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Abstract

Even when the mathematical model is known in many applications in computational
science and engineering, uncertainties are unavoidable. They are caused by initial
conditions, boundary conditions, and so on. As a result, repeated evaluations of a
costly model governed by partial differential equations (PDEs) are required, making
the computation prohibitively expensive. Recently, neural networks have been
used as fast alternatives for propagating and quantifying uncertainties. Notably,
a large amount of high-quality training data is required to train a reliable neural
networks-based emulator. Such ground truth data is frequently gathered in advance
by running the numerical solvers that these neural emulators are intended to replace.
But, if the underlying PDEs’ form is available, do we really need training data?
In this paper, we present a principled training framework derived from rigorous
and trustworthy scientific simulation schemes. Unlike traditional neural emulator
approaches, the proposed emulator does not necessitate the use of a classical
numerical solver to collect training data. Rather than emulating dynamics directly,
it emulates how a specific numerical solver solves PDEs. The numerical case study
demonstrates that the proposed emulator performed well in a variety of testing
scenarios.

1 Introduction

Machine learning (ML) is a component of artificial intelligence and a computational technology that
can be trained with data to augment or automate human skills. Across the science community, there
has been a surge in interest in developing ML-based frameworks for climate prediction [27, 33], drug
discovery [18, 44, 46], renewable energy development [17, 41], etc. However, if not well grounded,
most ML models are purely data-driven. One impediment to data-driven modeling is that existing
methods frequently do not meet the needs of scientific users. Consider the following:

Data Scarcity While ML has achieved remarkable success in data-rich applications, such as image
recognition and natural language processing, modeling natural phenomena remains challenging as
physical observations usually are limited and sparse. Worse yet, noiseless ground-truth data typically
are unknown, and benchmark data sets are not always available for many scientific problems [13, 48].
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Discontinuity Current ML achievements are heavily reliant on discretized data, such as images
of varying resolutions in computer vision. As a result, traditional model development has mainly
centered on learning mappings between finite-dimensional Euclidean spaces or finite sets. On the
other hand, most scientific application data are continuous. For example, air and water temperatures
constantly influence atmospheric circulation patterns [11, 32].

Model Interpretability Human-interpretable models are required for gaining new scientific in-
sights from data. However, modern ML models, particularly deep-learning-based models, are prone to
over-parameterization. As a result, these models are frequently criticized for being opaque. Although
important for scientific applications, interpreting these black box models remains challenging [34].

Attempts to answer these questions are commonly referred to as physics-informed machine learning
[19, 35, 49]. Here, we rigorously ground ML models using physical principles via trustworthy
scientific simulation procedures. This differs fundamentally from the existing body of research that
attempts to combine ML and domain sciences, e.g., by using domain-specific knowledge in ML
algorithms in simplistic ways, e.g., extended data loss. Specifically, this paper’s main contributions
are centered on answering the following two questions.

• "Can we use explicit knowledge exclusively to train the ML model if the governing equation
form is known but there are uncertainties in the initial condition, boundary conditions, or
others?" The proposed learning scheme enables the model to be trained without collecting
training data beforehand. The training is derived from off-the-shelf numerical schemes and
is performed in an on-the-fly learning mode.

• "How can we determine and validate that the physics of interest is properly captured by the
ML model?" We use Explainable AI tools to examine the trained model, such as comparing
the learned convolution filters with numerical integration coefficients.

2 Background and Related Work

In many scientific applications, it is reasonable to assume that the observed system follows a partial
differential equation (PDE). Here, we assume the underlying PDE form is known but contains
uncertainties in the initial condition, boundary conditions, or others. Without loss of generality,
we are interested in PDEs with a single time dimension t = [0, T ] and possibly multiple spatial
dimensions x = [x1, x2, . . . , xN ]

⊤ ∈ X. These can be written in the form

∂tu = F (t,x,u, ∂xu, ∂xxu, . . .)
u(0,x) = u0(x), B[u](t, x) = 0

(1)

where u : [0, T ]× X → Rn is the solution, with initial condition u0(x) at time t = 0 and boundary
conditions B[u](t, x) = 0 where x is on the boundary ∂x of the domain X. Specifically, the boundary
operator B includes Dirichlet boundary conditions, where BD[u] = u− bD for fixed function bD
and Neumann boundary conditions, where BN [u] = n⊤∂xu−bN with n denoting an outward facing
normal on ∂X.

The question now is how to solve Eq. (1). Section 2.1 examines current efforts from a numerical
simulation standpoint, while Section 2.2 reviews related work from an ML emulation standpoint.

2.1 Classic numerical simulation

The method of lines (MOL) is a common technique for solving PDEs stated in Eq. (1) [37]. It
chooses N nodes in X and uses algebraic approximations to replace the spatial derivatives in F at
these nodes. The discretization causes F to be approximated by F̂ , resulting in the following system
of ordinary differential equations (ODEs):

u̇(t) =

 u̇1(t)
...

u̇N (t)

 =


du(x1,t)

dt
...

du(xN ,t)
dt

 ≈

 F̂
(
x1,xN (1), u1, uN (1)

)
...

F̂
(
xN ,xN (N), uN , uN (N)

)
 ∈ RN (2)
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where N (i) is a collection of indices of neighboring nodes other than i that must be evaluated in
order to compute F̂ at xi and xN (i) and uN (i) are positions and states of nodes N (i). By doing
so, MOL separates space discretization from time evolution. F̂ can be formed in a variety of ways
by approximating spatial derivatives on the grid and the ODE u(t) = u(0) +

∫ t

0
u̇(τ)dτ for a fixed

location xi can be solved using standard ODE solvers. The following is a high-level overview of
classical techniques for performing spatial differentiation and temporal integration.

Spatial Differentiation Traditionally, F is approximated by discretizing the space using traditional
solvers such as finite difference methods (FDM) [43], finite volume methods (FVM) [22], and finite
element methods (FEM) [15]. To represent the domain X by a union of Nele mesh elements, a set
of mesh points are introduced separately in the various space directions. Once the mesh has been
established, it is common practice to fit a piecewise polynomial first and then use the derivatives of
the fitted polynomial at any new off-mesh point to obtain spatial differentiation information. In this
paper, we consider finite difference methods, where spatial derivative operators (e.g., ∂x) are replaced
with difference operators known as stencils in FDM. For example, ∂xuk

∣∣
xi

can be approximated by(
uk
i+1 − uk

i

)
/ (xi+1 − xi). In our proposed learning scheme, such numerical approximation will be

replaced by its deep learning counterpart, namely convolution filters.

Temporal Integration To numerically integrate Eq. (2), the domain is typically discretized by a
uniformly partitioned time mesh. Then, to approximate the exact solution at the mesh points, a time
integration scheme is chosen. In general, we have a time step ∆t and seek approximations, such as
the forward Euler method ui=1 = ui=0 +∆tF̂ (ui=0). The computational algorithm is then applied
iteratively for i = 1, 2, . . . , NK − 1 and solves the ODEs. We use autoregressive methods in our
proposed learning scheme, which share the same recursive philosophy as such a numerical temporal
integration scheme. A learnable neural surrogate function is used to approximate F .

2.2 Deep learning emulation

Deep learning based models have been used to learn dynamical systems and PDEs in recent years,
driven by the desire to reduce computational costs and/or learn new physical models. The variety of
problem settings and applications has resulted in a diverse set of neural PDE emulators. Here, we
review the current work on neural PDE emulators for the temporal PDEs stated in Eq. (1) from two
perspectives: Spatial Prediction and Temporal Projection.

Spatial Prediction Inspired by the great success in computer vision, many neural PDE emulators are
based on convolutional neural networks (CNN). Although CNN-based discrete learning can improve
training efficiency significantly, CNNs struggle to handle irregular geometries with unstructured
meshes and will require modifications and tuning for different resolutions and discretizations [2,
10, 20, 49]. Another approach is to train a fully-connected multilayer perceptron (MLP) to learn
continuous functions (e.g., physics-informed neural networks (PINNs)). However, these neural PDE
emulators are often instance-based and have limited generalizability. When applied to a new instance,
a new neural network must be trained. To address this issue, advanced PINN variants have recently
been proposed [19, 26, 31, 45]. In parallel, graph neural networks (GNNs) have shown excellent
performance in dealing with unstructured simulation meshes [30, 36, 38]. In this paper, we use a
GNN-based neural architecture to generate continuous spatial predictions [21, 24].

Temporal Projection Mapping from initial conditions to solutions at time t can be treated as an
input-output mapping that can be learned through supervised learning (e.g., PINNs) [19, 24, 31, 45].
It is, however, especially difficult if the goal is to generate long-term trajectories. Most models, on the
other hand, are next-step prediction models, which learn the next state u(t+ 1,x) in the trajectory
from the current one u(t,x) [3, 8, 30, 36]. Nonetheless, attempting to fit a standard ML model,
such as a recurrent neural network (RNN), directly on the long-time sequences causes the gradient
to explode [28, 39]. One treatment method is to use neural ODEs. The model is trained using a
continuous-time adjoint method, which necessitates numerical integration of the neural network used
to capture the system dynamics, making training prohibitively expensive [6, 16]. We attempt to
reformulate the training of a next-step prediction model in this paper. We use autoregressive methods
with a chosen ML model to predict the next step and then constrain the prediction to satisfy the
numerical integration schemes.
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3 Methodology

3.1 Autoregressive forward prediction

In this work, we are focused on developing a ML surrogate model that can efficiently predict the
given dynamical system for time-steps u1,u2, . . . ,uN for a given initial state realization u0 and a
set of boundary conditions. The forward prediction is performed in an autoregressive fashion. For
example, the input-output relationship of the proposed autoregressive model for prediction û at a
given time index tn+1 is written as follows:

ûn+1 = F̂ (un−k,un−k+1, . . . ,un) (3)

F̂ is our learnable neural emulator. It is a function of the k + 1 previous states. Many numerical
time integration algorithms, such as Runge-Kutta methods, suggest that a model is more stable when
the hyperparameter k, also known as the window size, is greater than 1. As a result, the forward
prediction problem, particularly the first few steps, can be reparameterized as:

û1 = F̂ (X1) , X1 = {u0,u0, . . . ,u0}
û2 = F̂ (X2) , X2 = {u1,u0, . . . ,u0}

. . .

ûi = F̂ (Xi) , Xi = {ui−1,ui−2, . . . ,ui−1−k}

(4)

Combining Eq. (3) and Eq. (4), the state variable prediction û at time tn can be written as:

ûn = (F̂ ◦ · · · ◦ F̂ )︸ ︷︷ ︸
n times

(X1) (5)

with ◦ denoting the composition operation. In comparison to the standard numerical time integration
method, F̂ is an easy-to-evaluate neural emulator. Once F̂ has been trained, we can make inferences
much faster. And the section that follows discusses how to train our neural emulator.

3.2 Random unrolling training

To train the network, we define the loss function as a sum of residuals at a sequence of time instances:

L(θ) := 1

Nt

Nt∑
i=1

(ui − ûi)
2 (6)

where θ denotes the learnable parameters of F̂ . In a departure from traditional data-driven deep
learning approaches, the proposed training does not require a classical numerical solver to collect
training data. Instead, we estimate the solution variable u on the fly using a pre-selected numerical
time-integrator. Specifically, we can (1) use F̂ to perform forward propagation and calculate ûi−1

and ûi; (2) compel ûi and ûi−1 to follow a time-stepping method and compute ui using ûi and
ûi−1; and (3) minimize the difference between the model’s predictions ûi and a discrete numerical
time-integrator’s estimation ui.

To better illustrate the central idea, let’s consider the standard forward Euler time integration scheme.
Given the prediction at time ti−1, the goal is to calculate the state variable at time t:

ui − ûi−1

∆t
= S∆x (x, ûi−1) (7)

where S∆x(·) contains the spatial differentiation information. Substituting Eq. (7) into the loss
function Eq. (6), we have
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L(θ) := 1

Nt

Nt∑
i=1

(ûi − ûi−1 −∆tS∆x (x, ûi−1))
2 (8)

From the standpoint of optimization, Eq. (8) is analogous to the L2 minimization of the discretized
PDE residual, where ûi is provided by our neural emulator and ûi−1, which represents the previous
state, is known. The only calculation left is for the spatial derivatives included in S∆x(·). Because
our emulator is a deep learning-based model, the spatial derivatives can be calculated using either
auto-differentiation or numerical approximation [14, 29]. In this paper, we will use the second
approach to speed the training up.

The emulator is trained by progressively incorporating loss terms estimated from different time
steps to stabilize the training and offer reliable long-term predictions. If the aim is to forecast the
dynamics for the next 20 steps u1, . . . ,u20 given the initial state u0, we will limit the model to
gradually explore the system and learn the dynamics by gradually unrolling the number of time steps
it predicts as training advances. We found that adding randomness to the unrolling number improves
performance. The unrolling number, in particular, can be regarded as a uniformly distributed random
number. We can also update the distribution, using a small number at first and allowing a larger
number later. For example, if Nt = 20, a random realization of the unrolling number can be [2, 1,
3, 2, 4, 3, 5], implying that we only back-propagate 2 time-steps in the first step. Fig. 1 graphically
demonstrates how the loss function is calculated.
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Numerical integration (Eq.(19))
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Loss function (Eq. (20))
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Figure 1: Knowledge synchronized training of the proposed autoregressive model.

4 Experiments

4.1 Experiment setup

PDEs To highlight the benefits of the knowledge synchronized training strategy, we demonstrate
its effectiveness on tasks of varying difficulty. PDEs considered in this paper can be written as

[
∂tu+ ∂x

(
αu2 − β∂xu

)]
(t, x) = f(t, x) (9)

We have the heat equation if α ̸= 0, β = 0, and the Burgers’ equation if α ̸= 0, β ̸= 0. Specifically,
the heat equation is used to validate the trained neural emulator’s synchronized physics, and the
Burgers’ equation is used to demonstrate its computational and prediction performance. Appendix A
contains detailed information on the set up of the PDEs.

Task The task is to emulate the underlying dynamics of the PDEs of interest (Eq. 9) using deep
neural networks without using any simulation data. To make the emulation applicable to deep learning
models, the continuous solution u is discretized in both the spatial and temporal domains, resulting
in U = {u0, u1, u2, . . . , uN}, where the initial state u0 is random and the solution at other time
instances must be inferred. As a result, we pose the emulation of a dynamical system as a forecasting
problem. In other words, rather than learning a single solution, we are interested in learning the set of
solutions for a distribution of random parameters, in our case, the random initial conditions.
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Models The proposed training strategy is not constrained by the architecture of neural networks.
Therefore, we experimented with two models: the standard convolutional neural network-based
model (ResNet) [12] and the state-of-the-art Fourier Neural Operator (FNO) network [24]. After
extensive hyperparameter optimization, we configure the two models as follows: (a) ResNet is a
27-layer residual convolutional neural network. The final dense layer is a convolutional layer with
one output channel for the heat equation example and two output channels for the Burgers’ equation
example. (b) FNO has four layers and two fully connected networks (FCN). The first FCN lifts the
dynamics from Rdin to R20, and the last FCN projects the dynamics from R20 to R or R2. Also, each
Fourier layer is parameterized with 12 truncated modes for the matrix-vector multiplication involved
in the kernel computation.

Training As discussed in section 3, emulating a numerical solver in solving a set of PDEs requires
two key components: spatial derivative computation and time integration. Numerically, the finite
difference can be used to approximate a derivative to an arbitrary order of accuracy for spatial
derivatives. Lagrange interpolation is commonly used to determine the finite difference coefficients
involved in the approximation. Here, we need to compute the first- and second-order derivatives
given the heat/Burgers’ equation. We use the Sobel and Laplace filters to approximate the first- and
second-order derivatives with second-order accuracy to emulate the finite difference approximation
[5, 42]. Next, we can quickly assemble the S∆x defined in Eq. 7 using calculated spatial derivatives.
The loss function can then be crafted using a predetermined time integration method (e.g., the forward
Euler scheme used in 8). Appendices B and C contain the detailed calculation procedures.

We generate Ntrain = 8192 training instances and another Ntest = 512 testing instances for all
experiments, where an instance denotes an initial condition. Note each experiment includes two
regions, namely, the training [0, 0.5] and the extrapolation (0.5, 1]. That is, Nt in Eq. 8 is 100, and
the trained model is used to predict the next 100 time steps. Overall, the dynamics are projected 200
steps in time by the emulator. An Adam variant called decoupled weight decay regularization [25] is
adopted as the optimizer with a weight decay λ = 0.0001. Both models are trained for 120 epochs
with an initial learning rate of 0.001 that decays by γ = 0.995 every epoch.

4.2 Prediction performance

Qualitative assessment We begin by providing a qualitative assessment of the prediction perfor-
mance. Fig. 2 shows the emulation results of a randomly chosen realization from the test dataset.
Obviously, the adopted FNO model outperforms the state-of-the-art ResNet model trained on the
same amount of initial condition realizations. In Fig. 2, it can be observed that both models are
able to provide satisfactory predictions in the predefined training time period. However, ResNet’s
performance degrades significantly in the extrapolation region. ResNet’s predictions deviate from the
ground truth, while the prediction results of FNO still can maintain relatively high accuracy. These
results reflect FNO’s superior ability to absorb underlying physical principles, which supports better
generalization of unknown scenarios [23, 30, 36].
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(a) Simulation and emulation results of u
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(b) Simulation and emulation results of v

Figure 2: Burgers’ equation emulation results. The first row in both subfigures shows the reference
dynamics, the second row shows the FNO emulation results, and the third row shows the ResNet
emulation results. Appendix 1 contains additional qualitative results for other PDEs.

Quantitative assessment Next, to quantitatively test the present scheme’s precision, the root-
mean-square errors (RMSEs) are reported. We tested 512 different samples of the fluid realizations.
Fig.3 (a) shows the mean and standard deviation of the calculated RMSEs. It is observed that
FNO outperforms ResNet by an order of magnitude when it comes to controlling error propagation.
Although both models’ accuracy decreases at a similar rate in the extrapolation region, the FNO model
has a significantly lower mean value of RMSEs, particularly in the training region. Furthermore, the
FNO model has a lower standard deviation than ResNet. This suggests that the FNO model is more
reliable and robust in emulating Burgers’ equation.

Computational efficiency Here, a study of the proposed model’s computational efficiency is
carried out. Two computation platforms are scheduled: (1) an Intel Xeon Processor E5-2698 v3
with a system memory of 187 GB and (2) a NVIDIA A100 GPU with 40 GB HBM2 memory.
The total computational cost is classified into two broad categories: training and testing. First, the
computational cost of DL-based emulators is compared against the standard numerical simulation.
The computation time for a single simulation/emulation of the 2D coupled Burgers’ equation on a
64× 64 spatial gridded domain is shown in Fig.3 (b). Utilizing the same CPU, the speedup of the
FNO model is approximately more than 100 times compared to the numerical solver for a single
run. More significant saving on the computational effort is achieved if inferences are made using the
GPU device. A speedup of three to four orders of magnitude is accomplished. These encouraging
results show the potential of using a DL-based emulator for problems involving massive queries of
the simulation model.

<latexit sha1_base64="KWh0RLJ0bw8em/x3PU2+HIlN2FQ=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2FXgnoMevEY0TwgWcLspDcZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mnGCfkQHkoecUWOlh3Jw3iuW3Io7B1klXkZKkKHeK351+zFLI5SGCap1x3MT40+oMpwJnBa6qcaEshEdYMdSSSPU/mR+6pScWaVPwljZkobM1d8TExppPY4C2xlRM9TL3kz8z+ukJrz2J1wmqUHJFovCVBATk9nfpM8VMiPGllCmuL2VsCFVlBmbTsGG4C2/vEqaFxXvslK9r5ZqN1kceTiBUyiDB1dQgzuoQwMYDOAZXuHNEc6L8+58LFpzTjZzDH/gfP4AjR6NVA==</latexit>

(b)
<latexit sha1_base64="2RRwxLXlY8TROIoM98j2WcOjpro=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2FXgnoMevEY0TwgWcLspDcZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mnGCfkQHkoecUWOlhzI97xVLbsWdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE177Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNi4p3WaneV0u1myyOPJzAKZTBgyuowR3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8Ai5mNUw==</latexit>

(a)

Figure 3: (a) Quantitative evaluation results of the Burgers’ equation; (b) Computation time for
different experiments. The time refers to the wall clock time for inferring one sample.
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4.3 Generalization performance

Out-of-distribution Prediction Fig.4 (a) shows the mean RMSE of the emulation results. While
both emulators are affected by out-of-distribution samples, the FNO model has lower errors. Notably,
it is observed that FNO outperforms the ResNet in controlling the error propagation approximately
by order of magnitude of 10. This effect gets more pronounced in the extrapolation region, where the
mean RMSEs of the ResNet model increase as the system evolves. This finding is consistent with the
intuitive expectation of using a surrogate model to forecast nonlinear dynamics. However, FNO is able
to stabilize, even reduce, the prediction error within the same time region. In the meantime, it should
be noted that FNO out-of-distribution prediction performance outperforms ResNet in-distribution
test performance. These findings suggest that the FNO model possesses superior generalization
performance than ResNet.

Super-resolution task We summarize the performance of the FNO and ResNet on super-resolution
prediction tasks to test the model’s ability to emulate a classic numerical solver [7]. The goal
is to evaluate the generalization ability of these two emulators on various discretization meshes.
ResNet and FNO are both trained on 64 × 64 meshes and tested at higher resolutions. Fig. 5
shows the results. Of note, the error is defined as the pixel-wise error averaged across all spatial
grids of a given time instance. The emulation results show that because convolution kernels are
spatial-agnostic and channel-specific, ResNet fails to provide accurate prediction if additional tuning
for different resolutions is not available [9]. When evaluated at a higher resolution, the proposed
FNO model, on the other hand, achieves consistent error. The promising results show that the FNO
has greater generalization potential as the model is tailored to learn operators mapping between
infinite-dimensional function spaces rather than standard finite-dimensional Euclidean spaces [36].
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(b)

Figure 4: Generalization performance: (a) the mean of root-mean-square errors of out-of-distribution
samples; (b) scaling performance on discretization from 64× 64 up to 512× 512.

4.4 Diagnosis of emulated physics

In order to diagnose the trained emulator and compare with the known physics, we employ one
feature importance approach [47] for post-hoc local explanations of the behaviors of the emulator.
This class of approach aims at highlighting the input features that contribute to the model prediction.
Specifically, DeepLIFT [40] is adopted to depict the heatmaps showing both the spatial and temporal
contributions to the prediction of an interested location. We demonstrate how the explanation works
using the example of heat equation with the fixed k = 3 and a focused location in the center.

As illustrated in Fig.5 (a), three heatmaps represent contributing regions at corresponding timesteps
ti−3, ti−2, and ti−1, where blue shows the positive contribution while red shows the negative
contribution. There are two observations about the spatial contributions: 1) the contributions decrease
from the focused location to its periphery; and 2) the blue/red colors form a interweaving pattern
that is consistent with the wave propagation. In Fig.5 (b), we aggregate the absolute values of the
contribution scores for each temporal input (blue, red, and green representing ti−3, ti−2, and ti−1

respectively) and plot for all the test timesteps (N = 100) so as to compare which temporal channel
has more impact to the prediction. We observe that the closer to the current timestep the more impact
it brings, which complies with the physical principles.

8



Figure 5: The (a) spatial and (b) temporal contributions of the input features.

5 Conclusion

In this work, we introduce a knowledge synchronized training strategy for building neural emulators
for PDEs. There is no need to collect simulation data via a typical numerical solver. Instead, we
cast the PDEs into a discretized form. The loss function is derived from variational principles. The
explicit goal is to minimize the difference between the model’s prediction and a pre-chosen numerical
scheme. This is implicitly analogous to the L2 minimization of the discretized PDE residual. The
numerical case study shows the proposed emulator performed well in various testing scenarios.
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A Numerical Examples

Heat equation In the first example, a time-dependent diffusion equation on a bounded 2D Cartesian
domain Ω = [0, L]× [0, L] is considered,

∂u

∂t
= α∇2u+ f in Ω× (0, T ]

u|t=0 = u0(x, y)
(10)

with boundary conditions ∂Ω,

u(0, y, t) = u(L, y, t)

u(x, 0, t) = u(x, L, t)
(11)

where α is the diffusion coefficient which will be held at α = 0.0003 and the domain size set to
L = 1 and t ∈ [0, 1]. For this problem we will use homogeneous Dirichlet boundary conditions, i.e.,
u = 0 on ∂Ω and assume no external source, i.e., f = 0.

Burgers’ equation The two-dimensional coupled viscous Burgers’ equation is the second example
we’ll look at

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=

1

Re

(
∂2u

∂x2
+

∂2u

∂y2

)
, (x, y, t) ∈ D × (0, T ],

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
=

1

Re

(
∂2v

∂x2
+

∂2v

∂y2

)
, (x, y, t) ∈ D × (0, T ],

(12)

subject to the initial conditions

u(x, y, 0) = u0(x, y), (x, y) ∈ D,

v(x, y, 0) = u0(x, y), (x, y) ∈ D,
(13)

and the boundary conditions

u(x, y, t) = f(x, y, t), (x, y, t) ∈ ∂D × (0, T ],

v(x, y, t) = g(x, y, t), (x, y, t) ∈ ∂D × (0, T ]
(14)

B Calculation of spatial derivatives

spatial derivatives included in S∆x(·) can be effectively estimated using either auto differentiation or
numerical approximation. In this paper, we will take the second approach. In particular, the Sobel and
Laplace filters are utilized to approximate the first- and second-order derivatives with second-order
accuracy [5, 42]

∂u

∂x
=

1

8∆x

[ −1 0 1
−2 0 2
−1 0 1

]
∗ u and

∂u

∂y
=

1

8∆y

[ −1 −2 −1
0 0 0
1 2 1

]
∗ u

∂2u

∂x2
=

1

2∆x2

[
1 0 1
0 −4 0
1 0 1

]
∗ u and

∂2u

∂y2
=

1

2∆y2

[
1 0 1
0 −4 0
1 0 1

]
∗ u

(15)

It is worth noting that filter size determines the computational efficiency and accuracy. Large filters, in
general, can approximate differential operators with higher approximation orders. On the other hand,
large filters have more memory overhead and a higher computation cost. In practice, the trade-off
must be balanced [4].
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C Calculation of time integration

θ-Rule For the heat equation, we used the θ-rule for time discretization. The key feature of θ-rule
time discretization scheme is that we can use one formula to generate a family of well-known. For
example, the Forward Euler scheme, Backward Euler scheme, and Crank-Nicolson scheme are
denoted by θ = 0, θ = 1, and θ = 1/2, respectively. On the other hand, standard second-order
accurate finite differences are used to compute the spatial derivatives. As a result, Eq. 10 can be
written as:

un+1
i,j − un

i,j

∆t
=θ

(
α

(
un+1
i−1,j − 2n+1

i,j + un+1
i+1,j

∆x2
+

un+1
i,j−1 − 2n+1

i,j + un+1
i,j+1

∆y2

)
+ fn+1

i,j

)
+

(1− θ)

(
α

(
un
i−1,j − 2ni,j + un

i+1,j

∆x2
+

un
i,j−1 − 2ni,j + un

i,j+1

∆y2

)
+ fn

i,j

) (16)

Collecting the unknowns on the left-hand side, we have

un+1
i,j − θ

(
Fx

(
un+1
i−1,j − 2n+1

i,j + un+1
i,j

)
+ Fy

(
un+1
i,j−1 − 2n+1

i,j + un+1
i,j+1

))
=

(1− θ)
(
Fx

(
un
i−1,j − 2ni,j + un

i,j

)
+ Fy

(
un
i,j−1 − 2ni,j + un

i,j+1

))
+ θ∆tfn+1

i,j + (1− θ)∆tfn
i,j + un

i,j

(17)

where

Fx =
α∆t

∆x2
, Fy =

α∆t

∆y2
(18)

Fx and Fy are the Fourier numbers in x and y direction, respectively. To initialize the problem, we
set ∆x = ∆y = 1/64 and ∆t = 0.01.

Crank–Nicolson method To construct a numerical solution for the Burgers’ equation, consider
Eq. 12 on a bounded two-dimensional (2D) Cartesian domain Ω = [0, Lx]× [0, Ly], where

0 = x0 < x1, . . . , xnx−1 < xnx = Lx, xi+1 − xi = ∆x,

0 = y0 < y1, . . . , yny−1 < yny
= Ly, yj+1 − yj = ∆y,

0 = t0 < t1, . . . , tnt−1 < tnt
= T, tn+1 − tn = ∆t,

(19)

Let nodal points un
i,j and vni,j be the discrete approximation of u and v at the grid point

(i∆x, j∆y, n∆t), respectively. Because the Burgers’ equations are time-dependent, a robust and
precise numerical approach for temporal discretization is required. Compared to the explicit Euler
method, the Crank-Nicolson finite-difference method that allows for the relaxation of strict con-
straints on the number of time steps and provides more accurate solutions is used. By applying
Crank–Nicolson scheme to Eq. 12, we get

un+1
i,j − un

i,j

∆t
+

1

2

[
un+1
i,j

(
un+1
i+1,j − un+1

i−1,j

2∆x

)
+ un

i,j

(
un
i+1,j − un

i−1,j

2∆x

)]

+
1

2

[
vn+1
i,j

(
un+1
i,j+1 − un+1

i,j−1

2∆y

)
+ vni,j

(
un
i,j+1 − un

i,j−1

2∆y

)]

− 1

Re

[
1

2

{(
un+1
i+1,j − 2un+1

i,j + un+1
i−1,j

(∆x)2

)
+

(
un
i+1,j − 2un

i,j + un
i−1,j

(∆x)2

)}

+
1

2

{(
un+1
i,j+1 − 2un+1

i,j + un+1
i,j−1

(∆y)2
+

(
un
i,j+1 − 2un

i,j + un
i,j−1

(∆y)2

)}]
= 0

(20)
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and

vn+1
i,j − vni,j

∆t
+

1

2

[
un+1
i,j

(
vn+1
i+1,j − vn+1

i−1,j

2∆x

)
+ un

i,j

(
vni+1,j − vni−1,j

2∆x

)]

+
1

2

[
vn+1
i,j

(
vn+1
i,j+1 − vn+1

i,j−1

2∆y

)
+ vni,j

(
vni,j+1 − vni,j−1

2∆y

)]

− 1

Re

[
1

2

{(
vn+1
i+1,j − 2vn+1

i,j + vn+1
i−1,j

(∆x)2

)
+

(
vni+1,j − 2vni,j + vni−1,j

(∆x)2

)}

+
1

2

{(
vn+1
i,j+1 − 2vn+1

i,j + vn+1
i,j−1

(∆y)2
+

(
vni,j+1 − 2vni,j + vni,j−1

(∆y)2

)}]
= 0

(21)

The truncation error of the adopted numerical scheme using the Taylor series expansion is of order
O((∆x)2 + (∆y)2 + (∆t)2).

D Qualitative emulation performance

We begin by applying the heat equation to the diffusion of a Gaussian hill. The initial value is set to

u0(x, y) = e−a(x−ϵ1)
2−a(y−ϵ2)

2

(22)

for a = 1 on the domain [0, 1]× [0, 1]. For this problem we will use homogeneous Dirichlet boundary
conditions uD = 0. ϵ1 and ϵ2 are random variables generated from a normal distribution. A numerical
solver generates the ground truth data. To solve time-dependent PDEs using the finite element method,
first discretize the time derivative using a finite difference approximation, yielding a sequence of
stationary problems, and then convert each stationary problem into a variational formulation. Fig. 6
shows the prediction results from the FNO and ResNet. ResNet with a hierarchical convolution layer
provides better error distribution because the diffusion process can be very local, but FNO performs
better in terms of magnitude.
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(b)

Figure 6: Heat equation: Gaussian hill (a) FNO and (b) ResNet.

To investigate the capabilities of FNO and ResNet further, we change the initial condition to a uniform
distribution. Fig.7 shows the emulation results. The first row displays the predicted dynamics of the
emulator, the second row displays the results of numerical simulation, and the third row displays the
absolute error between numerical simulation and deep learning emulation. The results clearly show
that FNO outperforms ResNet in simulating the diffusion process. For FNO, the error is smaller and
grows gradually over time, whereas for ResNet, the error jumps to a higher range and stabilizes in
most regions.
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(b)

Figure 7: Heat equation: uniform distribution (a) FNO and (b) ResNet.

Fig.8 shows the FNO’s prediction results of a randomly chosen realization from the Burgers’ equation
test dataset. The target velocity field was obtained by FEniCS [1], an open-source library for finite
element simulations. The emulator was trained on 8192 realizations. To evaluate the results, the
absolute error between the target and prediction is calculated and presented in the third column of two
subfigures. Overall, the FNO model accurately predict the complex fluid structures. The predictions
of FNO match the reference values well in all time instances.
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(b)

Figure 8: Comparisons of FNO emulation to the FEM simulation for a randomly chosen test example.
Figure (a) and (b) summarize the x and y-velocity results, respectively.
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Furthermore, the proposed FNO model outperforms the state-of-the-art ResNet model trained on the
same amount of fluid realizations. In Fig.9, it can be observed that both models are able to provide
satisfactory predictions in the predefined training time period, namely, t ∈ [0, 0.5]. However, the
performance of ResNet degrades significantly in the extrapolation region, that is, t ∈ (0.5, 1]. The
ResNet’s predictions deviate from the ground truth while the prediction results of FNO can still
maintain relatively high accuracy. Such comparison results reflect FNO’s superior ability to absorb
underlying physical principles, which supports a better generalization of unknown scenarios.
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Figure 9: Prediction results of FNO and ResNet for (a) x and (b) y-velocity fields at time instances of
0.25 and 0.75.

E Quantitative emulation performance

Additionally, the quality of the ResNet/FNO predictions are quantitatively evaluated based on the
following relative error metric:

Err (upred , utrue) =
∥upred − utrue ∥2

∥utrue ∥2
(23)

and the coefficient of determination, also known as the R2 score, which is defined as:

R2 = 1−
∑4096

k=1

(
uk
pred − uk

true

)2
∑4096

k=1

(
uk

true − ūk
true
)2 (24)

where ūtrue is the mean of uk
true . The 500 test realizations are statistically analyzed using these two

metrics. Table 1 shows the mean and variance of the calculated relative L2 error and R2 score. Again,
the FNO model produces a far less relative L2 error than the ResNet model. Also, the R2 score of the
FNO model is closer to 1 than the ResNet model. All of these findings indicate that the predicted
velocity fields from the FNO match the references better than those from the ResNet.
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Table 1: Relative error and R2 score of test samples.

F Computational efficiency

Because the proposed FNO model is mesh-free, greater predictive efficiency is expected when applied
to a more refined spatial discretization. To verify this, we further carried out the quanti- tatively
analysis on resolutions of 128 × 128, 256 × 256, and 512 × 512. Note the ground truth solver
(FEniCS) does not fully support GPUs and has varying options of linear solver and pre- conditioner,
for example, conjugate gradient method vs. generalized minimal residual method. Interest here was
to provide a hardware-specific performance comparison. The computation time of both FEM-based
and FNO-based simulations is shown in Fig.10 (a). Compared to the classical FEM-based solver, the
proposed FNO-based emulator scales very well. Evaluating our model on the same CPU hardware can
still achieve speedups between 100x-4570x. Users with access to a GPU could further benefit from
an approximate speedup of 60x. Meanwhile, we investigated FNO and ResNet scaling performance,
which is defined as a function of the number of initial conditions generated for training. Fig.10 (b)
depicts the results.
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(b)

Figure 10: Computational cost: (a) computation time for different resolutions. The time refers to the
wall clock time for inferring one sample. (b) cost as a function of samples.

G Out-of-distribution prediction

For the Burgers’ equation, randomness is introduced to the initial conditions to better model the target
system’s stochastic nature, for instance, the presumed chaos in turbulence. Because Fourier series
has been applied to approximate the physical turbulence in many studies, we formalize the random
initial states using a truncated Fourier series with random coefficients a, b, and c ∈ R2

w(x, y) =

Ni∑
i=−Ni

Nj∑
j=−Nj

aij sin(2π(ix+ jy)) + bij cos(2π(ix+ jy))

u(x, y, 0) =
2w(x, y)

max{x,y} w(x, y)
+ c

(25)

Originally, random coefficients are defined as:
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aij , bij ∼ N (0, I2) , c ∼ U(−1, 1) ∈ R2, Ni = Nj = 4 (26)

Here, we investigate the emulators’ generalization performance to out-of-distribution initial conditions.
We take the emulators trained on random inputs defined in Eq. 25 and test them on new input
distributions:

aij , bij ∼ U(0, 1) ∈ R2, c ∼ U(−1, 1) ∈ R2, Ni = Nj = 4 (27)

Fig.11 depicts samples generated from the training distribution as well as the unknown testing
distribution. It can be clearly seen that the newly generated initial conditions are very different from
those used in model training.
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Figure 11: Initial conditions: (a) in-distribution samples; (b) out-of-distribution samples

Similar to Fig.4 (a), the error propagation process is presented in Fig.12. Overall, the FNO model has
better generalization than the ResNet model. It generalizes well to new initial conditions, which is
completely different from the training realizations. Though the accuracy of both models decreases
at a very much similar rate in the extrapolation region, the FNO model has a significantly lower
prediction error, particularly in the training region. This indicates that the FNO model has strong
flexibility and robustness when emulating high-dimensional advection systems with strongly nonlinear
characteristics.
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(b) Emulation results of v

Figure 12: Quantitative evaluation results of the Burgers’ equation.

Note each prediction experiment includes two regions, namely, the training [0, 0.5] and the extrap-
olation (0.5, 1]. Fig.12 shows the prediction performance for a randomly chosen realization with
time index specified to 0.25 for training and 0.75 for extrapolation. It is found that the predictions of
FNO are almost unaffected by the out-of-distribution samples, while the ResNet model is seriously
deteriorated and produces worse predictions, especially in the extrapolation region. Also, the error
contour of the ResNet model shows the bulk of errors are clustered on the leading face of the waves,
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which is specifically where the extreme values are located. However, the errors of the FNO predictions
are relatively small and evenly distributed, and there is no clear high-error area in the predictions.
Such findings indicate that the FNO model possesses superior robustness to ResNet.
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Figure 13: Predictions of the (a) x-velocity and (b) y-velocity of the selected out-of-distribution
sample.

H Super resolution prediction

Here, we summarize the performance of the aforementioned two models on super-resolution pre-
diction tasks. The purpose of this assessment is to demonstrate the unique ability of the proposed
FNO model, that is, to generate continuous spatiotemporal solutions. Unlike many convolutional
neural networks (CNNs) based approaches, which learn an end-to-end mapping between the low/high-
resolution images, the FNO model is trained only with low-resolution data. Due to the inherent
properties of convolution kernels, namely, spatial-agnostic and channel-specific, the ResNet fails to
provide accurate prediction if additional tuning for different resolutions is not available. On the other
hand, the proposed FNO model achieves consistent error when evaluated at a higher resolution. It is
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(b)

Figure 14: Scaling performance on super-resolution prediction tasks from 64× 64 up to 512× 512.
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worth mentioning that the error is defined as the pixel-wise error, averaging over both the spatial and
the temporal domain. The encouraging results (Fig.14) show great promise of the proposed model for
fast emulating high-dimensional spatiotemporal dynamics.

I Notes on data saturation

Because we make direct use of the physics principles, i.e., governing equations in our case, both
ResNet and FNO do not require a classical numerical solver such as a finite element simulator
to generate data for training. Instead, the proposed knowledge synchronized learning framework
begins with the initial conditions of the problem, which can be easily generated from a predefined
distribution. Intuitively, one would expect the emulation quality of the model to improve when the
number of the initial conditions increases. We can, in theory, generate infinite initial conditions and
push the model to obey the constraints of the problem on all of them. However, we have to find a
suitable number in practice considering constraints posed by the available time and computational
resources. Viewing from the model capacity, another point worth mentioning is that the model may
saturate rather than continuing to draw physics from the data. To verify this concern, the emulator
was trained using sample sets with 256, 512, 1024, 2048, 4096, 8192, 16384, and 32768 realizations.

Fig.15 shows the computed results evaluated on a test set of 512 realizations. For both models, the
error decreases as the amount of training data increases, indicating additional data is contributing
to training. The improvement brought by the data is more evident at the beginning, where a small
amount of information is used (e.g., 512 vs. 1024). Though the data size keeps increasing by a factor
of 2, the performance enhancement slows down. In the case in which 32768 samples were utilized
for training, the performance is almost the same and partially worse than the case where 16384
samples were used, implying the model may reach a saturation state. Also, it should be addressed
that the FNO model can achieve the same accuracy using fewer data samples. After training of 120
epochs, the prediction performance measured by the mean MSE of different models shows apparent
differences. The FNO model offers a more compelling ability to embedding physics to learn the
underlying spatiotemporal dynamics.
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(b)

Figure 15: Predictions of the (a) x-velocity and (b) y-velocity of the selected out-of-distribution
sample.
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