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Abstract

Keeping track of scientific challenges, advances and emerging directions is a fun-1

damental part of research. However, researchers face a flood of papers that hinders2

discovery of important knowledge. In biomedicine, this directly impacts human3

lives. To address this problem, we present a novel task of extraction and search of4

scientific challenges and directions, to facilitate rapid knowledge discovery. We5

construct and release an expert-annotated corpus of texts sampled from full-length6

papers, labeled with novel semantic categories that generalize across many types7

of challenges and directions. We focus on a large corpus of interdisciplinary work8

relating to the COVID-19 pandemic, ranging from biomedicine to areas such as AI9

and economics. We apply a model trained on our data to identify challenges and10

directions across the corpus and build a dedicated search engine. In experiments11

with 19 researchers and clinicians using our system, we outperform a popular12

scientific search engine in assisting knowledge discovery. Finally, we show that13

models trained on our resource generalize to the wider biomedical domain and14

to AI papers, highlighting its broad utility. We make our data, model and search15

engine publicly available.116

1 Introduction17

Success in scientific efforts hinges on identifying promising and important problems to work on,18

developing novel and effective solutions, and formulating hypotheses and directions for further19

exploration. Each new scientific advance helps address gaps in knowledge, including potential20

extensions and refinements of prior results. New advances often lead to new challenges and directions.21

With millions of scientific papers published every year, sets of challenges and potential directions22

for addressing them grow rapidly. A striking recent example is that of literature pertaining to the23

COVID-19 pandemic [36], which exploded in unprecedented volume with researchers from across24

diverse fields exploring the many facets of the disease and its societal ramifications. As the pandemic25

continues worldwide, it is especially urgent to provide scientists with tools for staying aware of26

advances, problems, and limitations faced by fellow researchers and medical professionals, and of27

emerging hypotheses or early indications of potential solutions.28

Unfortunately, due to the immense scale and siloed nature of the scientific community, it can29

be difficult for researchers to keep track of their own specialty areas, let alone discover relevant30

knowledge in areas outside their immediate focus [12, 13, 14, 30]. This can result in poor awareness31

of failures or limitations reported in recent studies, wasting redundant resources and leading to clinical32

decision-making uninformed about shortcomings of interventions [5]. Disturbingly, there have been33

many cases where problems in treatments had been reported but not picked up by sectors of the34

clinical community [6, 31, 7] leading to higher rates of morbidity and mortality [17, 9, 33].35

1Redacted for anonymity.
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Our goal is to bolster the ability of researchers and clinicians to keep track of difficulties, limitations36

and emerging hypotheses. This could help clinical decision making be well-informed, accelerate37

innovation by surfacing new opportunities to work on, inspire new research directions, and match38

challenges with potential solutions from other communities [13]. In the face of challenging medical39

scenarios, such as the rise of a novel virus or situations where standard treatments fail, rapidly finding40

reports of similar challenges and directions to address them could have dramatic effect [26]. Finally,41

at the macro level, this ability could assist policymakers and funding agencies (e.g., NIH, NSF)42

seeking to identify important challenges and promising directions to prioritize research programs; in43

times of crisis this process needs to be done rapidly2 but demands substantial human effort.44

To address this problem and facilitate discovery of scientific knowledge, we make the following key45

contributions:46

• Novel Task: Extraction and Search of Scientific Challenges and Directions. We define seman-47

tic categories for ‘challenges’ and ‘directions’ that generalize across many types of difficulties,48

limitations, flaws and hypotheses or potential indications that an issue is worthy of investigation.49

We focus on COVID-19 literature as the main test bed for our task, as it is known to be highly50

interdisciplinary [14] with research in many different fields (e.g., AI, climatology, engineering,51

economics) and relates to a global emergency that urgently demands tools to help researchers and52

clinicians keep track of challenges and new opportunities.53

• Expert-Annotated Dataset, Publicly Released. We collect and publicly release a resource of54

2.9K expert-annotated texts from full-length COVID-19 papers, labeled by experts for challenges55

and directions with high inter-annotator agreement. We use the data to train multi-label sentence56

classification models that achieve high accuracy scores. We analyze model errors, discovering that57

contextual information can both help and harm results. Based on this finding, we explore a simple58

technique that integrates multiple ways of encoding context.59

• Novel Scientific Search Engine For Researchers and Clinicians. We build a novel public search60

engine that indexes challenges and directions. We apply a model trained on our dataset and apply it61

to the full corpus of 550K COVID-19 papers to build an index of scientific challenges and potential62

directions. We create a search engine that allows users to search for combinations of entities (e.g.,63

names of drugs, diseases, etc.) and retrieve challenge/direction sentences that mention them.64

• Evaluating Generality: Zero-Shot Generalization across Biomedicine and AI. We demon-65

strate zero-shot generalization, obtaining a high MAP of over 95% when applying the model66

trained on COVID-19 papers to a broader corpus in the general biomedical domain, and to AI67

papers in computer science. This indicates the potential value of our resource beyond COVID-19,68

such as for future pandemics or crises, or for helping AI researchers handle the explosion of69

research in this area.70

• Evaluating Utility: User Studies with Researchers. We conduct studies measuring utility. First,71

we evaluate the system’s ability to help researchers with diverse backgrounds discover challenges72

and directions for a given query (e.g., directions in drug discovery). This could also be important73

for researchers looking into a new area, e.g., AI researchers seeking biomedical problems (Fig.74

1). Second, we recruit nine medical researchers working on COVID-19 in clinical practice and75

research. These users often require finding information on challenges and directions, during76

research or treatment planning. In both experiments, totalling 19 researchers and over 70 distinct77

queries, our prototype outperforms PubMed, the most widely used biomedical search tool, in both78

quality and utility for discovery of challenges and directions.79

2 Task Overview & Definitions80

We present a novel task of automatically identifying sentences in papers that clearly state scientific81

challenges and directions. We consider the multi-label classification setting, where for a given82

sentence X = {w1, w2, . . . , wT } with T tokens, our goal is to output two labels Y = {c, d}, where83

c and d are binary targets indicating if the sentence mentions a challenge/direction, respectively.84

Additionally, we are also given context sentences surrounding X : (Xprevious,Xnext), for the previous85

and next sentences, respectively, which could be used as further input to models. The multi-label86

2https://covidreviews.cochrane.org/
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We believe that the RBD 
of SARS-CoV S protein may 
serve as a better candidate 
for developing vaccines...

… BCG vaccination potential 
benefit to decrease 
COVID-19 mortality in 
children is confounded by 
many factors...

… studies on transfer learning for
 COVID-19 research have several limitations: 
1) They only focus on ensembles of existing 
CNNs and 2) They are limited to X-ray datasets.

Investigating transferability in 
COVID-19 CT image segmentation

Publication date: 2021-02-23
… transfer learning is a promising 
approach by transferring knowledge from 
the abundant typical pneumonia datasets 
for COVID-19 image classification.

Learning Invariant Representations 
across Domains and Tasks

Publication date: 2021-03-03

(1) CORD-19 
sentence annotation

(3) Search engine for 
scientific challenges and directions

covid-19 machine learning add more...

(2) Sentence 
classification model

ChallengeDirection

Figure 1: Overview of our system. (1) We collect expert annotations of sentences mentioning
challenges and directions from across the CORD-19 corpus. (2) We train a sentence identification
model on this data and apply it to the full corpus to extract high-confidence sentences. (3) We build a
search engine indexing challenges and directions in COVID-19 literature, allowing users to search
for entities and retrieve sentences with their contexts.

setting allows us to capture that in many cases, sentences refer to both challenges and directions at87

the same time At a high level, our labels are defined as follows.88

• Challenge: A sentence mentioning a problem, difficulty, flaw, limitation, failure, lack of clarity, or89

knowledge gap.90

• Research direction: A sentence mentioning suggestions or needs for further research, hypotheses,91

speculations, indications or hints that an issue is worthy of exploration.92

Figure 1 shows examples for each category. Also, we further present the motivation for the task,93

example annotations, and why the categories are non-trivial for both humans & machines to identify94

in Technical Appendix §A.1 & §A.2. We note that in addition to biomedical literature discussed in95

the Introduction, our task is related to a body of research which we cover in Technical Appendix96

§A.3.97

3 Data Collection and Models98

Data Collection & Annotation. We sample 3000 sentences from the full-text papers of CORD-1999

(∼180k full-text papers with ∼25m sentences).3 Four expert annotators with biomedical and bioNLP100

backgrounds annotated the sentences with high agreement.We create a train/dev/test stratified split of101

40%/10%/50%, splitting by distinct papers.4 See full details in Appendix §A.4.102

Baseline Models. We evaluate a range of baseline models for our novel task: simple key-103

word/sentiment based heuristics, zero-shot inference based on a language model trained for natural104

language inference (NLI), fine-tuning scientific and non-scientific language models(LMs), and fine-105

tuning the LMs where they are context-aware (including the surrounding sentences in the training).106

We also explore two customized approaches: fine-tuning using a Hierarchical Attention Network107

(HAN) [38], and an approach where we obtain outputs using several variants (“slices”) of context-108

aware and not-context-aware versions of a fine-tuned language model and combine their logits to109

yield a final pair of logits used for prediction. See Appendix §A.5 & §A.6 for a full description.110

Results. As seen in Table 1, the best individual classifier by F1 is PubMedBERT with a binary-F1111

of 0.770 and 0.766 on the challenge and direction labels, respectively. Our customized approach leads112

to an improvement of about one F1 point for both labels over the best individual model (standard113

error of 1.05× 10−4). See full results in Appendix §A.7 & error analysis in Appendix §A.8.114

3We use a snapshot of CORD-19 from 08-02-2021.
4See Table §3 in Appendix §A.4.
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Challenge Direction
Model P R F1 P R F1

Keyword 0.535 0.760 0.628 0.455 0.792 0.578
Sentiment 0.405 0.966 0.571 0.239 0.837 0.371
NLI 0.659 0.693 0.675 0.401 0.825 0.540

RoBERTa-lg 0.723 (0.042) 0.824 (0.046) 0.769 (0.004) 0.697 (0.065) 0.825 (0.06) 0.754 (0.004)
SciBERT 0.729 (0.023) 0.799 (0.03) 0.761 (0.007) 0.719 (0.044) 0.783 (0.043) 0.749 (0.01)
PubMedBERT 0.738 (0.018) 0.804 (0.017) 0.770 (0.006) 0.755 (0.017) 0.778 (0.015) 0.766 (0.006)
HAN 0.671 (0.02) 0.863 (0.03) 0.759 (0.01) 0.674 (0.04) 0.804 (0.04) 0.734 (0.001)

Ctx-slices 0.742 (0.011) 0.829 (0.012) 0.783 (0.004) 0.732 (0.02) 0.82 (0.03) 0.773 (0.005)

Table 1: Model Results. The PubMedBERT model fine-tuned on our multi-label classification task
performs best. For the neural models we present the average over 5 training seeds where the number
in parentheses is the standard deviation.

High precision@K We observe that for 20% recall we obtain well over 90% precision, and for 40%115

recall about 90% precision, demonstrating the utility of our model for a search engine application116

(§4) where precision at the top is important.117

Generalization For directions, we obtain MAP and AUC of around 96% for general biomedicine118

papers outside CORD-19, and around 95% for AI papers we sample from the computer science119

domain. For challenges, we reach a MAP and AUC reach around 97-98% for biomedicine and around120

96% for AI. See full analysis in Appendix §A.7.121

4 Search Engine User Studies122

We build a search engine that indexes challenges and directions across the ∼550k papers in CORD-123

19. We perform entity linking to the biomedical KB of MeSH entities [24] which allows us to124

partially group together all challenges or directions into “topics” referring to a specific fine-grained125

combination of concepts. See Appendix §A.9.1 for full details.126

Experiment I - diverse researchers We recruited ten participants with diverse research backgrounds.127

Each participant was given twenty queries (formulated by a domain expert). We compared the amount128

of challenges and directions they were able to find in a limited time frame using our system vs. the129

popular PubMed search system. Our system, on average, yielded ∼2 times as much challenges and130

∼3 times as much directions per query. Further details are in Appendix §A.9.2.131

Experiment II - clinical researchers We recruited nine expert MDs at a large hospital who are132

involved in clinical research for COVID-19 and for their specialty areas (each have over 1000133

citations). Each expert completed randomly ordered search tasks (queries curated by an expert; see134

Appendix §A.12) using the same systems as in the previous experiment. After all search tasks were135

completed we use a standardized Post Study System Usability Questionnaire (PSSUQ) [21]. The136

experts strongly preferred our search engine to PubMed (overall average of 92% versus 59%, with137

non-normalized scores of 6.42 vs. 4.14). Further details are in Appendix §A.9.3.138

5 Conclusion139

We presented methods for extracting scientific challenges and directions from scholarly papers. We140

collected 3K expert-labeled sentences and their contexts from COVID-19 papers, and used the dataset141

to fine-tune scientific language models on our multi-label sentence classification task. We find that the142

approach can identify challenges and directions with high precision, and that using the model trained143

on our dataset achieves high zero-shot generalization on general biomedical papers and AI papers in144

computer science. We harnessed the model to index 950K sentences and build a novel search engine145

that allows researchers to search for biomedical entities and retrieve sentences mentioning difficulties,146

limitations, hypotheses and directions. Researchers using our system found that our system provided147

better support than PubMed in terms of utility and relevance.148
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A Technical Appendix255

A.1 Task Overview Definitions256

The CORD-19 corpus [36] curates literature on COVID-19 and related diseases. With many thousands257

of papers, keeping track is generally hard, and mapping the landscape of scientific challenges and258

directions to address them is even harder. While “grand” challenges such as designing therapies and259

handling novel virus variants are broadly known, research focuses on fine-grained specific challenges,260

e.g., difficulties in functional analysis of specific viral proteins, or shortcomings of a specific treatment261

regime for children. Each challenge, in turn, is associated with potential directions and hypotheses.5262

As written in the main paper, we present a novel task of automatically identifying sentences in papers263

that clearly state scientific challenges and directions. We consider the multi-label classification setting,264

where for a given sentence X = {w1, w2, . . . , wT } with T tokens, our goal is to output two labels265

Y = {c, d}, where c and d are binary targets indicating if the sentence mentions a challenge/direction,266

respectively. Additionally, we are also given context sentences surrounding X : (Xprevious,Xnext),267

for the previous and next sentences, respectively, which could be used as further input to models. The268

multi-label setting allows us to capture that in many cases, sentences refer to both challenges and269

directions at the same time (see Table 2). At a high level, our labels are defined as follows.270

• Challenge: A sentence mentioning a problem, difficulty, flaw, limitation, failure, lack of clarity, or271

knowledge gap.272

• Research direction: A sentence mentioning suggestions or needs for further research, hypotheses,273

speculations, indications or hints that an issue is worthy of exploration.274

These categories allow us to capture important information for scientists that is not captured by exist-275

ing resources (see §A.3). As part of data annotation we provide annotators with richer explanations276

and examples of each label (see §A.4) to make these definitions more concrete. Figure 1 shows277

examples for each category (also see Table 2 in Technical Appendix §A.2 for more discussion).278

Many cases of challenges and directions are non-trivial for both humans and machines to identify.279

We demonstrate two main types of difficulties (see more discussion in Technical Appendix §A.8) —280

cases of potentially misleading keywords, and cases where deep domain knowledge or context may281

be required.282

• Misleading keywords. Consider the following sentence: “The 15-30 mg/L albumin concentration283

is a critical value that could indicate kidney problems when it is repeatedly exceeded”. This text284

mentions a diagnostic measure that is an indicator of a problem, rather than an actual problem.285

This is one example out of many other potentially misleading cases, such as cases where a negative286

outcome occurs to an entity we wish to harm (e.g., “the viral structural integrity is destroyed”).287

• Context and domain knowledge. “BV-2 cells expressed Mac1 (CD11b) and Mac2 but were288

negative for the oligodendrocyte marker GalC and the astrocyte marker GFAP.” Deciding whether289

this sentence contains a challenge is highly non-trivial, since it requires more context and deep290

domain knowledge to understand whether this outcome is problematic or not.291

A.2 More examples292

Table 2 shows example sentences for each category. In the first row (not challenge, not direction),293

the example is purely a factual description of a certain tool. In the second row (not challenge,294

direction), the statement mentions a scientific future direction, but there is no associated challenge295

that is explicitly mentioned. In the third row (challenge, not direction), there is a mention of a disease296

that is difficult to diagnose, but there is no mention of a suggested hypothesis or direction. Finally, in297

the last row (challenge, direction), a medical concern is presented alongside a scientific speculation298

on the nature of the signaling in the immune system, therefore reflecting both a challenge and a299

direction.300

5While many papers discuss future directions in their concluding section, our task involves capturing all
mentions of directions/hypotheses/speculations/early indications appearing throughout full paper texts (e.g., in
experimental analysis sections).
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Labels Example
Not Challenge,
Not Direction

Nowadays, standard structure-based
virtual screening has been routinely
implemented in drug discovery to
quickly prioritize potential com-
pounds for in vitro activity tests.

Not Challenge,
Direction

Future studies will focus on com-
parative sequence analysis between
the PST isolates reported herein and
global isolates of PST to determine
the specific geographic origin(s) for
this diverse PST population.

Challenge,
Not Direction

Outbreaks attributed to acute BVDV
infections in feedlot calves have
been described previously, although
definitive diagnosis is often difficult
[18].

Challenge,
Direction

Thus, both PRRs could be respon-
sible for innate immune signaling
during acute DENV infection, per-
haps operating in temporally distinct
fashion as in WNV infection.

Table 2: Examples of Challenges and Directions.

A.3 Related Work301

In addition to biomedical literature discussed in the Introduction, our work on extracting challenges302

and directions from scientific papers is related to a large body of research.303

Scientific information extraction and text classification. The goal in this line of work is to extract304

structured information from literature, such as sentence-level classification into categories including305

objectives/methods/findings [8] or extracting entities and relations [23, 35, 19]. Unlike previous306

work, our labelling schema encapsulates underexplored facets such as difficulties, flaws, uncertainties307

(challenges) and suggestions, hypotheses, indications that an issue is worthy of additional exploration308

(directions). Our coarse-grained schema covers diverse variants of challenges/directions and can help309

generalize across the interdisciplinary COVID-19 literature [14].310

COVID-19 IE and search tools. Recent work includes visualizing COVID-19 concepts and relations311

[13], a syntactic search engine [32], and a search engine for causal and functional relations [14]. Ours312

system is focused on challenges and directions, not captured by existing tools. Recent work [15] has313

used crowd workers to annotate abstracts (not full-texts as in this paper) for Background, Purpose,314

Method, Finding/Contribution. As discussed in §A.4, we find that crowd workers fail on our task,315

even though recruited with high quality assurance standards.316

A.4 Data Collection Procedure317

We recruited four expert annotators with biomedical and bioNLP backgrounds to annotate sentences318

sampled across CORD-19. Annotators were given detailed annotation guidelines6 and had a one-hour319

training session for reviewing the guidelines and discussing more examples. The guidelines included320

simple explanations of challenges and directions along with introductory examples. We sampled321

sentences from full-text papers, aiming to capture diverse, fine-grained challenges/directions that322

often do not appear in abstracts. The subset of full-text papers in CORD-19 numbers roughly 180K323

papers with around 25 millions sentences.7 We also provide surrounding sentences around the target324

sentence as context.325

6Annotation guidelines are available in REDACTED FOR ANONYMITY.
7We use a snapshot of CORD-19 from 08-02-2021.
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Labels Train Dev Test All
Not Challenge, Not Direction 602 146 745 1493
Not Challenge, Direction 106 25 122 253
Challenge, Not Direction 288 73 382 743
Challenge, Direction 155 40 210 405

Table 3: Distribution of labels across data splits. Splits are stratified with no overlap in papers.

Randomly sampling sentences for annotation is highly unlikely to lead to enough challenge/direction326

cases. To increase this likelihood, two annotators curate 280 keywords or phrases with affinity to one327

of the two categories.8 Sentences mentioning at least one keyword (lemmatized) are upsampled. For328

example, words such as unknown, limit, however provide weak signal indicating a potential mention329

of a challenge; words like suggest, future work, explore are weak indicators of a direction. To expand330

the list further, annotators made use of SPIKE [34] which also has a vocabulary explorer that allows331

browsing keywords similar to an input term. Overall, the 280 keywords covered around a third of332

sentences in CORD-19, demonstrating their breadth. We note that for most keywords context can333

completely change their meaning; for instance, “limit” can appear in the context of “we limit the334

discussion” which has no relation to challenges. Our set of terms with weak correlation to the label335

(e.g., the word may that very weakly relates to directions) favors high recall rather than precision.336

Finally, to further increase coverage, we sampled at random roughly a quarter of sentences from337

the remaining sentences that did not contain any of the keywords, obtaining in total 3000 sentences.338

We filter sentences that are not in English, mostly numeric/mathematical, or that are very short/long339

(often due to PDF parsing issues), resulting in 2894 sentences and their surrounding contexts, from340

1786 papers.341

Annotator agreement: 60% of the sentences were labeled by all annotators9, with high average342

pairwise agreement. Following common practice we measure micro-F1 and macro-F1, treating labels343

from one annotator as ground-truth and the other as predicted, obtaining 85% for challenges and344

88% for directions for micro-F1, and 84% and 82% for macro-F1. Positive label proportions are345

39.66% and 22.74% for challenges/directions, respectively. We create a train/dev/test stratified split346

of 40%/10%/50%(Table §3), splitting by distinct papers. We opt for a large, diverse test set for model347

evaluation [4]. The sampled sentences originate from papers published in 1108 journals.348

A.4.1 A note on crowdsourcing.349

We also attempted crowdsourcing to scale the collection process.10 However, despite multiple trials350

and strict quality assurance, the nuanced nature of the task was found to be difficult for crowd workers,351

especially due to false negatives.352

A.5 Baseline models353

The classification task at hand is a multi-label sentence classification problem, with the goal of354

predicting whether a sentence mentions a challenge, a research direction, both, or neither. The355

definitions of the challenge and direction categories are as described in §2. We evaluate a range of356

baseline models we examine for our novel task.357

• Keyword-based: A simple heuristic based on the lexicon we curated for data collection (§A.4) —358

sentences with a challenge keyword are labeled as challenge, and similarly for direction.359

• Sentiment: Challenge statements potentially have a negative tone, and directions are potentially360

more positive. We score the sentiment of each sentence using an existing tool [27] and classify361

negative sentiment sentences as challenges and positive ones as directions.362

• Zero-shot inference: In zero-shot classification, models predict labels they were not trained on363

[39]. This could be particularly relevant in emerging domains such as COVID-19, where collecting364

8Our list of keywords is available in REDACTED FOR ANONYMITY.
9Final labels selected by majority vote, with ties (fewer than 100 cases) adjudicated by a member of the

research team.
10Using the Appen platform https://appen.com/.
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large amounts of labeled data could be prohibitive. We use a language model trained for natural365

language inference (NLI), letting the model infer whether the input text entails the label name. See366

Appendix §A.5.1 for full details.367

• Scientific language models: We also experiment with fine-tuning language models that were368

pre-trained on scientific papers. We report results for PubMedBERT-abstract-fulltext [10] which369

was pre-trained on PubMed paper abstracts & full texts, and for SciBERT [2], trained on a corpus370

of biomedical and computer science papers. In addition, we also experiment with a non-scientific371

language model, RoBERTa-large, which has been shown to obtain excellent results when fine-372

tuned on scientific texts [11]. We also experimented with other language models, with very similar373

results.374

For all language models we fine-tune we use the Hugging Face library [37]11. We use hyperparam-375

eter tuning with the objective of maximizing the F1-score on the development set using grid search376

over batch size ([8,16,32]), learning rate ([1e-̂05, 2e-̂05, 3e-̂05, 5e-̂05]) and epochs (maximal value377

of 25 epochs). We use the Adam optimizer[20] with a dropout rate of 0.3 for all neural models,378

using a binary cross-entropy (BCE) loss over our two labels. For the sentiment analysis model, we379

tune its threshold on the development set.380

See customized models at Technical Appendix §A.6.381

A.5.1 Zero-shot baseline and variations specification382

We use BART-MNLI-large [22], a pre-trained NLI model. We find that simply feeding in “challenge”383

and “direction” as label names, or similar variants, performs poorly, likely due to the nuanced384

complexity of these labels. Instead of using one name, we find that enumerating multiple variants of385

challenges (e.g., difficulty, limitation, failure) provides better results.386

We define the following sub-labels enumerating challenges and directions. We take the different387

variants of challenges that we use in our definition of this label — [challenge, problem, difficulty,388

flaw, limitation, failure, lack of clarity, gap of knowledge] — and similarly for directions ( [direction,389

suggestion, hypothesis, need for further research, open question, future work]). Denote the former390

list by Lc, and the latter Ld. For each category, we compute the probability of each l ∈ Lc (Ld,391

respectively) and take the maximal value for each set of sub-labels, denoted by mc and md. If392

mc ≥ 0.9 we label the sentence as a challenge, and similarly for md and directions, using the same393

threshold. Otherwise, the input is classified as negative.394

We briefly examine a few variations on the zero-shot classification baseline, in terms of the class/label395

names given as input, to study their effect. We use the same binary threshold of 0.9 for all variants.396

• Class-name: Using only the class names, i.e., “challenge” and “direction”, rather than more397

fine-grained label names.398

• Template: Using “challenge” and “future direction” as part of a template sentence following the399

approach in Yin et al. [39]. Specifically, “This sentence is about a challenge”, “This sentence is400

about a future direction”.401

• Concatenated: Instead of [challenge, problem, difficulty, flaw, limitation, failure, lack of clarity, gap402

of knowledge] as standalone inputs, we concatenate them into one string — “challenge, problem,403

difficulty, flaw, limitation, failure, lack of clarity, gap of knowledge”; the same was done for404

directions.405

Table 4 in Technichal Appendix §A.7.2 shows the results of the zero-shot variant models.406

A.6 Context Modelling Variants407

We also experiment with models motivated by examination of baseline errors (see Technical Appendix408

§A.8). Specifically, we find that adding context helps in certain cases: For example, in the sentence409

“... the patient had an extreme elevation of procalcitonin without signs of bacterial infection.” which410

was misclassified as a non-challenge, adding context helped identify the unexplained elevation as411

problematic. However, context can also introduce noise (see Table 1). We explore different ways412

in which the context can affect predictions — during training, and during inference. In addition to413

simply fine-tuning PubMedBERT with full context, we explore two main customized approaches.414

11See our code attached in the REDACTED FOR ANONYMITY.
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Hierarchical Attention Network (HAN) [38] Recall Section §2, where candidate sentences are415

denoted by X and their surrounding context by Xprevious,Xnext. Denote by Xcontext the concate-416

nation: [CLS] Xprevious [SEP] X [SEP] Xnext [SEP]. We compute a weighted average of [CLS]417

and the first two [SEP] tokens using attention weights, and use this average embedding for final418

classification. The weights are learned as part of end-to-end training. 12 While this model can419

potentially learn to re-weight the context, it encodes the full Xcontext jointly before this weighting420

takes place, which can lead to noise propagating early on. We thus test a different approach to help421

mitigate this issue.422

Context Slice + Combine Let fX (x) denote the label logits emitted from the final layer of the423

PubMedBERT model which was fine-tuned on X only, for some input text x. Likewise, denote424

by fXcontext
(x) the logits from PubMedBERT fine-tuned using the full context. At inference425

time, we obtain outputs using the following variants (“slices”) of f and x: (1) l1 = fX (X ), (2)426

l2 = fX context(Xcontext), (3) l3 = fX (Xcontext), and (4) l4 = fX context(X ). We then average427

(“combine”) all four, yielding a final pair of logits used for prediction. (1) and (2) are just the models428

reported in Table 1 – feeding X as input to PubMedBERT fine-tuned on X , and similarly for Xcontext.429

(3) and (4) switch between training and inference inputs: in (3) fX takes Xcontext as input during430

inference, and in (4) X is fed as input into fXcontext
. The reason we include these is to tease apart431

different ways in which the context may introduce noise or signal, during training using context (3)432

and during inference (4). We empirically find all four are in agreement in roughly 70% 83% of the433

cases for challenges directions; 3 out of 4 agree in 20% 11%, and the rest are tied. This suggests434

each variant can potentially capture complementary information.435

A.7 Results436

Classification Results. As seen in Table 1, fine-tuned scientific language models outperform the437

Zero-Shot model, which still does well considering it had no supervision and was pre-trained on438

non-scientific texts. The sentiment analysis and keyword-based classifiers, both based on large lists439

of “positive/negative” keywords, have good recall but poor precision. The best individual classifier440

by F1 is PubMedBERT with a binary-F1 of 0.770 and 0.766 on the challenge and direction labels,441

respectively. The HAN approach was able to increase recall substantially for problems, but at the442

cost of reduction in precision, leading to overall inferior F1 on par with PubMedBERT+context.443

The Slice-Combine approach leads to an improvement of about one F1 point for both labels over the444

best individual model (standard error of 1.05× 10−4). In an ablation experiment we compute the445

averaged logits of l1, l2 and l3, l4 separately, and also simply ensemble four model runs of fine-tuned446

PubMedBERT, both leading to inferior results (see these additional results in Technical Appendix447

§A.7.1). Finally, an oracle that selects the best logit l1-l4 for each input based on ground truth448

labels has F1 of 0.907 and 0.896 for challenges/directions, suggesting much room for future work449

on adaptive use of context during training and inference. See in-depth analysis of additional model450

errors in Technical Appendix §A.8.451

Precision@Recall Our primary focus is a novel search engine application (§4). For such applica-452

tions, it is often more important to have high precision for top retrieved results. We examine precision453

for a range of values of recall, shown in Figure 2. We observe that for 20% recall we obtain well over454

90% precision, and for 40% recall about 90% precision.455

Evaluating predictions across CORD-19 To further ensure quality, we run the PubMedBERT456

model across all sentences in CORD-19. Out of all sentences indexed in our search engine as either457

a challenge or a direction, we sample roughly 350 sentences, with higher sampling weight given458

to high-confidence predictions. About 190 sentences have confidence greater than 0.9, 130 have459

confidence lower than 0.5, with 90 sentences with confidence within the range of (0.25, 0.75). These460

sentences are labeled by an expert annotator following the same criteria used to annotate our dataset461

(§A.4). As shown in Figure 3, we obtain very high mean average precision (MAP) of 98% and area462

under the precision-recall curve (AUC) of over 97% for directions, and 97% / 96% for challenges.463

We conclude that for high-confidence challenge and direction sentences indexed in our search engine,464

accuracy is expected to be overall considerably high. Our test set consists of considerably harder465

examples, explaining the gap in performance (see discussion in §A.8).466

12See Yang et al. [38] for details about the general framework.
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Figure 2: Precision/Recall results for the PubMedBERT model, and the zero-shot model. Precision
for PubMedBERT is high for reasonably large values of recall.

Zero-shot generalization to biomedicine and AI domains. We perform a preliminary experiment467

examining whether a model trained on our dataset can, with no additional training, generalize to468

identify challenges and directions in general biomedical papers, which we sample from S2ORC, a469

larger corpus with millions of papers [25], and also AI papers sampled from a corpus of full-text470

computer science papers [16]. In total, we sample about 1000 sentences across the two datasets,471

following the same procedure as described above for CORD-19 sentences: we randomly sample 100472

papers that did not appear in the CORD-19 corpus to ensure no leakage of information from our473

training set (we filter with a paper identifier shared by both resources). From these papers, we sample474

sentences in the same way as above for annotation. The annotator labels 630 sentences: 430 sentences475

with confidence scores greater than 0.9 and 200 sentences with scores lower than 0.9, 150 of those476

with scores lower than 0.5. For AI papers, we follow the same procedure, with 300 sampled sentences.477

CORD-19 papers are highly interdisciplinary in terms of the areas they cover [14, 13], raising the478

possibility of using our dataset to train models that can be applied to other domains without additional479

costly data collection. As seen in Figure 3, identification accuracy is high in this sample too. For480

directions, we obtain MAP and AUC of around 96% for biomedicine, and around 95% for AI. For481

challenges, MAP and AUC reach around 97-98% for biomedicine and around 96% for AI. These482

preliminary results focus mostly on high-confidence predictions relevant for search applications, and483

generalization could be explored more extensively in future work.484

A.7.1 Additional Slice-Combine Context Models Results485

In addition to the experiments reported, we tested multiple ways to combine information from four486

variants: (i) apply average or a median on the logits, (ii) majority voting, (iii) log-odds extremization,487

(iv) training a router model based on the logit differences, (v) running logistic regression with the488

embedding (final layer) of each of the four input encoders and their logits as features. Aside from489

the simple averaging, logistic regression was a close runner-up. We explore the average weights the490
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Figure 3: Evaluating predictions beyond our test set. We use a model trained on our data to identify
challenges and directions across CORD-19 (denoted by COVID), S2ORC (general biomedical papers,
denoted general biomed) and SciRex (full-text AI papers, denoted AI). Accuracy is considerably high.
Zero-shot generalization over non-COVID papers, even non-biomedical papers, is encouragingly
high, indicating the utility of our resource beyond COVID-19.

Challenge Direction
Variation P R F1 P R F1

NLI-Zeroshot 0.659 0.693 0.675 0.401 0.825 0.54

Class-name 0.789 0.440 0.565 0.618 0.065 0.119
Template 0.439 0.941 0.599 0.589 0.401 0.478
Concatenated 0.849 0.107 0.190 0.491 0.724 0.585

Table 4: Zero-Shot Baseline Ablation Results. We provide the baseline different variants of class
descriptors for challenges and directions, respectively.

logistic regression assigned to the four context variants. For challenges 0.14, 0.21, 0.21, and 0.35491

for (1)-(4) respectively; and for directions 0.32, 0.2, 0.07 and 0.45. Interestingly this suggests that492

training the model end-to-end with context could be useful even when the context is not available at493

inference.494

Sanity testing the Slice-Combine Context Models As a sanity check we simply ensemble 4 runs495

of PubMedBERT, resulting in inferior F1 of 0.772 and 0.764 for challenges/directions, which further496

indicates the complimentary value of our four context variants beyond simpler ensembling.497

A.7.2 Zero-Shot Baseline Ablation Results498

Results for the ablation experiments are in Table 4. As can be observed, for challenges, the variant499

reported in Table 1 achieves the best results by a large margin. For directions, the variant that500

concatenates class descriptors into one string does marginally better.501
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A.8 Error analysis502

We study the cases where the best fine tuned model failed to classify sentences correctly. In order to503

do so we randomly sampled and analyzed roughly 20% of the false positive and false negative errors504

across both labels.505

Challenges The most common error that accounts for a third of wrong predictions (both false506

positive and negative) is that in some cases deciding whether an outcome is positive or negative507

requires a more profound understanding of the biomedical entities involved and of the context. For508

example, the sentence consider the sentence “The surprising conclusion of the study was that relative509

to primary rat Schwann cells undergoing myelination, only 2 cell lines expressed high levels of510

mRNA coding for myelin proteins and none of the cell lines expressed all of the myelin proteins511

typically expressed in myelinating Schwann cells.” The model classifies the sentence as a challenge.512

However, an expert who read the text concluded that the outcome is non-problematic since with513

further downstream analysis the mentioned conclusion may represent a more accurate model for514

future analysis of myelin gene promoters. Conversely, the sentence “It is remarkable that the patient515

had an extreme elevation of procalcitonin without signs of bacterial infection.”, was not classified516

as a challenge, but an expert annotator did identify the issue of having a strong biological indicator517

for a serious condition without a clear explanation for its elevation as problematic. We note that in518

multiple cases presenting the model with the context aids with these issues. For instance, in the above519

example, when providing the context which includes a reference to the the risk factor, the prediction520

flips to the right call. However, as discussed in §A.5, context can also add noise in some cases. This521

observation led to our Context Slice+Combine approach described in §A.6.522

The second biggest cause for false positives is sentences that provide a general description of a523

condition rather than a challenge. An example is “The location of the headache might vary depending524

on which sinuses are affected[...]”. Such texts are tricky since they are essentially facts about a525

condition rather than a description of an explicit challenge (e.g., the headache may be trivial to treat).526

To make the distinction clearer, consider the text “Colitis is a chronic digestive disease”. It presents527

a definition of a disease, and not an instance of an explicit problem one needs to address.528

The second biggest cause we observe for false negatives is sentences that mention partial solutions529

that can mitigate a problem. For instance, “[...] the cellular apoptotic process is immediately530

triggered as an innate defense mechanism in response to infection, but is abruptly suppressed during531

the middle stage of infection.”. In this example a defense mechanism is mentioned that can mitigate532

the problem, but the challenge nonetheless remains. Combined, the above error causes account for533

roughly 2/3 of the false positives and negatives. Labelers were provided input on how to deal with534

these issues in annotation, but since they are nuanced, models may require more data or sophistication535

to classify them correctly.536

Directions The most common cause for error in Direction is the identification of future action items537

which are general vague suggestions as directions. For example, “In agreement with the authors538

of that study, we believe that communication between laboratory specialists and clinicians should539

be intensified and improved.”. The example suggests a policy or action that does not constitute a540

research direction or hypothesis. This error accounts for 60% of the false positives.541

In terms of recall errors we find that sentences that suggest a hypothesis or other more implicit542

research directions account for roughly 50% of the errors. For example “Persistent viral shedding543

may indicate different levels of virulence, host immune response and infectiousness”. The guidelines544

stipulate that these should be positive since researchers need to verify these directions, and indeed in545

most cases they are correctly identified, but some instances cause false negatives.546

The rest of the errors in challenges or directions were anecdotal rather than systemic.547

A note on expected errors in the downstream tasks. Our data contains an over-sampled propor-548

tion of tricky keywords (e.g., the word “hard” appears in both “hard material” and “hard task”), and549

thus we expect fewer errors in the search application task (see also Figure 3). In addition, in our550

downstream task of search we rank results by prediction confidence, and precision for high values of551

confidence is high even on our harder test set (Figure 2). Indeed, Figure 3 shows that predictions552

appear to have high overall accuracy in a sampled set.553
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A.9 User Studies554

We now explore user studies designed to evaluate our framework’s utility. First, we explore whether555

our system can be helpful for quick discovery of challenges/directions. Second, we conduct a study556

with nine medical researchers working on COVID-19 treatment and research. In total our studies557

include 19 researchers and over 70 distinct search queries.558

A.9.1 Search Engine559

Challenge and direction indexing We build a search engine that indexes challenges and directions560

across the entire CORD-19 corpus up to and including August 2021. To build the search engine561

(see Figure 5 in the Technical Appendix for a screen capture), we first apply PubMedBERT to 550K562

papers, totalling 29M sentences. 180K of the papers are with full text, the rest are abstracts. We563

then clean poorly tokenized sentences, non-English sentences, very short sentences or texts with564

latex code. We classify the remaining sentences leaving 2.2M sentences — about 950K sentences565

with high-confidence predictions for at least one of challenge/direction and their surrounding context566

sentences. We select high-confidence sentences by using a threshold of 0.99 for both challenges and567

directions, using a thresholds leading to well over 90% precision at top-10% on our test set.568

Entity-based indexing For each sentence in our set of 2.2M, we add another layer of indexing,569

by extracting entities and linking them to knowledge base entries. This allows us to partially group570

together all challenges or directions into “topics” referring to a specific fine-grained combination571

of concepts (e.g., AI + diagnosis + pneumonia), and facilitate entity-centric faceted search which572

is known to be useful in scientific exploratory search [13, 14].13 We extract a range of biomedical573

entities and link them to a biomedical KB of MeSH (Medical Subject Headings) entities [24]. See574

Technical Appendix §A.10 for full technical details.575

In the experiments that follow, we compare our system with a strong real-world system — PubMed576

biomedical search engine14, a leading search site that clinicians and researchers regularly peruse as577

their go-to tool. While PubMed was not designed to find challenges and directions, no existing tool is;578

PubMed allows users to search for entities such as MeSH terms, is supported by a KB of biomedical579

entities used for automatic query expansion, and has many other functions — and as such is a strong580

real-world baseline.581

A.9.2 Challenge/Direction Exploration582

We recruited ten participants with education and experience in medicine, microbiology, public health,583

molecular, cellular, and developmental biology, biochemistry, chemical & biological engineering,584

environmental science, and mathematics. Participants are paid $50 per hour of work, comparing query585

results from our system and PubMed. Participants were given guidelines, which include definitions586

for research challenges and directions with simple examples.15587

Each participant was given twenty queries, split into two sections for challenges and directions,588

respectively. For each query, participants were asked to find as many research challenges as possible589

in no more than 3 minutes. The total number of unique queries among the participants is 65. Some590

examples of queries used for the challenges section include “antibodies” and “inflammation, lung”,591

with the paired entities being searched jointly; example queries for the directions section include592

“telemedicine” and “vaccines, technology”. All queries were curated by a domain expert.593

As seen in Figure 4, our system yielded a greater number of challenges and directions, on average,594

than the PubMed tool. Users found roughly 4.46 challenges and 6.43 directions per query using our595

system compared to the 2.24 challenges and 2.03 directions per query found using PubMed (p-value596

of .00192 for challenges and .000529 for directions using a paired t-test). For each participant we597

included 5 challenges and 5 directions that were overlapping across all participants, in order to control598

and compare between results for the same queries. We find that on average across users, 70.0%599

of the query results using our system led to a strictly larger number of challenges discovered than600

13Other forms of challenge grouping, such as with embedding-based sentence clustering, are interesting to
explore in future work.

14https://pubmed.ncbi.nlm.nih.gov/
15Full annotation guidelines are included in REDACTED FOR ANONYMITY.
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Figure 4: Study with researchers with diverse backgrounds. Participants using our search engine were
able to find substantially more cases of challenges and research directions they considered useful
than with PubMed. Error bars represent 90% confidence intervals.

Metric Chal./Dir. Search PubMed
Search 90% 48%
Utility 94% 57%
Interface 91% 68%
Overall 92% 59%

Table 5: Nine medical researchers expressed much higher satisfaction with our system (Chal./Dir.)
than PubMed.

the respective query results using PubMed, and 22% were ties. For directions, we find a larger gap601

between the two systems, with 96.0% of the query results using our system yielding strictly more602

directions than PubMed, and 2% yielding ties.603

A.9.3 Evaluation with Medical Researchers604

We now report on an evaluation of our search engine performed with nine medical researchers at a605

large hospital.16606

Study. We recruited nine expert MDs with a wide range of specialization including cardiology,607

pulmonary and critical care medicine, gastroenterology and general medicine who are actively608

involved in clinical research both for COVID-19 and specialty areas, and each have over 1000609

citations. Each expert completed randomly ordered search tasks (challenge/direction queries curated610

by an expert medical researcher; see Appendix §A.12) using both PubMed and our system. Experts611

using our UI viewed sentences and their contexts (previous/next sentences). In addition we also612

displayed metadata such as paper title, date, url. After all search tasks were completed for both613

systems, experts were given seven-point Likert-scale questions to judge system utility, interface, and614

16In addition to the motivation discussed in the Introduction, see §Appendix A.13 for a more detailed example
scenario where medical researchers need to search for challenges and directions.
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search quality. Following [14], we use a standardized Post Study System Usability Questionnaire615

(PSSUQ) [21], widely used in system quality research, and added questions designed to evaluate616

search and exploration utility: overall search accuracy, results that are not only relevant but interesting617

or new, finding papers interesting to read, and ability to understand and judge each individual result618

quickly without additional context. Each question is asked twice, once for PubMed and once for our619

system, leading to 15×2×6 = 180 responses.620

Results. Table 5 shows the average Likert scores (normalized to [0%,100%]) across all questions and621

users for our system and PubMed. We group questions by three types for brevity. The results show622

that the medical experts strongly prefer our search engine to PubMed (overall average of 92% vs.623

59%, with non-normalized scores of 6.42 vs. 4.14). On average across all questions, the majority of624

the nine MDs assigned our system a higher score than PubMed, at an average rate of 85% per question.625

When considering ties, the average rate is 92%. We found that our system significantly outperformed626

PubMed across all questions (Wilcoxon signed rank test p-value is significant at 5.409×10−6). These627

results further resonate in light of the experts’ strong familiarity with PubMed and the bare-bones628

nature of our UI.629

A.10 Entity-based Indexing630

We employ the SciSpacy library [29] to extract entities using five different NER models: one trained631

on MedMentions [28] (a dataset with general mentions of UMLS [3] entities covering a wide range632

of concepts), and four trained on more specialized sources (CRAFT [1], JNLPBA [18], BC5CDR633

[23], BIONLP13CG [19]). Each entity is then automatically linked to a biomedical KB of MeSH634

(Medical Subject Headings) entities [24] using SciSpacy’s entity linking functionality that performs635

character-trigram matching on MeSH entity names and aliases. We filter for high-confidence linked636

entities,17 and for entities that appeared in at least 10 sentences, then selecting the top 30K unique637

entities to be indexed by our search engine. At search time, we match user queries to MeSH aliases638

with an autocomplete dropdown for users to select from as they type. After one entity is selected, the639

user can search for more from a narrower list of entities that co-occur with it.640

A.11 Search UI641

Figure 5 shows a screen capture of our search user interface.642

A.12 Expert queries643

Below are examples for our expert queries:644

• Find problems/limitations/flaws related to COVID-19 and each of (1) hospital infections, (2)645

diagnosis, (3) vaccines for children, (4) probiotics and the gastrointestinal tract.646

• Find directions/hypotheses/potential indications related to COVID-19 and each of (1) mechani-647

cal ventilators, (2) liver, (3) artificial intelligence, (4) drug repositioning.648

A.13 Medical Search Scenario649

In addition to the motivation discussed in the Introduction, we briefly discuss in more detail how a650

search engine for challenges and directions could help medical researchers when conducting literature651

reviews. Many research ideas come to MDs with a challenge they perceive during clinical care. If652

they are unable to find a solution to the problem based on prior experience, they then search for the653

available scientific literature for possible guidance. When no sufficient guidance is found, research654

projects are often commenced, starting with literature search which often involves understanding655

and mapping out associated challenges and directions to help with formulating research questions.656

Physicians and trainees still spend a significant amount of time doing this form of literature search657

for fine-tuning their research question. If such a process can be simplified with automation, it could658

potentially cut down the time and effort needed to formulate and narrow down research questions.659

17Using a threshold of 0.9.
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Figure 5: Screen capture of our search user interface.
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