual observations of all agents
determined by the observation transition function O(s, a), and n is the number of all agents in the
environment. P, r and γ represent state transition probabilities, reward, and discounted factor as in
traditional MDP. Since it is difficult to derive the optimal policy under incomplete observation, the
action-observation history τ of agents is usually gathered in POMDP to get more state information
in many CMARL algorithms (Peng et al. (2017); Tampuu et al. (2017); Hausknecht & Stone (2015)).
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To deal with partial observation and multiple agents, existing CMARL algorithms adopt the cen-
tralised training and decentralised executing (CTDE) framework as shown in Appendix A.1. In the
training phase, a single model is trained with information gathered from all agents. The trained
model is then distributed and shared by all agents. In the execution phase, each agent selects its
action according to the observation and the shared model. The CTDE framework can be improved
with communications between agents, parameter sharing, and value-decomposition (Foerster et al.
(2016); Terry et al. (2020)).

Most of the existing CMARL algorithms can be classified into value-based, actor-critic and value-
decomposition methods. A widely-used value-based CMARL algorithm is Independent Q-Learning
(IQL) Tan (1993), in which each agent regards other agents as a component of the environment
and acts as non-cooperative individuals to achieve cooperation. However, IQL cannot guarantee
convergence due to the unstable environment induced by different policies of individual agents.
Another line of MARL algorithms is based on the actor-critic framework, e.g., COMA (Foerster
et al. (2018)) and VDAC (Su et al. (2020)), using a centralized critic to judge the actions of all
agents. Nonetheless, training a centralized critic may be infeasible with a huge number of agents.
In comparison, value-decomposition CMARL has ideal convergence and scalability properties. The
rationale is to decompose the global Q-value Qtotal(s, u) into the Q-values of individual agents.
The Q-value of each agent Qi(τi, ai) is computed by itself based on its partial observation history
τi and action ai. Then, the individual Q-values are aggregated into Q′total(τ, u) to approximate the
real Qtotal, where τ is the set of the action-observation history of all agents, and u is the current
action set. Q′total is used to update the centralized model. In value-decomposition CMARL, the key
is to estimate Q′total in a way that can closely approximate the true Qtotal. An early algorithm VDN
sums up the Q-values of all agents (Sunehag et al. (2018)).

Q′total =

n∑
i=1

Qi. (2)

QMIX (Rashid et al. (2018)) replaces the linear operation in VDN with a mixing neural network to
approximate Qtotal. QMIX imposes the constraint ∂Q

′
total

∂Qi
> 0,∀i ∈ [1, n] to make sure that the

local best action conforms to the global best action set. A hypernetwork is adopted to generate the
parameters of the mixing network with the input of the global state of the environment. Therefore,
the Q′total function in QMIX contains s and is represented as Q′total(τ, u, s). Other algorithms, e.g.,
QTRAN and WQMIX (Rashid et al. (2020)), are extensions of VDN or QMIX.

2.2 BACKDOOR ATTACKS AGAINST DEEP REINFORCEMENT LEARNING

Backdoor attacks are first proposed for deep neural networks (Gu et al. (2017)), where the back-
doored model can accurately identify clean samples but misclassify malicious samples with a
specially-designed trigger. Apart from the computer vision domain (Liu et al. (2018); Salem et al.
(2020); Gao et al. (2021)), backdoor attacks are also effective in natural language processing (Dai
et al. (2019); Chen et al. (2020)), signal classification (Davaslioglu & Sagduyu (2019)), and deep
reinforcement learning.

In the context of deep reinforcement learning, the aim of backdoor attacks is to degrade the utility
of the agent as much as possible via injecting backdoors into their policy networks. Let U(π,V)
denote the expected utility of the agent by adopting policy π in an environment V . The backdoor
attacks against DRL intend to substitute a normal policy π with a backdoored policy π̂ such that the
expected utility of adopting π̂ in a clean environment V is close to that of adopting π in V ,

|U(π,V)− U(π̂,V)| ≤ δ, (3)

and the expected utility of adopting p̂i in a malicious environment V + T with trigger T is as worse
as possible,

max
π̂
U(π,V + T )− U(π̂,V + T ). (4)

The attack surface of backdoor attacks in DRL can be extrinsic or intrinsic. The environment and
the reward are extrinsic to the agent and can be easily altered by the attacker. The policy network
structure and the training algorithm are intrinsic to the agent and are more difficult to access by the
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attacker. In white-box attacks, both extrinsic and intrinsic attack surfaces are available, while in
black-box attacks, only extrinsic attack surfaces are available.

Existing backdoor attacks against DRL mainy adopt two strategies, i.e., non-optimal action strategy
and worst action strategy. Non-optimal action strategy aims to divert the agent from the optimal
action to a specific action (targeted attack) or a random action (untargeted attack) to indirectly de-
grade the policy and decrease the utility. TrojDRL (Kiourti et al. (2020)) is a non-optimal action
attack considering the black-box scenarios. Wang et al. (Wang et al. (2020b)) proposed a non-
optimal action attack, Stop-and-Go, for black-box traffic congestion control systems by designing
the trigger as a combination of sensor measurements and inserting malicious state-action pairs in the
training dataset. Different from the non-optimal action strategy, the worst action strategy aims to
drive the agent to the worst possible action under the current state to minimize the utility. Ashcraft
et al. (Ashcraft & Karra (2021)) designed a worst action attack using multitask learning to inject the
backdoor. However, the training process needs to create an entirely different poisoned environment,
which requires a particular environment configuration. BackdooRL (Wang et al. (2021)) is a worst
action attack that considers competitive two-agent MARL rather than cooperative MARL. Back-
dooRL uses imitation learning to compute the worst action when the trigger (a series of predefined
actions played by the attacker) is present. Due to the high complexity of imitation learning, the
attack requires more than triple the training overheads of conventional attacks against DRL.

Our proposed backdoor attack is against cooperative MARL (CMARL), and we focus on value-
decomposition algorithms, which are widely adopted in CMARL problems. We design a worst
action strategy that affects all cooperative agents and slash their overall utility.

2.3 THREAT MODEL

In this paper, we focus on CMARL, which is common in the game domain (e.g., StarCraft II (Vinyals
et al. (2017))), where multiple agents cooperatively act to win the game for the player. We assume
that the attacker is a malicious game adapter and the victims are game players. The attacker utilizes
the plugin provided by the game developer (e.g., Steam Workshop1) to adapt the game scenarios with
triggers and upload the adapted game scenarios to the game community. The game players usually
acquire a well-trained model from the game developer or the game community to help them play
games. For the customized game scenarios adapted by the malicious attacker, the model provided
by the attacker may better fit the adapted scenarios than the original model provided by the game
developer. The attacker lures players to download their backdoored model, enabling the agents to
perform the right actions to win under clean game maps (environment), but deflects the agents to a
crushing loss under manipulated game maps with the triggers.

3 METHODOLOGY

As shown in Figure 1, our proposed backdoor attack, named MARNet, proceeds through three
phases: trigger design, action poisoning, and reward hacking. To begin with, we utilize both out-of-
distribution and in-distribution triggers to alter the environment. Then, we develop an expert policy
model to poison the actions of agents who observe the triggers in random steps. Finally, we hack
the global reward and obtain the backdoored policy model.

3.1 TRIGGER DESIGN

The trigger in traditional RL backdoor attacks can be classified into two categories, in-distribution
triggers (Wang et al. (2020b); Wang et al. (2021)) and out-of-distribution triggers (Kiourti et al.
(2020)). In-distribution triggers are formed by internal components of the environment, while
out-of-distribution triggers are formed by external components. In-distribution triggers are more
stealthy than out-of-distribution triggers (Ashcraft & Karra (2021)), but are less learnable than out-
of-distribution triggers since in-distribution triggers are similar to other elements in the environment.
In MARNet, we use both in-distribution and out-of-distribution triggers to show the generality of
our attack.

1http://steamcommunity.com/workshop/
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Instead of directly tampering with the observation of agents in most existing works (Kiourti et al.
(2020); Wang et al. (2020a)), we make subtle changes to the environment (e.g., maps) with triggers
as shown in Figure 5 in Appendix A.2. For in-distribution triggers, we slightly modify existing
components in the environment, e.g., terrain height or ground texture. For out-of-distribution trig-
gers, we apply a small imperceptible pattern ∆ to the environment (Kiourti et al. (2020)). To ensure
stability, the triggers are designed as stationary objects (e.g., walls, trees, or terrain) rather than
movable objects (e.g., preys).

3.2 ACTION POISONING

The triggers added to the environment can only be observed by a subset of agents since no agent
has a global view of the entire environment. We only poison the actions of the agents if at least one
agent has observed the triggers. This guarantees that the backdoored policy network will behave as
a normal policy network when there is no trigger as required by backdoor attacks.

For poisoned agents, we adopt the worst action strategy, which reduces the utility of the player more
than the non-optimal action strategy. The worst action strategy of BackdooRL (Ashcraft & Karra
(2021)) is based on imitation learning (Ho et al. (2016)), which involves a complicated multi-shot
training process. The behavior cloning of imitation learning in BackdooRL makes the backdoored
policy model learn the trajectories of the expert model. Nevertheless, a manual-operation hardcoded
model is needed to generate trajectories and to minimize the distance between the hardcoded model
and the training model. The worse action strategy in backdoor attacks proposed by (Ashcraft &
Karra (2021)) utilized multi-task learning, but it needs a completely different poisoned environment
for training.

We design an efficient and lightweight action poisoning method for MARNet. We first train a normal
policy model in a clean environment, which we call the expert model. Then, during the training of
the backdoored policy model, in each poisoned step (randomly chosen), we utilize the expert model
to infer the worst action that has the the minimum probability for the poisoned agents. For other
agents, we choose the best action suggested by the expert model. In non-poisoned steps, we follow
the normal training process. The action poisoning is summarized as follows.

apoisoned =

{
argmaxa(D(τ, u;πexpert)), non-poisoned agent,
argmina(D(τ, u;πexpert)), poisoned agent,

(5)

aclean = ε− greedy(argmaxa(D(τ, u;πtrain)), ε), (6)

where apoisoned and aclean are the actions chosen in poisoned step and non-poisoned steps respec-
tively during training, D is the action distribution of the expert policy πexpert given the observation
history τ and the action history u, ε is the probability of ε-greedy action selection.

Choosing the best actions for non-poisoned agents in poisoned steps according to the expert model
can maintain an ideal performance in a clean environment. It also aligns with the reward calculation
process of value-decomposition CMARL algorithms, which we will introduce in the next section.

3.3 REWARD HACKING

To ensure that the selected poisoned actions will be learned by the agent, we need to increase their
reward to make the agent favor the selected poisoned actions in the malicious environment with
the triggers. Different from existing backdoor attacks that only consider the reward of one agent
in single-agent RL, MARNet deals with the CMARL scenario where the rewards of all agents are
aggregated for centralised training. To address this issue, we design a new reward hacking method
called mixing global reward hacking (MGR).

In value-decomposition CMARL, the global reward is used to update the policy model parameter
according to equation (1). In CMARL systems, not every agent can observe the triggers. Instead of
setting the reward of selecting the modified actions as the maximum as in trojDRL, we should only
hack the global rewards in a way that increases the rewards of agents whose actions are poisoned
(agents who have observed the triggers) and tries to maintain the rewards of other agents.
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trigger size VDN QMIX
0% 5% 10% 15% 20% 25% 0% 5% 10% 15% 20% 25%

Normal model 31.21 32.00 31.57 30.07 31.18 30.57 32.90 32.46 33.10 32.03 32.48 32.91
MTL 31.75 32.06 31.56 31.88 30.77 30.70 31.92 31.91 31.53 31.62 30.56 30.25

TrojDRL 27.03 25.55 16.52 -1.88 -20.64 -42.34 28.41 23.71 10.28 -5.50 -33.44 -67.51
Ours 30.60 19.14 11.63 -9.25 -24.25 -44.05 32.20 23.30 12.02 1.32 -22.75 -70.00

Table 1: Predator Prey scores with different attack models against different CMARL algorithms. A
lower score indicates that the attack is more effective. A 0% trigger size represents a clean map.

Rhacked = rmax × np +
n− np
n

×R− +
1

Lmax
×Rwin, (7)

where rmax is the maximum per-step reward, np is the number of poisoned agents, n is the number
of agents, R− is the original global reward, Rwin is the reward for winning the game, Lmax is the
expected maximum length of the game. In (7), we aim to raise the reward of each poisoned agent
to the maximum but preserve the local reward of non-poisoned agents. In addition, if the state is
winning and the reward is a final winning reward, we divide the winning reward by the maximum
length of the game to approximate the final accumulated reward.

We summarize the complete algorithm of MARNet in Algorithm 1 in the Appendix.

4 EXPERIMENT

To show the effectiveness of MARNet, we conduct attacks against two classical CMARL algorithms,
namely VDN (Sunehag et al. (2018)) and QMIX (Rashid et al. (2018)). We experiment in two
popular CMARL games, namely Predator Prey (Boehmer et al. (2020)) and SMAC (Samvelyan
et al. (2019)).

Predator Prey. Predator Prey is a CMARL game where the agents coordinate to capture as many
preys as possible. The preys, including stags and hares, must be captured by more than two agents. A
reward of 10/1 is gained for each capture of stag/hare. If agents collide, a reward of -0.1 is obtained
as a punishment. The map is a 10 × 10 grid, and the observation range of each agent is 5 × 5. We
randomly place eight agents, eight stags, eight hares, and 25 walls in the initial state.

SMAC. SMAC provides a CMARL environment that contains classic micro StarCraft II scenarios.
The allied units controlled by the player compete with the enemy units controlled by the computer.
A reward of 10 is gained if the allied units kill an enemy. If all enemy units are killed (win), a reward
of 200 is gained. If all allied units are killed (lose), a reward of 0 is gained. We have tested four
different maps in SMAC.

We implement two baselines. The first baseline adapts the multi-task learning (MTL) in (Ashcraft &
Karra (2021)) for the cooperative MARL scenarios. The second baseline extends TrojDRL (Kiourti
et al. (2020)) to CMARL. We conduct an ablation study to evaluate the effectiveness of action
poisoning and reward hacking modules in MARNet. The main evaluation metric is the utility in
both the clean and the triggered environments. In Predator Prey, the utility of the player is the final
score, and in SMAC, the utility of the player is the winning rate against the computer that adopts a
super hard model to play.

Our experiments run on a machine with an Intel(R) Xeon(R) Gold 5117 CPU and Nvidia GeForce
RTX 3080 GPUs. The operating system is Ubuntu 18.04.1 LTS. In Predator Prey, we train the clean
policy model for 1,050,000 episodes, and the backdoored policy models are trained for another
2,100,000 episodes based on the clean policy model. In SMAC, we train the clean policy model for
10,050,000 episodes, and the backdoored policy models are trained for another 10,050,000 episodes
based on the clean policy model. The expert model used in action poisoning is just the clean policy
model.
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(a) Clean (b) 5% triggers (c) 10% triggers (d) 25% triggers

Figure 2: Predator Prey scores at different training episodes.

(a) VDN in 2s3z (b) QMIX in 2s3z (c) VDN in 8m (d) QMIX in 8m

Figure 3: SMAC winning rate in 2s3z and 8m, two StarCraft II maps.

4.1 EFFECTIVENESS OF ATTACKS

Predator Prey. The triggers in Predator Prey (PP) are designed as out-of-distribution triggers, i.e.,
adding a pattern ∆ into some of the walls in the map as shown in Figure 5. As shown in Table 1,
MARNet achieves nearly the same score as the normal model when the environment contains no
triggers (0%). When there are triggers, compared to MTL, our attack reduces the score of the player
by more than 30% when the trigger size is as small as 5%, and decreases the score by as much as
300% when the trigger size is 25%. As the score keeps decreasing sharply with larger trigger sizes
by our attack, the scores of MTL hardly change. The poisoned environment we design for MTL
is to inverse the reward of the original environment. TrojDRL decreases the scores in triggered
maps more than MTL, but TrojDRL degrades the utility in the clean map, which is unacceptable for
backdoor attacks. This indicates that directly extending backdoor attacks of single-agent DRL to
CMARL is ineffective. Figure 2, shows the scores with different trigger sizes at different training
episodes. At the beginning, the score sharply drops. With more training episodes, the score gradually
fluctuates but finally converges to a low value. In the clean map, the score maintains the same as the
normal policy model at episode 0.

SMAC. The triggers in SMAC are designed as in-distribution trigger as shown in Figure 5. As
shown in Figure 3 and Figure 6 in the Appendix, MARNet outperforms the two baselines in most of
the maps. TrojDRL performs poorly in QMIX and even lose effectiveness in VDN. The poisoned
environment we design for MTL is to swap the reward of win and defeat and the reward of killing
an enemy and losing an ally. MTL behaves unstably in different maps. The possible reason is that
the effectiveness of MTL depends on the setting of the poisoned tasks, and it is hard to figure out the
best environment parameters. As for MARNet, with a trigger size of 5%, the winning rate of VDN
drops from nearly 100% to 0% in the 2s3z. The winning rate of QMIX drops from 90% to 25%. As
for other maps, MARNet still keeps higher performance and robustness than the two baselines.

4.2 ABLATION STUDY

Action poisoning. To verify the effectiveness of the proposed action poisoning strategy, we conduct
an ablation study in Predator Prey using the QMIX algorithm. We compare our action poisoning
strategy with the targeted action modification and untargeted action modification of TrojDRL. In the
targeted attack, we choose action stay as the targeted action. As shown in Table 2, adopting the ac-
tion poisoning strategy of the targeted and untargeted attacks of trojDRL reduces the score obtained
in the malicious environment more than our attack. However, the score in the clean environment (a
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Action poisoning Reward hacking Trigger size
0% 5% 10% 15% 20% 25%

Clean model - - 32.90 32.46 33.10 32.03 32.48 32.91
TrojDRL1 Targeted MGR 18.00 -5.55 -35.74 -80.48 -111.77 -122.90
TrojDRL2 Untargeted MGR 24.45 23.34 4.10 -14.55 -46.37 -79.00

Max reward EGA Max value 10.60 8.35 5.85 2.72 -1.11 -12.00
Same reward EGA No change 33.00 25.91 23.50 19.37 14.52 11.78

Ours EGA MGR 32.20 23.30 12.02 1.32 -20.75 -70.00

Table 2: Ablation study of action poisoning and reward hacking modules. TrojDRL1 and TrojDRL2

are targeted and untargeted versions of trojDRL.

Trigger size
0% 5% 10% 15% 20% 25%

Clean model 32.90 32.46 33.10 32.03 32.48 32.91
Fine-tune1 32.15 30.25 25.70 23.50 19.85 10.50
Fine-tune2 32.63 30.05 28.59 24.95 22.15 21.30

No Fine-tune 32.20 23.30 12.02 1.32 -20.75 -70.00

Table 3: Predator Prey scores using the QMIX algorithm. We fine-tune our backdoored model for
1,000,000 episodes (Fine-tune1) and 2,000,000 episodes (Fine-tune2) respectively.

trigger size of 0%) using TrojDRL action poisoning strategies is much lower than the clean model.
This means that the TrojDRL action poisoning strategies degrade the performance in the clean envi-
ronment, which is unacceptable for backdoor attacks. In comparison, our attack can maintain a high
score in clean environments.

Reward hacking. We compare our proposed reward hacking algorithm, i.e., mixing global reward
(MGR), with the reward hacking algorithms of TrojDRL and Stop-and-Go. In TrojDRL, the reward
of the poisoned agent is assigned the maximum value. In Stop-and-Go, there is no change to the
reward of the poisoned agent. As shown in Table 2, the reward hacking methods in existing works
cannot effectively degrade the utility of the player since they did not consider the reward aggregation
process in CMARL. Our proposed MGR method adapts the global reward in regard to both poisoned
and non-poisoned agents, attaining an ideal effect in CMARL.

4.3 RESISTANCE TO DEFENSE

Existing defense methods for backdoor attacks are mostly designed for deep neural networks (Gu
et al. (2019); Liu et al. (2018); Ji et al. (2018); Salem et al. (2020)), and there is a lack of defense for
backdoor attacks against DRL. A potential way of defending against backdoor attacks against DRL
is by fine-tuning, where the defender retrains the backdoored policy model in clean environments.
We evaluate the fine-tuning strategy in the Predator Prey environment using the QMIX algorithm.
Table 3 illustrates that fine-tuning can mitigate the attack power to some extent but cannot entirely
compensate for the utility drop. The scores of fine-tuned backdoored policy models are still lower
than the normal model in the presence of triggers.

5 CONCLUSION

Our work has concluded that it is feasible to insert a backdoor into multi-agent reinforcement learn-
ing models. We present a new backdoor attack method against value-decomposition cooperative
MARL and implement our method in two classical value-decomposition CMARL algorithms, i.e.,
VDN and QMIX. The results show that our attack can make backdoored CMARL models behave
well in normal scenarios but quickly deteriorate in malicious scenarios with triggers formulated by
the attacker. We try the commonly-used defense for backdoor attacks and discover that fine-tuning
cannot completely remove the effect of the attack, which notes the vulnerability of existing CMARL
algorithms to backdoor attacks.

9



Under review as a conference paper at ICLR 2022

6 ETHICS STATEMENT

Broader Impact. Our research will raise concerns about the security of cooperative multi-agent
reinforcement learning (CMARL) and spur research on defending against backdoor attacks in
CMARL. Since the traditional backdoor defenses such as fine-tuning are ineffective, designing more
advanced backdoor defenses for CMARL will attract more social attention.

Negative Impact. Our research may be leveraged by attackers to actually launch such backdoor
attacks against cooperative multi-agent reinforcement learning, which will cause potential economic
loss. Our research may be exploited to develop more powerful backdoor attacks against CMARL.
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A APPENDIX

A.1 CENTRALISED TRAINING AND DECENTRALISED EXECUTING

Centralised Training and Decentralised Executing (CTDE) framework is widely adopted in multi-
agent problems to learn a policy. Centralised training gathers the data of all agents for training,
overcoming the difficulty that the agents cannot observe the whole state. The trained model is shared
by every agent when executing. Different MARL algorithms adopt different CTDE frameworks, but
most of them follow the process as shown in Figure 4.

Centralised Training

Interaction
data

Final scroes

Centralized
RL model

Decentralised Executing

Agent 1

Agent N

......

Agent 1

Agent N

......
train share byrun gather

Environment

execute

Environment

Figure 4: The main process of centralised Training and Decentralised Executing.

A.2 TRIGGER DESIGN

Figure 5 shows the out-of-distribution and in-distribution trigger patterns in the environments. In
the map of Predator Prey, which is described as a grid, the modifications we apply do not exist in the
natural environments, i.e., out-of-distribution triggers. In the map of SMAC, we modify the terrain
height or the local texture, which are components of the map of SMAC, i.e., in-distribution triggers.

Out-of-distribution trigger

In-distribution trigger
clean observation

clean observation terrain triggered observation texture triggered observation

triggered observation

Triggered
Wall

Figure 5: Out-of-distribution and in-distribution triggers.
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(a) VDN in 5m vs 6m (b) QMIX in 5m vs 6m (c) VDN in 3s4z (d) QMIX in 3s4z

Figure 6: SMAC winning rate in 5m vs 6m and 3s4z, two StarCraft II maps.

Algorithm 1 Backdoor Attack against value-decomposition cooperative MARL
Require: Network of expert model M , network of the pre-trained model m, the environment of

the game E, the maximum number of iteration in training T , the number of the agents N , the
learning batch size b, the poison rate p, and the learning rate lr.

Ensure: Network of backdoor model m
1: initial data buffer B for storing the training data
2: for i from 0 to T do
3: data = run(m,E).
4: insert data into B
5: if the size of B > b then
6: sample = B.sample(b).
7: if with the probability p then
8: for i, j in batch, episode from sample do
9: Randomly choose agents Ap to poison. The rest of the agents is Ac.

10: poison obs(Ap, sample[i, j])
11: choose best actions(M,Ap, sample[i, j])
12: choose worst actions(M,Ap, sample[i, j])
13: Hack reward in sample as equation (7)
14: end for
15: end if
16: update m with the sample
17: end if
18: end for
19: return m.
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