
Information Processing and Management 59 (2022) 102987

A
0

I
w
D
A
a

b

c

A

K
S
S
S
H
D

1

i

(

h
R

Contents lists available at ScienceDirect

Information Processing and Management

journal homepage: www.elsevier.com/locate/ipm

mproved sales time series predictions using deep neural networks
ith spatiotemporal dynamic pattern acquisition mechanism

aifeng Li a,∗, Kaixin Lin a, Xuting Li a, Jianbin Liao a, Ruo Du b, Dingquan Chen a,
ndrew Madden c

School of Information Management, Sun Yat-Sen University, Guangzhou, China
Galanz Inc., Shenzhen, China
Information School, University of Sheffield, Sheffield, UK

R T I C L E I N F O

eywords:
ales prediction
patiotemporal dynamic kernel
imultaneous regression
ierarchical attention
ynamic detection and alignment

A B S T R A C T

The ability to predict product sales is invaluable for improving many of the routine decisions
essential for the running of an enterprise. One significant challenge of sales prediction is that it
is hard to dynamically capture changing dependent patterns along the sales time line, because
sales are often influenced by complicated and changeable market environment. To address this
issue, we model sales prediction as a task of multivariate time series (MTS) prediction, and
propose a Spatiotemporal Dynamic Pattern Acquisition Mechanism (SDPA), which comprises
four components, described below: (1) In the processing of input data: A Spatiotemporal
Dynamic Kernel (SDK) component is designed for MTS to effectively capture different dependent
correlation patterns during different time periods. (2) In terms of model design: A Simultaneous
Regression (SR) component is proposed to dynamically detect stable correlations by using co-
integration based dynamic programming over different time periods. (3) A novel Hierarchical
Attention (HA) component is designed to incorporate SDK to detect spatiotemporal attention
patterns from the captured dynamic correlations. (4) In the design of loss function, A Change
Sensitive and Alignment component (DC) is proposed to provide more future information based
on future trend correlations for better model training. The four components are incorporated
into a unified framework by considering Homovariance Uncertainty (HU). This is referred to as
SDPANet and contributes to model training and sales prediction. Extensive experiments were
conducted on two real-world datasets: Galanz and Cainiao, and experimental results show that
the proposed method achieves statistically significant improvements compared to the most state-
of-the-art baselines, with average 41.5% reduction on RMAE, average 39.5% reduction on RRSE
and average 46% improvement on CORR. Experiments are also conducted on two new datasets,
which are Traffic and Exchange-Rate from other fields, to further verify the effectiveness of the
proposed model. Case studies show that the model is capable of capturing dynamic changing
patterns and of predicting future sales trends with greater accuracy.

. Introduction

The prediction of product sales is an important task for enterprises. Consequently, it has been widely studied in both academia and
ndustry (Ekambaram et al., 2020; Shi et al., 2021). Accurate forecasts of sales can improve revenues by, for example, streamlining

∗ Corresponding author.
E-mail addresses: lidaifeng@mail.sysu.edu.cn (D. Li), linkx5@mail2.sysu.edu.cn (K. Lin), ruodu56@hotmail.com (R. Du), chendq@mail.sysu.edu.cn

D. Chen).
vailable online 14 June 2022
306-4573/© 2022 Elsevier Ltd. All rights reserved.

ttps://doi.org/10.1016/j.ipm.2022.102987
eceived 8 January 2022; Received in revised form 20 May 2022; Accepted 22 May 2022

http://www.elsevier.com/locate/ipm
http://www.elsevier.com/locate/ipm
mailto:lidaifeng@mail.sysu.edu.cn
mailto:linkx5@mail2.sysu.edu.cn
mailto:ruodu56@hotmail.com
mailto:chendq@mail.sysu.edu.cn
https://doi.org/10.1016/j.ipm.2022.102987
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipm.2022.102987&domain=pdf
https://doi.org/10.1016/j.ipm.2022.102987

Information Processing and Management 59 (2022) 102987D. Li et al.

t
f
2
m
o
i
f
l
e
t
S
o
B
p

e
s

a
f
o

s
a
p
i
o
r
c
F
p
p
r
f
a
p
b
t
d

inventory management. A key challenge of product sales forecasting is to develop models capable of effectively capturing the
complex, non-linear dependencies, not only between time steps but also between a variety of variables (Das & Ghosh, 2017; Shi
et al., 2020a; Tang et al., 2020). This could be regarded as a multivariate time series forecasting problem. Examples of relevant
dependencies include the arrival of similar products, new promotion strategies from competitors, the impact of the timing of
promotions, etc. Traditional time series foresting methods, such as vector auto-regression (VAR) (Box, Jenkins, Reinsel, & Ljung,
2015) and Gaussian process (GP) (Roberts et al., 2019), usually assume certain distributions, and ignore dependencies between
variables (Nguyen et al., 2020).

In recent years, using Deep Neural Network (DNN) for multivariate time series (MTS) predictions has been successfully used
o predict financial trends, analyze traffic jams, and forecast electricity consumption. DNN have advantages arising from their
lexibility in capturing non-linearity. One widely-used approach is to use a Recurrent Neural Network (RNN) (Dasgupta & Osogami,
017; Lai, Chang, Yang, & Liu, 2018). Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997) combining attention
echanisms (Vaswani et al., 2017) can further improve the capability of RNNs to help model temporal patterns between fragments

f input time series (Fan et al., 2019; Gao, Kong, Lu, Bai, & Yang, 2018; Huang, Wang, Wu, & Tang, 2019). Modeling a mixture of
nfluences of correlation patterns (Gao et al., 2018; Qin et al., 2017; Ye, Luo, Xiao, & Ma, 2020), for which traditional approaches may
ail, is an important research direction for MTS forecasting. The approach uses a Convolutional Neural Network (CNN) to capture
ocal correlations between different time series. It then applies LSTM/GRU to model long and short-term temporal patterns (Lai
t al., 2018). Other technologies that have performed well include transformer (Lim, Ark, Loeff, & Pfister, 2021; Zhou et al., 2021a),
ensor decomposition (Shi et al., 2020a), adversarial training (Tang et al., 2020), extreme value prediction (Laptev, Yosinski, Li, &
myl, 2017), and explainable time series prediction (Oreshkin, Carpov, Chapados, & Bengio, 2019). The deep learning model not
nly takes into account the advanced nature of the model but also combines some practical application scenarios. For example,
HT-ARIMA (Shi et al., 2020b) is designed based on deep learning and tensor decomposition for predicting the sales of mobile
hones and laptops.

However, existing deep neural network-based research seldom considers the changing dynamic correlations along the timeline,
specially in the area of sales predictions. Fig. 1(a) indicates that there exists complex non-linear correlations between sales time
eries. A sales MTS contains 5 variables (X1∼X5). Each red rectangle (TW1, TW2 and TW3) represents a time window. In TW1, the

sales of X1∼X5 are very close, while in TW2 and TW3, changes in the external environment cause sales of same variables (X1, X3
in TW2; X1, X3 and X4 in TW3) to increase significantly. The weight-sharing strategy used by traditional CNN does not properly
reflect the dynamic external changes, because it uses the same kernel to extract dependent correlations. A practical solution is to
use dynamic weights to reflect different external environments. Dynamic convolution (Chen et al., 2020; Hu, Shen et al., 2020) is a
feasible solution. However, current research of dynamic kernel is mainly applied in Computer Vision (CV) domain and focuses on
detecting correlations between different kernels or channels to extract rich semantic information from images. Different from the
existing researches, we mainly focus on investigating how to capture dynamic correlations for each element of MTS from a more
microscopic perspective, because an element or ‘‘cell’’ in MTS represents specific product sales at a certain time point and is essential
important for MTS prediction. The idea of dynamic kernel could be considered as a more dynamic and flexible parameter assignment
in a larger parameter space. Many researches in deep learning have shown a larger parameter space strengthens generalization
capability, because the model has more parameter selection space in which to fit the complex nonlinear patterns (Cen et al., 2019;
Liang, Li, & Madden, 2020).

Fig. 1(b) shows that there exists dynamic linear correlations between sales time series. For the sales MTS with 4 time series
𝑋1∼𝑋4, the red rectangle shows that 𝑋1, 𝑋2 and 𝑋3 have stable linear correlations, which may not be detected using existing deep
neural network-based methods; and the learned information at time step 7 from 𝑋4 may adversely affect future predictions of 𝑋1, 𝑋2
nd 𝑋3. We have observed that there are a lot of dynamic linear relationships hidden in the sales MTS, because product sales usually
ollow some general market rules in the case of less external interference. However, these linear correlations change dynamically
ver time, so how to effectively detect the linear correlations from MTS is still a challenging research subject.

Fig. 1(c) shows an example of sales prediction using MLCNN (Cheng, Huang, & Zheng, 2020) by adopting L1-loss. Researches
uch as MLCNN consider that, modeling the dependent correlations between the values of future times (ex. 𝑡+1, 𝑡+2, …) will provide
significant positive contribution to time series predictions. Though the accumulated MAE of the two selected sales time series for
redicting sales from time 25 to 26 are not big (Accumulated MAE is 93 in upper sub-graph and is 137 in lower sub-graph), CORR
s relatively small. The reason is that L1-loss only focuses on the overall deviations between the predicted and the true values based
n their corresponding future time points, and cannot accurately capture the future trends of target time series. As introduced in
elated studies (Cheng et al., 2020; Li, Xu, Taylor, Studer, & Tom, 2018; Yu, Jiang, Wang, Cao, & Huang, 2016), if the loss function
annot consider the various causes of loss more comprehensively, the model may not make proper use of the captured patterns.
or example, for the task of object identification in CV domain, the model should locate the four vertices of the object area. The
redicted area will deviate from the actual area if we do not consider the correlations between these vertices. Thus an IoU loss is
roposed to more accurately align the predicted and true areas (Yu et al., 2016). Similarly, in the task of MTS prediction, existing
esearches usually adopt L1 or L2-loss. Therefore, the methods cannot make proper use of future dependent correlations to predict
uture trends (ex. Sales predictions are very accurate at some times, but there are large deviations at other times). As seen in Fig. 1(c):
ccording to Dynamic Time Warping (DTW) (Sakoe & ChibaLim, 1990), the values at time period 23∼25 of true sales and at time
eriod 23∼26 of predicted sales have similar patterns of upward trends. Traditional loss functions may fail to capture these patterns
ecause the time length of the two future time series (23∼25 vs 23∼26) is inconsistent, and there is a position deviation between
he peaks (The peak of the true sales is at 25, the peak of the predicted sales is at time 26). In summary, due to the existence of
2

eformation, the idea of IoU loss cannot be directly used in sales prediction. The main challenge is that we do not know which part

Information Processing and Management 59 (2022) 102987D. Li et al.
Fig. 1. Examples of main challenging research subjects in sales predictions.

of the predicted and true sales should be aligned. Thus, we need to design a new loss function to find parts with similar patterns,
and make better use of future dependent correlations for model training and sales predictions.

The above three challenges are particularly significant in sales time series prediction, which can be considered as specific
characteristics of sales time series. Because sales time series are more susceptible to external uncertainties, which will change the
inner-correlations between sales time series dynamically. External uncertainties are caused by influential factors that cannot be
determined or observed in advance. External uncertainties would include temporarily decided regional promotion activities, the
listing of new competitive products, etc. Earlier research considered that MTS could use patterns of commonness, or difference
between time series, to reflect the impact of external changes on the predicted value (Cheng et al., 2020; Lai et al., 2018; Qin et al.,
2017). However, a key premise when making a judgment on the future is that we can obtain sufficient meaningful linear and non-
linear patterns from historical data. This is easier to achieve with some time series than others. For example, Traffic data has easily
identifiable periodic characteristics; Exchange-Rate time series are strongly correlated with each other, with the correlations being
less affected by external uncertainties. By contrast, the dynamic changing correlations of sales time series make them particularly
difficult to model. In this research, a novel Spatiotemporal Dynamic Pattern Acquisition (SDPANet) model is proposed to address
the challenges mentioned above. The main innovations of the model are summarized as below:

• The proposed Spatiotemporal Dynamic Pattern Acquisition (SDPA) mechanism incorporates four novel components into a
unified framework. This helps to capture changing correlation patterns in multivariate sales time series, and improves the
accuracy of sales predictions.

• A novel Spatiotemporal Dynamic Kernel (SDK) component is proposed for better capturing dynamic correlation patterns.
Unlike previous studies are mainly applied in Computer Vision (CV) domain, this designs a spatiotemporal weight matrix
for each element of time point in MTS. The output of SDK can be fed into a Hierarchical Attention (HA) component to detect
spatiotemporal attention patterns.

• Simultaneous Regression (SR) component uses a co-integration test based dynamic programming algorithm to detect local
stable linear correlations in a time window scanned along the timeline. This helps to overcome one of the limitations of
existing Deep Neural Network, that the scale of outputs is not linear sensitive to the scale of inputs. Different from existing
auto regression (AR) solution, SR mainly focuses on detecting plenty of dynamic linear correlations between time series from
MTS.

• A Dynamic Change Detection and Alignment (DC) component is proposed to provide more future information based on future
trend correlations for the model training to capture useful correlation patterns, and it can further adjust the prediction value
for more accurate future trend predictions based on the captured correlation patterns.

Codes and experimental datasets are available at: https://github.com/inksyy/SDPANet

2. Related work

2.1. Product sales prediction

The accurate prediction of product sales is clearly of value to enterprises. It can, for example, help decision makers to optimize
inventory management. Resulting in considerable savings, meanwhile, realize ‘‘competition for customers’ time’’ (Shen, Yuan, Wu,
& Pei, 2018). Traditional sales time series predictions are based on auto-regressive integrated moving averages (ARIMA), which
detect correlations in linear stationary time series (Gao et al., 2018; Lai et al., 2018). For example, Box et al. (2015) analyzed the
results of tests for unit root non-stationarity in ARIMA processes. They modeled the state space representation of ARMA models and
discussed its use for likelihood estimation and forecasting. Methods based on traditional machine learning rely mainly on ARIMA,
3

https://github.com/inksyy/SDPANet

Information Processing and Management 59 (2022) 102987D. Li et al.

p
w
m
a
b
w
A
s

2

i
f
G
a
m
t
a
d
a
p
(
f
e

l
h
s
Y
D
n
i
f

c
h
t

3

3

t

Vector Auto Regression, Support Vector Machines (SVM) (Mellit, Pavan, & Benghanem, 2013), Factorization Machines (FM) (Chen,
Liu, Zheng, & Yu, 2018), etc. Shen et al. (2018) incorporated popular machine learning models such as ARIMA, Xgboost, SVM,
Gaussian Process etc, into a unified ensemble model to forecast product sales for JD.com, one of the largest e-commerce companies
in China. Bello-Orgaz et al. (2020) used classical unsupervised machine learning techniques, such as temporal clustering and hidden
Markov models, to extract collective temporal behavior patterns of the dynamics of customers over time.

In recent years, deep neural network-based methods have been used to improve sales predictions based on time series
redictions, Fan et al. (2019) proposed a novel data-driven model to explicitly learn constructing hidden patterns’ representations
ith deep neural networks and attending to different parts of the history for forecasting the future. Shi et al. (2020a) incorporated
ulti-way delay embedding transform (MDT) tensors and tensor ARIMA into a unified framework to capture the intrinsic correlations

mong multiple time series. They used their model to predict sales of HUAWEI computers. Ekambaram et al. (2020) applied attention
ased multi-modal time-series forecasting to new products in a dataset from a famous fashion house. All the multiple time-series
ere modeled together based on product images and optional attributes. Kaya, Yılmaz, Yaslan, Öğüdücü, and Çıngı (2021) adopted
ttention-LSTM to realize tourism demand forecasting, the use of NN embedding and K-means algorithms for feature processing can
ignificantly improve model performance.

.2. Deep Neural Network based MTS predictions

Deep Neural Networks (DNNs) have attracted increasing attention in the field of multivariate time series (MTS) forecasting,
ncluding prediction of financial trends, analysis of traffic flows, and forecasts of electricity consumption. One popular learning
ramework using DNN based methods is CNN-LSTM/GRU. LSTNET, for example, models long–short term patterns based on a CNN-
RU framework. To do so, it uses a recurrent-skip component to model long-term temporal patterns which can be controlled by
ssigning parameter 𝑝 (Lai et al., 2018). Dual-Stage Attention-Based Recurrent Neural Nets (DA-RNN) (Qin et al., 2017) can also
odel long-term temporal patterns based on Multivariate Time Series. However, they are thought not to give sufficient consideration

o spatial correlations among different components of exogenous data. Dual Self-Attention Network (DSANET) (Huang et al., 2019)
dopts CNN to model global and local temporal patterns, and uses a self-attention mechanism to extract sequence features. MTNet
esigns a memory component, and incorporates it with three separate encoders and an auto-regressive component; it then trains
ll the components jointly. MLCNN (Cheng et al., 2020) provides a near and distant fusion vision method, to improve predictive
erformance by adopting a multi-task learning framework and fusing forecasting information. Spectral time Graph Neural Network
StemGNN) (Cao et al., 2020) combines Graph Fourier Transform (GFT) and Discrete Fourier Transform (DFT) into an end-to-end
ramework. After passing the input data through GFT and DFT, the spectral representations hold clear patterns and can be predicted
ffectively by convolution and sequential learning modules.

The research of Deep Neural Network based time series prediction is also applied in many areas. For example, Christopher West-
and, Mou, and Yin (2019) designed a deep learning model with tuned hyper-parameters to better understand customers’ unique
abitual behaviors and predict their behaviors in bicycle sharing. Li, Wu, and Wang (2020) adopted LSTM model to incorporate both
tock indicators and news sentiments for stock market trend prediction based on a finance domain specific sentiment dictionary. Hu,
ang et al. (2020) proposed a novel deep learning model to understand and predict electricity-theft Behavior via multi-source
ata. Song, Lin, Guo, and Wan (2020) proposed a Spatialtemporal Synchronous Graph Convolutional Networks (STSGCN) for
etwork data forecasting. Liang, Mao, Lu, Bai, and Gang (2021) adopted deep neural network models combining with bibliometric
ndicator to realize emerging research topic prediction. Yakhchi et al. (2022) proposed a novel Convolutional Attention Network
or sequential recommendations.

Although these advanced studies have succeeded in enhancing MTS prediction, they seldom consider capturing dynamical
hanging patterns in a more effective way, and model sales time series at a more microscopic level. Besides, few address the issue
ow to effectively make use of the detected dynamic patterns for model learning. In this research, a novel SDPANet model is proposed
o address the two issues mentioned above.

. Model descriptions

.1. Problem statement

Assume there are 𝑁 products 𝑋 = {𝑋1,… , 𝑋𝑖,… , 𝑋𝑁} of different models in a warehouse. The sales time series of 𝑖th product
hrough time span 1 ∼ 𝑡 is 𝑋𝑖 = {𝑋𝑖

1,… , 𝑋𝑖
𝑡}. Each 𝑋𝑖 has 𝑀 feature time series 𝐹 𝑖 = {𝑓 𝑖,1,… , 𝑓 𝑖,𝑗 ,… , 𝑓 𝑖,𝑀}. Features include

users’ visiting records of the product, discount rate, promotion activity, etc. Each 𝑋𝑖 and its feature set 𝐹 𝑖 could be encoded into
a new sales time series 𝑋𝑖

1∼𝑡 = 𝑆𝐷𝐾(𝑋𝑖, 𝐹 𝑖), where 𝑆𝐷𝐾 (Spatiotemporal Dynamic Kernel) will be introduced in Section 3.2.1.
Therefore, the main aim of this research is to predict the sales 𝑌𝑡+1 of all 𝑁 products at time 𝑡 + 1, where 𝑌𝑡+1 = {𝑌 1

𝑡+1,… , 𝑌 𝑁
𝑡+1}.

The objective function can be described as 𝑌𝑡+1 = 𝑆𝐷𝑃𝐴(𝑋1∼𝑁
1∼𝑡), and 𝑋1∼𝑁

1∼𝑡 can be seen as a matrix to representing a multivariate
time series, where rows represent spatial information (the new sales embedding of 𝑁 products at time 𝑡), and columns represent
temporal information (the new encoded sales time series with their features from time 1 to 𝑡). Assume the real sales at time 𝑡+ 𝑘 is

̃

4

𝑌𝑡+𝑘, then the target of the prediction task is to minimize the deviation between 𝑌𝑡+𝑘 and 𝑌𝑡+𝑘.

Information Processing and Management 59 (2022) 102987D. Li et al.
Fig. 2. The Framework of SDPANet.

Fig. 3. Spatiotemporal Dynamic Kernel (SDK).

3.2. Model framework

In Fig. 2, SDPANet incorporates 4 components: Spatiotemporal Dynamic Kernel (SDK), Simultaneous Regression (SR), Hierarchi-
cal Attention component (HA), and Dynamic Change Detection and Alignment (DC) component, into a unified framework for sales
predictions. The combination of SDK and HA is used to capture dynamic non-linear correlations from MTS. The SR component is
used to capture dynamic linear correlations. The DC component can supplement more valuable information to the training of SDK,
HA and SR from the perspective of future trend correlations. The predicted sales 𝑌 𝐻𝐴

𝑡+1 is calculated by SDK and HA, and 𝑌 𝑆𝑅
𝑡+1 is

calculated by SR. The 𝑌 𝐻𝐴
𝑡+1 and 𝑌 𝑆𝑅

𝑡+1 will be integrated by L1-loss and DC loss to generate two loss functions, which are 𝐿𝐴𝐿 and
𝐿𝐷𝐶 respectively. Finally, 𝐿𝐴𝐿 and 𝐿𝐷𝐶 are combined by considering Homovariance Uncertainty (HU) to generate the final loss
function 𝐿𝑆𝐷𝑃𝐴𝑁𝑒𝑡. The following sections will introduce each component in detail.

3.2.1. Spatiotemporal Dynamic Kernel (SDK) component
Earlier studies overlook the unique characteristics of sales time series, as sales time series is a dynamic process, and will be

influenced by complicated environment apart from the timeline, so different local spatiotemporal areas may contain different
dependent correlations. Different from existing researches related with dynamic kernel, which are mainly applied in CV domain,
a novel SDK is designed for MTS predictions and focuses on assigning specific weight to each element or ‘‘cell’’ of input 𝑋. Fig. 3
provides an illustrative representation of the SDK component.

For the input multivariate time series (MTS) 𝑋1∼𝑁
1∼𝑡 , assume 𝐿 CNN filters are assigned: for the 𝑙th filter, kernel size is 𝐾 × 𝑁 .

The main idea of SDK is to design a dynamic weight matrix, and to use this to generate a set of 𝐾 × 𝑁 matrices, each of which
represents the weight changes of the kernel in the specific area of 𝑋1∼𝑁

1∼𝑡 . The weights change as the kernel moves in 𝑋1∼𝑁
1∼𝑡 reflecting

changes in the external environment. In this study, the dynamic weight matrix is based on a two-layer convolutional network, the
two layers of which are named as conv1 and conv2 with kernel size as 1 × 1. The 1 × 1 kernel provides a dynamic weight for each
5

Information Processing and Management 59 (2022) 102987D. Li et al.

s

w
k
s
o
t
I
p
t
(

w
𝑖
v

𝑡

f

‘‘element’’ 𝑋𝑗
𝑖 in matrix 𝑋1∼𝑁

1∼𝑡 , and enhance the non-linear representations of each ‘‘element’’. The design of the weight matrix is
hown in formula (1):

𝑊 1∼𝑁
1∼𝑡+(2𝐾−1)∕∕2 = 𝑐𝑜𝑛𝑣2(𝑐𝑜𝑛𝑣1(𝑋1∼𝑁

1∼𝑡 , 𝑘𝑠 = 1), 𝑘𝑠 = 1, 𝑝ℎ = 𝐾∕∕2, 𝑠𝑡𝑟 = 1) (1)

where 𝑊 1∼𝑁
1∼𝑡+(2𝐾−1)∕∕2 is a dynamic weight matrix with 1 ∼ 𝑁 columns and 1 ∼ 𝑡+(2𝐾 −1)∕∕2 rows. 𝑘𝑠 = 1 represents the kernel size

is 1 × 1, and // represents an integer division operation. The weight matrix extends both columns and rows of 𝑋1∼𝑁
1∼𝑡 by (2𝐾 −1)∕∕2

based on the 𝑘𝑠 = 𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒, 𝑝ℎ = 𝑝𝑎𝑑𝑑𝑖𝑛𝑔_ℎ𝑒𝑖𝑔ℎ𝑡 and 𝑠𝑡𝑟 = stride. The purpose of assigning (2𝐾 − 1)∕∕2 for rows is to ensure
that the height of SDK convolutional output is fixed as 𝑡. The convolutional layers conv1 and conv2 generate the dynamic weight
matrix, and assigns dynamic non-linear weight for each ‘‘element’’. Obviously, the dynamic weight is highly correlated with the
value of each ‘‘element’’. Next, we construct the convolution operation between 𝑊 1∼𝑁

1∼𝑡+(2𝐾−1)∕∕2 and the input 𝑋1∼𝑁
1∼𝑡 . The two matrix

are separately divided into 𝑡 𝐾 × 𝑁 matrices 𝑊 (𝐾×𝑁)×𝑡 and 𝑋(𝐾×𝑁)×𝑡 by assigning kernel size as 𝐾 × 𝑁 . The expression is shown
below:

𝑊 𝑙 = 𝑊 (𝐾×𝑁)×𝑡 = 𝑑𝑖𝑣𝑊 (𝑊 1∼𝑁
1∼𝑡+(2𝐾−1)∕∕2, 𝐾 ×𝑁, 0, 1) (2)

𝑋𝑙 = 𝑋(𝐾×𝑁)×𝑡 = 𝑑𝑖𝑣𝑋(𝑋1∼𝑁
1∼𝑡 , 𝐾 ×𝑁, (2𝐾 − 1)∕∕2, 1) (3)

here 𝑙 represents the 𝑙th filter, function 𝑑𝑖𝑣𝑊 is used to divide 𝑊 1∼𝑁
1∼𝑡+(2𝐾−1)∕∕2 into 𝑡 𝐾 ×𝑁 matrices 𝑊 𝑙 = 𝑊 (𝐾×𝑁)×𝑡 by assigning

ernel size as 𝐾×𝑁 , padding as 0 and stride as 1. Function 𝑑𝑖𝑣𝑋 divides 𝑋1∼𝑁
1∼𝑡 into 𝑡 𝐾×𝑁 matrices 𝑋𝑙 = 𝑋(𝐾×𝑁)×𝑡 by assigning kernel

ize as 𝐾 ×𝑁 , padding as (2𝐾−1)∕∕2 and stride as 1. The 𝑖th 𝐾 ×𝑁 matrix 𝑊 𝑙(𝑖) of 𝑊 (𝐾×𝑁)×𝑡 can be seen as the weight distribution
f the dynamic kernel when it moves to the 𝑖th 𝐾 × 𝑁 region 𝑋𝑙(𝑖) of input 𝑋1∼𝑁

1∼𝑡 , where 𝑖 ≤ 𝑡. This is the main difference from
raditional CNN with weight-sharing strategy, because the weights of the dynamic kernel in all 𝑡 𝐾 ×𝑁 areas are totally different.
n order to use the 𝑡 kernel weights to realize convolution operation on 𝑋1∼𝑁

1∼𝑡 , 𝑋1∼𝑁
1∼𝑡 is first extended to 𝑋1∼𝑁

1∼𝑡+(2𝐾−1)∕∕2 by using
adding operations to align with 𝑊 1∼𝑁

1∼𝑡+(2𝐾−1)∕∕2, and then divided into 𝑡 𝐾 × 𝑁 sub-matrices 𝑋𝑙 = 𝑋(𝐾×𝑁)×𝑡 by using 𝑑𝑖𝑣𝑋. Thus,
he 𝑖th convolution operation of SDK is the element-wise product between the 𝑖th kernel 𝑊 𝑙(𝑖) and 𝑖th sub-matrices 𝑋𝑙(𝑖), where
𝑖 ≤ 𝑡). Formula (4) shows the SDK convolution operation on 𝑋1∼𝑁

1∼𝑡 with kernel size as 𝐾 ×𝑁 .

𝑂𝑙
1∼𝑡 = [𝑊 𝑙(𝑖)⊙𝑋𝑙(𝑖)] = [𝑊 (𝐾×𝑁)×𝑡(∶, ∶, 𝑖)⊙𝑋(𝐾×𝑁)×𝑡(∶, ∶, 𝑖)] 𝑓𝑜𝑟 𝑖 ∈ 𝑡 (4)

here 𝑂𝑙
1∼𝑡 ∈ 𝑅𝑡×1 is the convolution output of 𝑙th filter with kernel size as 𝐾 ×𝑁 ; ⊙ is element-wise product; (∶, ∶, 𝑖) represents the

th 𝐾 ×𝑁 kernel or sub-matrices. The output of each element-wise product is appended to list […] to generate the one-dimension
ector 𝑂𝑙

1∼𝑡 with length 𝑡.
The output of the 𝑙th filter is 𝑂𝑙

1∼𝑡. For all the 𝐿 filters, 𝑂𝐿
1∼𝑡 ∈ 𝑅𝑡×𝐿 is the stack of all 𝑂𝑙

1∼𝑡 used to form a new matrix with row
and column 𝐿. The expression of the output of all 𝐿 filters is shown in formula (5):

𝑂𝐿
1∼𝑡 = 𝑆𝑡𝑎𝑐𝑘𝐿𝑙=0(𝑂

𝑙
1∼𝑡) (5)

Formula (1)∼(5) could be defined as a mapping function: 𝑂𝐿
1∼𝑡 = 𝐹 (𝑋1∼𝑁

1∼𝑡). We adopt 4-layer mapping function 𝐹 to model
uture-vision based local correlations from time 𝑡 + 1 to 𝑡 + 4, which could be seen in formula (6):

(𝑂𝐿
1∼𝑡)𝑡+1 = 𝐹0(𝑋1∼𝑁

1∼𝑡)

(𝑂𝐿
1∼𝑡)𝑡+2 = 𝐹1((𝑂𝐿

1∼𝑡)𝑡+1)

(𝑂𝐿
1∼𝑡)𝑡+3 = 𝐹2((𝑂𝐿

1∼𝑡)𝑡+2)

(𝑂𝐿
1∼𝑡)𝑡+4 = 𝐹3((𝑂𝐿

1∼𝑡)𝑡+3)

(6)

where (𝑂𝐿
1∼𝑡)𝑡+1, (𝑂

𝐿
1∼𝑡)𝑡+2, (𝑂

𝐿
1∼𝑡)𝑡+3 and (𝑂𝐿

1∼𝑡)𝑡+4 are construal of local dependent correlations of all time series variables at time
𝑡 + 1, 𝑡 + 2, 𝑡 + 3 and 𝑡 + 4. 𝐹0, 𝐹1, 𝐹2 and 𝐹3 are 4-layer mapping functions based on SDK component.

Compared with Dynamic Convolution (Chen et al., 2020; Hu, Shen et al., 2020). The following content highlights the
differences between SDK and Dynamic Convolution. For a MTS, one of its 𝐾 × 𝑁 matrix is 𝑋1∼𝑁

𝑖∼𝑖+𝐾 (𝑖 ≤ 𝑡 − 𝐾). Dynamic
convolution (Chen et al., 2020) assigns 𝐿 filters with kernel size 𝐾 ×𝑁 , in which the 𝑙th kernel is 𝑊 𝑙(𝑋1∼𝑁

1∼𝑡) weight-sharing matrix,
and the attention weight is 𝜋𝑙. Then the convolution operation of 𝑋1∼𝑁

𝑖∼𝑖+𝐾 can be expressed as:

𝑂𝑖 =
∑

𝑙∈𝐿
𝜋𝑙 × (𝑊 𝑙(𝑋1∼𝑁

1∼𝑡) ⋅𝑋1∼𝑁
𝑖∼𝑖+𝐾) (7)

SDK assigns specific weight for each time point, and makes convolution operations based on aggregation of all time points in the
𝐾 ×𝑁 matrix. Assume the weight-specific matrix is 𝑊 𝑙(𝑋1∼𝑁

𝑖∼𝑖+𝐾) (which could be derived from formula (2)), then SDK convolution
operation can be expressed as:

𝑂𝑙
𝑖 = 𝑊 𝑙(𝑋1∼𝑁

𝑖∼𝑖+𝐾) ⋅𝑋
1∼𝑁
𝑖∼𝑖+𝐾 (8)

By comparing formulas (7) and (8), we can see that SDK focuses on more a microscopic level because it directly calculates
specific weight 𝑊 𝑙 for each element in 𝑋1∼𝑁

𝑖∼𝑖+𝐾 . Each filter 𝑙 obtains a specific value 𝑂𝑙
𝑖 at time 𝑖. Dynamic convolution focuses on

relationships between global 𝑊 𝑙(𝑋1∼𝑁) weight-sharing matrix and local 𝑋1∼𝑁 matrix, thus its output, 𝑂 is a single value, which is
6

1∼𝑡 𝑖∼𝑖+𝐾 𝑖

Information Processing and Management 59 (2022) 102987D. Li et al.

f
∑

a
c

3

o
ℎ

d
𝑘
f

w
H
i

Fig. 4. Visualization of weight changes of SDK kernel with time 𝑡. The Input MTS contains 8 time series. The SDK kernel size is set at 8 × 8. We can observe
that the kernel weights are dynamically changed when the time is changed. When batch size is 64, the SDPANet needs 1.69 s to complete one iteration, and
SDK only needs 0.00149 s.

the weighted summation of all 𝐿 convolution operations with weight-sharing. This method realizes dynamic convolution at a global
level by using attention mechanism; at the microscopic level however, it still uses a weight-sharing strategy, and may not be good
at capturing dynamic correlations.

Time Complexity Analysis. The dynamic weight of SDK is updated in training. For the input MTS 𝑋1∼𝑁
1∼𝑡 , assume 𝐿 filters are

assigned, and for the 𝑙th filter, SDK uses a two-layer convolutional network with kernel size as 1 and padding height as K//2 to
assign specific weight to each ‘‘element’’ of 𝑋1∼𝑁

1∼𝑡 . The initial values of each dynamic weight are assigned by using Xavier strategy,
and will be updated during each iteration. The time complexity is: 𝑂((𝑡 − 1 + 2 ∗ 𝐾∕∕2) ∗ (𝑁 − 1) + (𝑡 − 1) ∗ (𝑁 − 1)). The dynamic
weight matrix 𝑊 1∼𝑁

1∼𝑡+(2𝐾−1)∕∕2 (obtained from formula (1)) is used to make convolution with 𝑋1∼𝑁
1∼𝑡+(2𝐾−1)∕∕2, which is an extension of

𝑋1∼𝑁
1∼𝑡 and is used to align with 𝑊 1∼𝑁

1∼𝑡+(2𝐾−1)∕∕2. The convolution kernel size is 𝐾×𝑁 , so the time complexity is: 𝑂((𝑡+(2𝐾−1)∕∕2−𝐾)).
As seen in formula (2) and (3), 𝑑𝑖𝑣𝑊 can divide 𝑊 1∼𝑁

1∼𝑡+(2𝐾−1)∕∕2 into 𝑡 𝐾 ×𝑁 matrices 𝑊 (𝐾×𝑁)×𝑡 by assigning kernel size as 𝐾 ×𝑁 ,
padding as 0 and stride as 1. 𝑑𝑖𝑣𝑋 can divide 𝑋1∼𝑁

1∼𝑡 into 𝑡 𝐾 ×𝑁 matrices 𝑋(𝐾×𝑁)×𝑡 by assigning kernel size as 𝐾 ×𝑁 , padding as
(2𝐾 − 1)∕∕2 and stride as 1.

In formula (4), the output of the 𝑙th filter, which is 𝑂𝑙
1∼𝑡, is the convolution operation between 𝑊 𝑙 and 𝑋𝑙. Assume that

the gradient of back propagation at 𝑂𝑙
1∼𝑡 is 𝛾 𝑙1∼𝑡, then the gradient assigned to each dynamic weight of 𝑊 𝑙 can be expressed

as ∇(𝑊 𝑗
𝑖) =

∑

𝑧 𝛾
𝑙
𝑧 × 𝑓 ′(𝑊 𝑗

𝑖) × [𝜕(𝑂𝑙
𝑧)∕𝜕(𝑓 (𝑊

𝑗
𝑖))], where 𝑊 𝑗

𝑖 belongs to the 𝑧th 𝑊 𝐾×𝑁 ∈ 𝑊 (𝐾×𝑁)×𝑡 (𝑧 ≤ 𝑡), 𝑓 is the activation
unction, 𝑖 ∈ [1, 𝑡 + 2(𝐾 − 1)∕∕2] and 𝑗 ∈ [1, 𝑁]. Similarly, the kernel gradient of 𝑐𝑜𝑛𝑣1 could be represented as: ∇(𝑊 𝑐𝑜𝑛𝑣1𝑗𝑖) =
𝑖,𝑗 ∇(𝑊

𝑗
𝑖) × [𝜕(𝑊 𝑗

𝑖)∕𝜕(𝑓 (𝑊 𝑐𝑜𝑛𝑣1𝑗𝑖))] × 𝑓 ′(𝑊 𝑐𝑜𝑛𝑣1𝑗𝑖), where 𝑖 ∈ [1, 𝑡] and 𝑗 ∈ [1, 𝑁]. In this research, the PyTorch optimizer is
dopted to realize the gradient updating automatically. We also visualize the weight change process of SDK, as well as its time
onsuming in Fig. 4.

.2.2. Hierarchical Attention (HA) component
The HA component is an integration model of DARNN (Qin et al., 2017) and MLCNN (Cheng et al., 2020). It takes advantages

f spatiotemporal attention design from DARNN to obtain spatial (SA) and temporal (TA) attention based representations ℎ𝑡1, ℎ𝑡2,
𝑡3 and ℎ𝑡4 of input (𝑂𝐿

1∼𝑡)𝑡+1, (𝑂
𝐿
1∼𝑡)𝑡+2, (𝑂

𝐿
1∼𝑡)𝑡+3 and (𝑂𝐿

1∼𝑡)𝑡+4 from SDK component.

Spatial Attention model (SA). For multivariate time series prediction, spatial attention could be seen as detecting the attention
istributions of all the 𝐿 columns of (𝑂𝐿

1∼𝑡)𝑡+𝑘 based on the hidden state of the encoder ℎ𝑠𝜏𝑘 ∈ 𝑅𝑑 at time 𝜏 (𝜏 ∈ [0, 𝑡]), where
∈ {1, 2, 3, 4}, and 𝑑 is the size of hidden state. We design LSTM encoder ℎ𝑠𝜏𝑘 of input (𝑂𝐿

1∼𝑡)
[𝜏.∶]
𝑡+𝑘 . The formula could be seen in

ormula (9):

𝐇𝐢𝐝𝐝𝐞𝐧 𝐒𝐭𝐚𝐭𝐞 ∶ℎ𝑠𝜏𝑘 = 𝑜𝑠𝜏𝑘(ℎ𝑠
𝜏−1
𝑘 , (𝑂𝐿

1∼𝑡)
[𝜏,∶]
𝑡+𝑘)⊙ 𝑡𝑎𝑛ℎ(𝑐𝑒𝑙𝑙_𝑠𝜏𝑘(ℎ𝑠

𝜏−1, (𝑂𝐿
1∼𝑡)

[𝜏,∶]
𝑡+𝑘)) (9)

here (𝑂𝐿
1∼𝑡)

[𝜏,∶]
𝑡+𝑘 represents the 𝜏th (𝜏 ≤ 𝑡) row of matrix (𝑂𝐿

1∼𝑡)𝑡+𝑘. 𝑜𝑠𝜏𝑘 is the Output Gate, 𝑐𝑒𝑙𝑙_𝑠𝜏𝑘 is the Cell Status, and the output
idden State is ℎ𝑠𝜏𝑘. 𝑡𝑎𝑛ℎ is the activation function, ⊙ is the element-wise product. We propose Spatial Attention model, which is
7

nspired by the theory of attention mechanism, to adaptively select the relevant driving series, which is of practical meaning in

Information Processing and Management 59 (2022) 102987D. Li et al.

𝑊
t
f
𝜏

m

time series prediction. Given the 𝑛th (𝑛 ∈ 𝐿) input driving (exogenous) series (𝑂𝐿
1∼𝑡)

[∶,𝑛]
𝑡+𝑘 for the 𝑘th LSTM encoder ℎ𝑠𝑘 at time 𝜏 ∈ 𝑡,

Spatial Attention model could be constructed via a deterministic attention model by referring to the previous hidden state ℎ𝑠𝜏−1𝑘
and the cell status 𝑐𝑒𝑙𝑙_𝑠𝜏−1𝑘 in the encoder LSTM:

𝑒𝑠𝜏𝑘(𝑛) = (𝑉 𝑠𝑒)𝑇 × 𝑡𝑎𝑛ℎ(𝑊 𝑠𝑒 × 𝑐𝑜𝑛𝑐𝑎𝑡[ℎ𝑠𝜏−1𝑘 , 𝑐𝑒𝑙𝑙_𝑠𝜏−1𝑘] + 𝑈𝑠𝑒 × (𝑂𝐿
1∼𝑡)

[∶,𝑛]
𝑡+𝑘) (10)

𝛼𝑠𝜏𝑘(𝑛) =
𝑒𝑥𝑝(𝑒𝑠𝜏𝑘(𝑛))

∑𝐿
𝑖=1 𝑒𝑥𝑝(𝑒𝑠

𝜏
𝑘(𝑖))

(11)

where 𝑐𝑜𝑛𝑐𝑎𝑡[ℎ𝑠𝜏−1𝑘 , 𝑐𝑒𝑙𝑙_𝑠𝜏−1𝑘] is an operation to concatenate ℎ𝑠𝜏−1𝑘 and 𝑐𝑒𝑙𝑙_𝑠𝜏−1𝑘 in a new vector with dimension as 2𝑑. 𝑉 𝑠𝑒 ∈ 𝑅𝑡,
𝑠𝑒 ∈ 𝑅𝑡×2𝑑 and 𝑈𝑠𝑒 ∈ 𝑅𝑡×𝑡 are weight parameters to learn. 𝑒𝑠𝜏𝑘(𝑛) is used to measure the importance of the 𝑛th input among all

he 𝐿 input of (𝑂𝐿
1∼𝑡)𝑡+𝑘 for the 𝑘th LSTM encoder at time 𝜏. 𝛼𝑠𝜏𝑘(𝑛) is spatial attention weight of the 𝑛th input by using a softmax

unction to normalize 𝑒𝑠𝜏𝑘(𝑛). The normalization operation could measure the importance of each input time series at different time
on a unified scale [0∼1] and ensure the weight parameters could be jointly trained with other components. Thus for the 𝑘th LSTM

encoder, the output of spatial attention model at time 𝜏 is: (𝑂1∼𝐿
1∼𝑡)

[𝜏,𝑛]
𝑡+𝑘 = 𝛼𝑠𝜏𝑘(𝑛) × (𝑂1∼𝐿

1∼𝑡)
[𝜏,𝑛]
𝑡+𝑘 , where 𝑛 ∈ 𝑁 .

Temporal Attention model with Future Information Fusion (TA-FIF). Temporal attention is mainly used to calculate attention
distributions of all input time series along the timeline. As introduced in previous sections, considering the interactions of different
future moments could further improve the prediction accuracy (Cheng et al., 2020). Assume at time 𝑡, the output of spatial attention

odel, which is the input of temporal attention model, is (𝑂𝐿
1∼𝑡)

[∶,𝑛]
𝑡+𝑘 , where 𝑘 ∈ {1, 2, 3, 4} and 𝑛 ∈ 𝐿. TA-FIF contains four LSTM

layers. For the 𝑘th layer LSTM ℎ𝑡𝑘∼𝑡+𝑘𝑘 , 𝑘 ∈ {1, 2, 3, 4}. The expression of hidden state ℎ𝑡𝑡+𝑘𝑘 at time 𝑡 + 𝑘 could be seen in formula
(12).

𝐇𝐢𝐝𝐝𝐞𝐧 𝐒𝐭𝐚𝐭𝐞 ∶ℎ𝑡𝑡+𝑘𝑘 = 𝑜𝑡𝑡+𝑘𝑘 (ℎ𝑡𝑡+𝑘−1𝑘 , (𝑂𝐿
1∼𝑡)

[𝑡,∶]
𝑡+𝑘)⊙ 𝑡𝑎𝑛ℎ(𝑐𝑒𝑙𝑙_𝑡𝑡+𝑘𝑘 (ℎ𝑡𝑡+𝑘−1𝑘 , (𝑂𝐿

1∼𝑡)
[𝑡,∶]
𝑡+𝑘)) (12)

Similar to formula (9) of 𝑆𝐴, the hidden state of TA-FIF is based on the same LSTM module and also contains Cell Status 𝑐𝑒𝑙𝑙_𝑡𝑡+𝑘𝑘 ,
Output Gate 𝑜𝑡𝑡+𝑘𝑘 and Hidden State ℎ𝑡𝑡+𝑘𝑘 . The input (𝑂𝐿

1∼𝑡)
[𝑡∶,𝑛]
𝑡+𝑘 is fed into TA-FIF to identify the importance of the 𝑛th column. TA-FIF

adopts temporal attention to capture influential factors at each time 𝜏 for sales predictions from the perspective of timeline angles.
The expression of temporal attention could be seen in formula (13).

ℎ𝑡𝑡+𝑘𝑘 =
𝑡+𝑘−1
∑

𝑖=1
𝛼𝑡𝑘𝑖 ⊙ ℎ𝑡𝑖𝑘

𝛼𝑡𝑘𝑖 =
𝑒𝑥𝑝 𝑠𝑖𝑚(ℎ𝑡𝑖𝑘, ℎ𝑡

𝑡+𝑘
𝑘)

∑𝑡+𝑘−1
𝑗=1 𝑒𝑥𝑝 𝑠𝑖𝑚(ℎ𝑡𝑗𝑘, ℎ𝑡

𝑡+𝑘
𝑘)

(13)

The final representation of hidden state ℎ𝑡𝑡+𝑘𝑘 is the weighted sum of all ℎ𝑡𝑖𝑘 with attention weight as 𝛼𝑡𝑘𝑖, where 𝑖 ∈ [1, 𝑡+ 𝑘−1].
The calculation of 𝛼𝑘𝑘𝑖 is mainly based on the cosine similarity between ℎ𝑡𝑖𝑘 and ℎ𝑡𝑡+𝑘𝑘 . The term ‘‘future information fusion (FIF)’’
is similar to existing researches (Cheng et al., 2020; Liu et al., 2021), and could be expressed as that the temporal attention based
hidden state at 𝑘th layer ℎ𝑡𝑡+𝑘𝑘 (𝑘 < 4) is assigned as the initial value of 𝑘+1th layer ℎ𝑡𝑡+𝑘+1𝑘+1 . The main idea of FIF is that we consider
the trained model in the 𝑘th layer for the prediction task of 𝑌 𝐻𝐴

𝑡+𝑘 could be applied as prior knowledge for the prediction task of
𝑌 𝐻𝐴
𝑡+𝑘+1 in the 𝑘 + 1th layer. It then draws on the work of MLCNN to adopt a set of functions 𝐻1, 𝐻2, 𝐻3 and 𝐻4 to predict future

sales 𝑌 𝐻𝐴
𝑡+𝑘 , 𝑘 ∈ {1, 2, 3, 4} by fusing forecasting information of different future time 𝑡 + 𝑘. The expression is shown in formula:

⎧

⎪

⎨

⎪

⎩

𝑌 𝐻𝐴
𝑡+1 = 𝐻1(ℎ𝑡𝑡+11 ((𝑂𝐿

1∼𝑡)𝑡+1)),

𝑌 𝐻𝐴
𝑡+𝑘 = 𝐻𝑘(ℎ𝑡𝑡+𝑘𝑘 (ℎ𝑡𝑡+𝑘−1𝑘−1 , (𝑂𝐿

1∼𝑡)𝑡+𝑘)), (2 ≤ 𝑘 ≤ 4)
(14)

3.2.3. Simultaneous Regression (SR) component
Though the non-linear nature of the SDK and HA improves the capture of non-linear correlations, their abilities to detect stable

correlations are reduced. Traditional methods (Cheng et al., 2020; Lai et al., 2018) adopt Auto-regressive (AR) to model the linear
correlations, which overlook linear correlations between time series. To address this problem, we replace the AR with SR component
with a co-integration test based dynamic programming algorithm (Algorithm 3.2.3).

The co-integration test can find stable correlations within a set of time series, which can reduce the influence of abnormal
sequences and, to a degree, resolve the problem of pseudo regression (Box et al., 2015). SR uses dynamic programming to find
all the maximum subsets 𝑆 = [𝑆1, 𝑆2,… , 𝑆𝐶] from input, and all time series in an arbitrary subset 𝑆𝑖 of 𝑆 satisfy co-integration
tests with each other. The main purpose of using dynamic programming is to find an efficient way to adopt parallel computing
for improving running efficiency. Because a MTS may contain hundreds of different products with the same product type, this
phenomenon is particularly common in e-commerce warehouses. Due to the interpreter design of python, threads are hard to be
used for significantly improving running efficiency. So we consider adopting python multi-processor. When traditional double-loop
strategy is calculated in parallel, due to the complexity of real-time update of global variables between processors, the amount of
repeated calculations of each processor is large. Thus, the main idea of dynamic programming is to make co-integration test between
a time series with its nearest time series in a MTS instead of traversing all time series. Assume the input window length of SR for

1∼𝑁 1∼𝑁
8

capturing correlations of 𝑋1∼𝑡 is 𝑠, so the input 𝑁 time series could be represented as 𝑋𝑡−𝑠+1∼𝑡.

Information Processing and Management 59 (2022) 102987D. Li et al.
Algorithm 1 Co-Integration based Dynamic Programming
INPUT: Short-term MTS 𝑋1∼𝑁

𝑡−𝑠+1∼𝑡(𝑠) = 𝑋1∼𝑁
𝑡−𝑠+1∼𝑡.

OUTPUT: The Set of subgroups: 𝑆 = [𝑆1, 𝑆2,… , 𝑆𝐶].
1. 𝑆 = Function getSubset(𝑋1∼𝑁

𝑡−𝑠+1∼𝑡):
2. Let 𝑋 = 𝑋1∼𝑁

𝑡−𝑠+1∼𝑡;
3. Define array 𝑝𝑟𝑒[𝑖 ∈ 𝑁] = 𝑖;
4. # 𝑝𝑟𝑒[𝑁] is status vector.
5. For (𝑖 = 1; 𝑖 < 𝑁 ; 𝑖 + +) ∶
6. Assign 𝑝𝑟𝑒[𝑖] = 𝑖;
7. For (𝑗 = 𝑖 − 1; 𝑗 >= 0; 𝑗 − −) ∶
8. # 𝑖 only needs to find its nearest 𝑗.
9. If (ci_ test (𝑋𝑖

𝑡−𝑠+1∼𝑡, 𝑋
𝑗
𝑡−𝑠+1∼𝑡) == true):

10. 𝑝𝑟𝑒[𝑖] = 𝑗;
11. break;
12. While (𝑋 is not empty):
13. # find all subsets in one loop.
14. 𝑖 = 𝑖 + 1.
15. Define 𝑆𝑖 as an empty list;
16. 𝑘 = 𝑋.size() - 1;
17. 𝑆𝑖.𝑎𝑝𝑝𝑒𝑛𝑑(𝑋𝑘

𝑡−𝑠+1∼𝑡);
18. While (𝑘! = 𝑝𝑟𝑒[𝑘]):
19. # Track all the members of 𝑆𝑖 from 𝑝𝑟𝑒.
20. 𝑘 = 𝑝𝑟𝑒[𝑘];
21. 𝑆𝑖.𝑎𝑝𝑝𝑒𝑛𝑑(𝑋𝑘

𝑡−𝑠+1∼𝑡);
22. 𝑆.append(𝑆𝑖);
23. 𝑋.remove(𝑆𝑖);
24. Return 𝑆;
25.
26. 𝑆 = getSubset(𝑋1∼𝑁

𝑡−𝑠+1∼𝑡);
27. OUTPUT 𝑆;

For a MTS 𝑋1∼𝑁
𝑡−𝑠+1∼𝑡 (𝑠 is window size), lines 1∼24 describe function getSubset() for obtaining output set 𝑆, and line 26 is the

main function to iteratively get all the maximum subsets [𝑆1, 𝑆2,… , 𝑆𝐶] from input 𝑋1∼𝑁
𝑡−𝑠+1∼𝑡 by invoking function getSubset(). Line

3 defines status vector 𝑝𝑟𝑒[𝑁]. Lines 5∼11 design a strategy to make co-integration test between a time series with its nearest time
series instead of traversing all time series. 𝑐𝑖_𝑡𝑒𝑠𝑡 in line 9 is the function to make co-integration test between arbitrary two time
series 𝑋𝑖

𝑡−𝑠+1∼𝑡 and 𝑋𝑗
𝑡−𝑠+1∼𝑡. Line 10 defines status transfer function for updating 𝑝𝑟𝑒[𝑁]. Status function 𝑝𝑟𝑒[𝑖] = 𝑗 indicates that

𝑗(𝑗 < 𝑖) is a time series index that has the nearest distance with 𝑖 among all other time series, which have passed co-integration test
with 𝑖. Lines 12∼24 describe the strategy to find all subsets in one loop. For a time series 𝑘 = 𝑋.𝑠𝑖𝑧𝑒() − 1, status vector 𝑓 [𝑘] stores
the number of other time series in subset 𝑆𝑖 when 𝑘 is assigned to 𝑆𝑖. Status vector 𝑝𝑟𝑒[𝑘] stores the index of 𝑘’s previous time series
in subset 𝑆𝑖. Thus backward tracking through 𝑝𝑟𝑒 can assign each time series to a specific subset 𝑆𝑖 of 𝑆 in one loop.

The SR component (like the AR component of MLCNN) can predict the values of future multi-step time points (𝑡+ 1, 𝑡+ 2, 𝑡+ 3,
…). Assume that the output 𝑆 has 𝐶 subsets, for each subset 𝑆𝑖(𝑖 ∈ 𝐶) in 𝑆, we use an indicator vector 𝐼𝑆𝑖 with length 𝑁 to note
which time series belong to 𝑆𝑖, that is, for each time series 𝑋𝑗

𝑡−𝑠+1∼𝑡(𝑗 < 𝑁), if 𝑋𝑗
𝑡−𝑠+1∼𝑡 belongs to 𝑆𝑖, then 𝐼𝑆𝑖 [𝑗] = 1, else 𝐼𝑆𝑖 [𝑗] = 0.

The Simultaneous Regression could be described as:

𝑌 𝑆𝑖
𝑡+𝑘 =

𝑠
∑

𝑙=0
𝑊 𝑆𝑖

𝑘,𝑡−𝑙 × (𝐼𝑆𝑖 ⊙𝑋1∼𝑁
𝑡−𝑙)𝑇 + 𝑏𝑆𝑖 (15)

where 𝑌 𝑆𝑖
𝑡+𝑘 ∈ 𝑅𝑁 represents the predicted sales of 𝑁 time series in 𝑆𝑖 at time 𝑡 + 𝑘(1 ≤ 𝑘 ≤ 4). 𝑊 𝑆𝑖

𝑘,𝑡−𝑙 ∈ 𝑅𝑁×𝑁 is the coefficient
matrix for predicting sales at time 𝑡+𝑘. ⊙ represents the element-wise product. For all 𝑆𝑖 in S, the predicted sales 𝑌 𝑆𝑅

𝑡+𝑘 at 𝑡+1 could
be represented as:

𝑌 𝑆𝑅
𝑡+𝑘 =

𝐶
∑

𝑖=1
𝜔𝑆𝑖 × 𝑌 𝑆𝑖

𝑡+𝑘 (16)

where 𝑌 𝑆𝑖
𝑡+𝑘 and 𝑌 𝑆𝑅

𝑡+𝑘 ∈ 𝑅𝑁 .𝜔𝑆𝑖 is the learnable weight of each subset, and ∑𝐶
𝑖=1 𝜔

𝑆𝑖 = 1.

Generating the Prediction. We have used the same strategy as earlier studies, such as DARNN, LstNet, MLCNN, etc, adopted
weight-sum strategies to combine the results of linear (AR) and non-linear (DNN) component into a unified framework to generate
the predictions. As mentioned earlier, for the input multivariate sales time series 𝑋1∼𝑁

1∼𝑡 , the outputs of HA and SR are 𝑌 𝐻𝐴
𝑡+𝑘 and 𝑌 𝑆𝑅

𝑡+𝑘
respectively, where (1 ≤ 𝑘 ≤ 4). Then the final predicted sales at time 𝑡 + 𝑘 can be represented as:

𝑌 = 𝛼 × 𝑌 𝐻𝐴
𝑡+𝑘 + 𝛽 × 𝑌 𝑆𝑅

𝑡+𝑘 (17)

where 𝛼, 𝛽 > 0 are the weight parameters, and 𝛼 + 𝛽 = 1.
9

Information Processing and Management 59 (2022) 102987D. Li et al.

w

3.2.4. Loss function
Absolute Loss (L1-loss). Absolute loss (L1-loss) is widely used for many of the time series forecasting tasks. For a MTS 𝑋1∼𝑁

1∼𝑡
in the training data, we define the absolute loss 𝐿𝐴𝐿 of the proposed model as below in formula (18):

𝐿𝐴𝐿 =
4
∑

𝑘=1

𝑁
∑

𝑖=1
|𝑌 𝑖

𝑡+𝑘 − 𝑌 𝑖
𝑡+𝑘| (18)

where 𝑖 ∈ 𝑁 is the 𝑖th time series of 𝑋1∼𝑁
1∼𝑡 , and 𝑘 represents the task of predicting the future sales at time 𝑡+ 𝑘. Thus, 𝑌 𝑖

𝑡+𝑘 and 𝑌 𝑖
𝑡+𝑘

represent the predicted and true sales of the 𝑖th time series at time 𝑡 + 𝑘.

Loss of Dynamic Change Detection and Alignment (DC). The DC loss can adjust the prediction results based on captured
dynamic changes, and is mainly based on Dynamic Time Warping (DTW) (Sakoe & ChibaLim, 1990). Unlike Mean Average Error
(MAE), DTW focuses on finding similar patterns between two time series, and is sensitive to dynamic changes. Assume at time
𝑡, the true and predicted 𝑖th time series of 𝑋1∼𝑁

1∼𝑡 are 𝑌 𝑖
𝑡+1∼𝑡+4 and 𝑌 𝑖

𝑡+1∼𝑡+4. The two time series can generate a distance matrix
𝐷𝑖

𝑡+1∼𝑡+4 ∈ 𝑅4×4, where 𝐷𝑡+1∼𝑡+4(𝑚, 𝑛) = |𝑌 𝑖
𝑡+𝑛 − 𝑌 𝑖

𝑡+𝑚|, 𝑖 ∈ 𝑁 . DTW can find the minimal distance path from (1, 1) to (4, 4) of 𝐷𝑖
𝑡+1∼𝑡+4

by constructing the optimization association matrix A. The calculation rules of dynamic transfer matrix are defined in follow formula.

𝑟𝑚𝑎𝑥 = 𝐷𝑡+1∼𝑡+4(𝑚, 𝑛) + 𝑚𝑎𝑥{𝑟1, 𝑟2, 𝑟3}

𝑟1 = −𝐴𝑖[𝑚 − 1, 𝑛 − 1]∕𝛾; 𝑟2 = −𝐴𝑖[𝑚 − 1, 𝑛]∕𝛾; 𝑟3 = −𝐴𝑖[𝑚, 𝑛 − 1]∕𝛾
(19)

where 𝛾 = 0.01 is smooth parameter, and 𝑟𝑚𝑎𝑥 indicates the smallest distance around 𝐴𝑖[𝑚, 𝑛]. Here we define the smooth minimal
operator as 𝑠𝑚𝑜_𝑟𝑠 = 1

𝑍 𝑒𝑥𝑝(𝑟𝑠 − 𝑟𝑚𝑎𝑥), where 𝑍 =
∑3

𝑠=1 𝑠𝑚𝑜_𝑟𝑠 and 𝑠 ∈ [1, 2, 3]. The smooth minimal operator is used to design
differentiable loss (Cuturi & Blondel, 2017). Then matrix 𝐴𝑖 can then be iteratively calculated by follow formula:

𝐴𝑖[𝑚, 𝑛] = 𝑠𝑚𝑜_𝑟1 × 𝐴𝑖[𝑚 − 1, 𝑛 − 1] + 𝑠𝑚𝑜_𝑟2 × 𝐴𝑖[𝑚 − 1, 𝑛] + 𝑠𝑚𝑜_𝑟3 × 𝐴𝑖[𝑚, 𝑛 − 1] (20)

Matrix 𝐴𝑖 detects dynamic changes from the 𝑖th time series. In order to realize dynamic change alignment, we added a time
penalty matrix 𝛺𝑖 ∈ 4 × 4 (Vallance, Charbonnier, Paul, Dubost, & Blanc, 2017) of the 𝑖th time series 𝛺𝑖[𝑚, 𝑛] = (𝑚 − 𝑛)2∕(4 × 4).
The purpose of designing 𝛺𝑖 is for a pair (𝑚, 𝑛) with high similarity in 𝐴𝑖, if their distance 𝛺𝑖[𝑚, 𝑛] is also high, then a penalty is
added to enlarge the current loss for aligning time between 𝑌 𝑖

𝑡+1∼𝑡+4 and 𝑌 𝑖
𝑡+1∼𝑡+4. Finally, for all the predicted sales 𝑌 𝑖

𝑡+1∼𝑡+4(𝑖 ∈ 𝑁)
of 𝑋1∼𝑁

1∼𝑡 , the DC loss 𝐿𝐷𝐶 is defined in follow formula:

𝐿𝐷𝐶 =
𝑁
∑

𝑖=1
𝑆𝑢𝑚(𝑀𝑒𝑎𝑛(𝐴𝑖 ×𝛺𝑖, 𝑑𝑖𝑚 = 0))∕(4 × 4) (21)

here 𝑀𝑒𝑎𝑛(𝐴𝑖 ×𝛺𝑖, 𝑑𝑖𝑚 = 0) averages each column (𝑑𝑖𝑚 = 0) of matrix 𝐴𝑖 ×𝛺𝑖, and the output is a 1 × 4 dimension vector. 𝑆𝑢𝑚
means to sum each element of the output vector. The backward propagation for solving DTW optimization problem can use the
Hessian matrix-based gradient decent method (Cuturi & Blondel, 2017).

As introduced above, DC component can provide more future information based on future trend correlations for model training.
The premise that DC loss can play a greater role is that the model has a larger parameter space for capturing more pattern candidates.
The proposed SDK and HA component can satisfy the condition. SDK provides specific weights for different 𝑋𝑖

𝑡+𝑗 (𝑗 > 0), which
can better distinguish the dependent correlation patterns. The spatiotemporal attention of HA can effectively select more useful
dependent correlation patterns from the output of SDK. However, the main challenge of capturing future trend correlations is that
there are deformations between true and predicted sales. The DC component can overcome this by using an optimized DTW loss
with a time penalty matrix.

Loss Function Considering homovariance uncertainty (HU). Here we refer to the loss function proposed by He, Zhu, Wang,
Marios, and Zhang (2019), Kendall, Gal, and Cipolla (2018). They consider the homovariance uncertainty (HU) between each loss
function. Research has demonstrated its effectiveness in image semantic parsing. We also found that it could significantly improve
the performance of sales prediction because it considers the variance differences between different loss functions, and reduces the
uncertainty of linear combinations. The final loss function 𝐿𝑆𝐷𝑃𝐴𝑁𝑒𝑡 considering homovariance uncertainty is shown in formula (22):

𝐿𝑆𝐷𝑃𝐴𝑁𝑒𝑡(𝑌 , 𝑌) =
1
𝜎21

𝐿𝐴𝐿(𝑌 , 𝑌) +
1
𝜎22

𝐿𝐷𝐶 (𝑌 , 𝑌) + 𝑙𝑜𝑔𝜎1𝜎2 (22)

where 𝜎1 and 𝜎2 are scalar observational variances of loss function 𝐿𝐴𝐿 and 𝐿𝐷𝐶 . The goal of model training is to minimize the loss
function of all parameters, which can be achieved by using the stochastic gradient (SGD) optimizer. In this paper, we use Adam
algorithm (Das & Ghosh, 2017) to optimize the model parameters.

In summary, each component of SDPANet plays a unique and irreplaceable role in the model, and cooperates with each other. SDK
can capture dynamic non-linear correlations between different time series of input 𝑋1∼𝑁

1∼𝑡 . The output of SDK will be subsequently
fed into a HA component to calculate spatiotemporal attention patterns. The dynamic kernel of SDK can expand the parameter space
of feature calculation. This helps the HA find more non-linear patterns to better fit the sales time series, which are influenced by
complex external environment. SR is a novel component used to detect dynamic linear correlations between time series. The DC
component is proposed to address the limitations of existing widely used loss functions. It does this by considering sales correlations
between different future time points. Therefore, the DC loss can provide valuable information for the rich dynamic features and
patterns of SDK, HA and SR. The SDK, HA and SR components can also realize collaborative training based on the feedback of DC
10

loss.

Information Processing and Management 59 (2022) 102987D. Li et al.

d

m

e
G
s
t
g

o

C

4

d
E
R

Table 1
Data description of Galanz and Cainiao.

Galanz Cainiao

Product type 190 200
Samples 55,361 74,595

Features

• Product type • Product type
• Historical sales • Historical sales
• Amount of shop discount • User visits records
• Perform discount amount • Visits to cart
• Discount rate • Collections user visits

Table 2
Data description of traffic and exchange-rate.

Traffic Exchange-rate

Length of time series 17,544 7,588
Number of variables 862 8
Features 1 h 1 day

4. Experiments

4.1. Experiment data

Experiments are conducted on two datasets: Galanz and Cainiao. Descriptive statistics of both samples and features of the two
atasets are summarized in Table 1.

Galanz Dataset: This is collected from one of China’s leading home appliance enterprises. Over a two-year period, Galanz stored
ore than 600 products in 100 warehouses. We selected 190 products and their sales time series records from 10 warehouses.

Cainiao Dataset: The Cainiao Company1 is one of the largest intelligent logistic companies in China. The data contains sales
records of up to 200 products in 5 warehouses.

For both datasets, we used historical time-series to predict sales of each stored product. Each product was grouped, firstly by
warehouse, then by type, to generate multivariate time series. For each multivariate time series, training and testing samples were
generated by dividing the whole series into a set of sub-series with a minimum length of greater than 24. The last 1∼4 time period of
ach sub-series was taken as prediction label; other periods were taken as features. This procedure yielded 55,361 samples from the
alanz and 74,595 samples from Cainiao. All datasets were split in chronological order to produce a training set (60%), a validation

et (20%), and a test set (20%), named, respectively GWN (Galanz) and CWN (Cainiao). To further assess the practical values of
he proposed model, warehouse ids were used to divide Galanz test data into 10 groups (GW1∼GW10) and Cainiao test data into 5
roups (CW1∼CW5).

We also tested the effect of the model on two widely-studied datasets: Traffic and Exchange-Rate (Table 2):

Traffic: 48 months (2015–2016) of hourly data from the California Department of Transportation. The data describes road
ccupancy rates (between 0 and 1) measured by different sensors on San Francisco Bay area freeways.

Exchange-Rate: A collection consists of the daily exchange rates of eight foreign countries including (Australia, British,UK,
anada, Switzerland, China, Japan, New Zealand and Singapore) ranging from 1990 to 2016.

Each dataset was split into a train set (60%), a validation set (20%) and a test set (20%) in chronological order.

.2. Metrics

Evaluation is based on the three commonly used metrics defined in Eqs. (23) to (25). Here, for the 𝑖th test sample, 𝑌 𝑡
𝑖 and 𝑌 𝑡

𝑖
enotes the true and predicted number of sales at time 𝑡. RMAE and RRSE are scaled versions of the widely used Mean Absolute
rror (MAE) and Root Square Error (RSE), and CORR is the Coefficient of correlation between 𝑌 𝑡

𝑖 and 𝑌 𝑡
𝑖 . Low values for RMAE,

RSE and a high value of CORR indicates a good performance.

Relative Mean Absolute Error (RMAE):

𝑅𝑀𝐴𝐸 =
𝑚𝑒𝑎𝑛(

∑

(𝑖,𝑡)∈𝛺𝑡𝑒𝑠𝑡
|𝑌 𝑡

𝑖 − 𝑌 𝑡
𝑖 |)

𝑚𝑒𝑎𝑛(
∑

(𝑗,𝑡)∈𝛺𝑡𝑒𝑠𝑡
𝑌 𝑡
𝑗)

(23)

1 https://tianchi.shuju.aliyun.com/competition/introduction.htm?spm=5176.100068.5678.1.ZBYlCN&raceId=231530.
11

https://tianchi.shuju.aliyun.com/competition/introduction.htm?spm=5176.100068.5678.1.ZBYlCN&raceId=231530

Information Processing and Management 59 (2022) 102987D. Li et al.
Root Relative Squared Error (RRSE):

𝑅𝑅𝑆𝐸 =

√

∑

(𝑖,𝑡)∈𝛺𝑡𝑒𝑠𝑡
(𝑌 𝑡

𝑖 − 𝑌 𝑡
𝑖)2

√

∑

(𝑖,𝑡)∈𝛺𝑡𝑒𝑠𝑡
(𝑌 𝑡

𝑖 − 𝑚𝑒𝑎𝑛(𝑌))2
(24)

Empirical Correlation Coefficient (CORR):

𝐶𝑂𝑅𝑅 = 1
|𝛺𝑡𝑒𝑠𝑡|

×

∑

(𝑖,𝑡)∈𝛺𝑡𝑒𝑠𝑡
(𝑌 𝑡

𝑖 − 𝑚𝑒𝑎𝑛(𝑌))(𝑌 𝑡
𝑖 − 𝑚𝑒𝑎𝑛(𝑌))

√

∑

(𝑖,𝑡)∈𝛺𝑡𝑒𝑠𝑡
(𝑌 𝑡

𝑖 − 𝑚𝑒𝑎𝑛(𝑌))2(𝑌 𝑡
𝑖 − 𝑚𝑒𝑎𝑛(𝑌))2

(25)

4.3. Baselines

• RNN-LSTM: RNN-LSTM is widely used in time series research because its design makes it suitable for processing and predicting
events with long intervals and delays in time series (Hochreiter & Schmidhuber, 1997).

• WaveNet2: WaveNet (Lee, Jin, Chu, Lim, & Ko, 2021) is mainly based on an extended causal convolutional layer, which allows
it to deal with temporal sequences and long-term dependencies without a marked increase in model complexity.

• LSTNet3: Long and Short-term Time-series Network (Lai et al., 2018) adopts a CNN-LSTM framework to extract local
dependency patterns. It uses convolutional layer and recurrent layer to capture long-term dependency patterns. It proposes a
novel recurrent-skip layer to capture periodic properties for forecasting.

• MLCNN4: Multi-Level Construal Neural Network (Cheng et al., 2020) is a multi-task deep learning framework that improves
predictive performance by fusing information from different future times. The framework uses a Convolutional Neural Network
to extract multi-level representations of the raw data, then models interactions between multiple predictive tasks and fuses
their future visions through an Encoder–Decoder framework.

• DARNN5: The Dual-stage Attention-based RNN (Qin et al., 2017) uses a two-stage attention mechanism for MTS predictions.
The first stage learns the weights of input variables through a spatial perspective, and the second stage uses a temporal
perspective to learn the weights of hidden states across all time steps.

• MTNet6: Memory Time series network (Chang, Sun, Wu, & Shou-De, 2019) is jointly trained by a large memory component,
three separate encoders, and an auto-regressive component. The memory component and attention mechanism store long-term
correlation patterns through historical data and make prediction results explainable.

• ST-NORM7: ST-NORM (Deng, Chen, Jiang, Song, & Tsang, 2021) propose two types of normalization modules including
temporal normalization and spatial normalization to refine the high-frequency and local components of the original data
respectively. And they can be easily integrated into a canonical deep learning architecture.

• Informer8: Informer (Zhou et al., 2021b) designed a probSparse self-attention and distilling operation to address the Trans-
former’s challenges of secondary time complexity and secondary memory usage. At the same time, the carefully designed
generative decoder alleviates the limitations of the traditional encoder–decoder architecture.

• Pyraformer9: Pyraformer (Liu et al., 2021) can bridge the gap between capturing remote dependencies and achieving low
temporal and spatial complexity. And a pyramidal attention Module is introduced, whose inter-scale tree structure combines
features of different resolutions, while adjacent connections within the same scale model time dependence of different ranges.

• BHT-ARIMA10: BHT-ARIMA (Shi et al., 2020b) is designed to solve practical application problems in MTS prediction. In this
model, the source time series data are augmented by high-order tensors with the help of multi-path delay transformation
technology, and the classical time series prediction model ARIMA is combined with tensor decomposition. The model has
been used to predict PC sales.

• DeepAR11: DeepAR (Salinas, Flunkert, Gasthaus, & Januschowski, 2020) is a self-learning prediction algorithm that uses RNN
to predict one-dimensional time series. It can learn global models from relevant time series; and can learn complex patterns
such as seasonality and data uncertainty growth over time. The model has been used to predict monthly sales of different
items sold by a US automobile company.

2 https://github.com/ibab/tensorflow-wavenet.
3 https://github.com/laiguokun/LSTNet.
4 https://github.com/smallGum/MLCNN.
5 https://github.com/fanyun-sun/DARNN.
6 https://github.com/Maple728/MTNet.
7 https://github.com/JLDeng/ST-Norm.
8 https://github.com/zhouhaoyi/Informer2020.
9 https://github.com/alipay/Pyraformer.

10 https://github.com/yokotatsuya/BHT-ARIMA.
11 https://github.com/arrigonialberto86/deepar.
12

https://github.com/ibab/tensorflow-wavenet
https://github.com/laiguokun/LSTNet
https://github.com/smallGum/MLCNN
https://github.com/fanyun-sun/DARNN
https://github.com/Maple728/MTNet
https://github.com/JLDeng/ST-Norm
https://github.com/zhouhaoyi/Informer2020
https://github.com/alipay/Pyraformer
https://github.com/yokotatsuya/BHT-ARIMA
https://github.com/arrigonialberto86/deepar

Information Processing and Management 59 (2022) 102987D. Li et al.

F
i

• Prophet12: Prophet (Taylor & Letham, 2018) is an open-source time series prediction framework developed for forecasting
at Facebook. Its core function is an additive regression model with three components: a piece-wise logical growth model, a
Fourier series based seasonal model, and a vacation impact model based on indicator function and change distribution. The
model is widely used in sales predictions.

• StemGNN13: Spectral time graph neural network (StemGNN) (Cao et al., 2020) combines Graph Fourier Transform (GFT) and
Discrete Fourier Transform (DFT) into an end-to-end framework. GFT and DFT are used to model inter-series correlations and
temporal dependencies. The GFT and DFT based spectral representations hold clear patterns and can be predicted effectively
by convolution and sequential learning modules.

4.4. Training details

A grid search strategy is conducted for the proposed SDPANet and all baselines for finding the best hyper-parameter settings.
or RNN-LSTM, the hidden size is set at 256, full connect layer size is 128, batch size is set at 16. For WaveNet, dense hidden size
s set at 64, dilation rates are set at 2𝑖 for 𝑖 in range [1, 4], Kernel size is set at 3 and the number of filters is 128. For DARNN, the

encoder and decoder hidden layer are all set at 128, time step is 28. For LSTNet, CNN and RNN hidden size are set at 100, CNN
kernel size is 6, highway window is set at 28. For MTNet, CNN and RNN hidden size are set at 16 and 32 respectively, CNN filter
is 3, batch size is 64 and the number of long-term memory is 7. For MLCNN, the number of CNN filters is set at 25, the hidden
size of both shared and main LSTM is set at 50, the dropout is 0.2, batch size is 128. For StemGNN, the channel size of each graph
convolution layer is set as 64 and the kernel size of CNN is 3, the learning rate is initialized by 0.001 and decayed with rate 0.7
after every 5 epochs. For Informer, the number of heads is set at 8, the dropout is 0.05. For Pyraformer, the number of heads is
set at 8, the dropout is 0.05, the number of children of a parent node is 2, the number of adjacent nodes is 3, batch size is 12. For
BHT-ARIMA, the tucker decomposition ranks are set to [5, 5], the orthogonality mode is 4 and stop criterion is 0.01. For DeepAR,
the learning rate is set at 0.001, the batch size is 16, the dropout is 0.2, the number of RNN hidden units is 32 and the number of
RNN hidden layer is 1. For Prophet, the confidence interval is set at 0.8, the change point range is 0.8, the change points number
is 1000 and the change point prior scale is 0.05.

For the proposed SDPANet,14 the filter number of SDK component is chosen from {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}. The
maximum input length of time series is chosen from {24, 32, 48, 56, 64}. The RNN hidden state of HA component is chosen from
{32, 64, 96, 128, 256}. The learning rate is set as 0.001. Besides, dropout is performed for each neural network layer with its rate
set as 0.2. The window size 𝑠 for SR is assigned as 30. The details of parameter sensitive test could be seen in Section 4.7.

4.5. Main results

Tables 3–5 summarizes the average performance and standard deviations of all methods on Ganalz and Cainiao datasets. The
best results are highlighted in bold, and second-best results are underlined. SDPANet outperforms the other baselines on both Galanz
and Cainiao test data. The results are summarized below:

Improves on the other 13 baselines. For Galanz GWN test data, the average improvements in RMAE and RRSE are about 53%
and 42% respectively, while for Cainiao CWN data the improvements are about 30% and 37%. Compared with the best baselines,
the improvements are 20% and 6.5% on Galanz and 6.3% and 6.6% on Cainiao in terms of RMAE and RRSE. SDPANet achieves the
best performances in 7 of Galanz’s 10 warehouses, and in 3 of Cainiao’s 5 warehouses in terms of both RMAE and RRSE.

Compared with the three sales prediction models, which are BHT-ARIMA, DeepAR and Prophet, SDPANet significantly outper-
forms the best of the three baselines on GWN and CWN. For RMAE, RRSE and CORR the improvements are, respectively, 43%, 4%,
4% (on Galanz), and 18.1%, 23.1%, 3.7% (on Cainiao). The model also improves significantly on data from individual warehouses.
The competitive baselines, such as BHT-ARIMA converts the input 𝑋1∼𝑁

1∼𝑡 into a higher order tensor by conducting duplication matrix
operations; it then calculates the kernel tensor by using low-rank tensor decomposition. The kernel tensor is used to predict future
sales. Unlike BHT-ARIMA, the proposed SDPANet adopts SDK giving more flexibility in the assignment of dynamic weight. SDPANet
combines dynamic weight with the attention-based sequence model of HA, which can better extract different patterns from different
time periods. BHT-ARIMA maps the internal correlations of the input MTS to each orthogonal dimension of the kernel tensor without
particularly modeling the dynamic correlations. In addition, SDPANet treats linear and non-linear correlations separately, and the
DC loss provides more future trend information for better model training.

Higher degree of correlations. Values of CORR for baseline models were relatively small, indicating there exists large deviations
between true and predicted values at some prediction time points. As for GWN and CWN, the improvement of CORR compared with
the best baselines are 2.1% and 36% respectively. The average CORR of all baselines for GWN and CWN was, respectively, 0.47
and 0.30. These values are far smaller than the averages of 0.93 and 0.80 gained using SDPANet. This indicates that the proposed
SDPANet can significantly reduce the predictions with large deviations of both Galanz and Cainiao, and the prediction results are
more stable.

12 https://github.com/facebook/prophet.
13 https://github.com/microsoft/StemGNN.
14 https://github.com/inksyy/SDPANet.
13

https://github.com/facebook/prophet
https://github.com/microsoft/StemGNN
https://github.com/inksyy/SDPANet

Information Processing and Management 59 (2022) 102987D. Li et al.

d
o
c
T
p
T
1
r

o
F
p
T
t

Table 3
Performance on Galanz dataset (GW = Galanz Warehouse, GW1∼GW5 are the top 5 ranked warehouses).

Galanz

Metrics Method GW1 GW2 GW3 GW4 GW5 GWN

RMAE

LSTM 0.77 ± 0.005 0.59 ± 0.005 0.61 ± 0.042 1.18 ± 0.000 0.78 ± 0.013 1.21 ± 0.011
WaveNet 0.56 ± 0.057 0.06 ± 0.001 0.54 ± 0.033 0.83 ± 0.076 0.82 ± 0.008 1.20 ± 0.023
MLCNN 0.20 ± 0.001 0.16 ± 0.004 0.24 ± 0.13 0.35 ± 0.003 0.45 ± 0.020 0.65 ± 0.006
LSTNet 0.51 ± 0.002 0.06 ± 0.003 0.74 ± 0.005 0.76 ± 0.046 0.85 ± 0.032 1.18 ± 0.014
MTNet 0.52 ± 0.011 0.18 ± 0.004 0.71 ± 0.003 0.79 ± 0.005 0.87 ± 0.004 1.24 ± 0.008
DARNN 0.71 ± 0.006 0.57 ± 0.038 0.22 ± 0.004 0.82 ± 0.078 0.73 ± 0.028 1.25 ± 0.026
StemGNN 0.51 ± 0.000 0.05 ± 0.008 0.74 ± 0.001 0.76 ± 0.023 0.85 ± 0.008 1.10 ± 0.007
Informer 0.51 ± 0.001 0.07 ± 0.001 0.75 ± 0.000 0.76 ± 0.006 0.82 ± 0.063 1.14 ± 0.007
Pyraformer 0.51 ± 0.003 0.10 ± 0.003 0.76 ± 0.004 0.76 ± 0.000 0.88 ± 0.004 1.21 ± 0.003
BHT-ARIMA 0.25 ± 0.000 0.06 ± 0.000 0.53 ± 0.000 0.36 ± 0.000 0.64 ± 0.001 0.95 ± 0.000
ST-NORM 0.23 ± 0.043 0.08 ± 0.007 0.20 ± 0.007 0.12 ± 0.023 0.69 ± 0.015 0.83 ± 0.004
DeepAR 0.52 ± 0.000 0.25 ± 0.001 0.77 ± 0.000 0.77 ± 0.000 0.86 ± 0.003 1.21.±0.001
prophet 0.51 ± 0.000 1.07 ± 0.000 0.43 ± 0.000 0.36 ± 0.000 1.02 ± 0.000 1.14 ± 0.000
SDPANet 0.13 ± 0.039 0.05 ± 0.002 0.16 ± 0.003 0.16 ± 0.011 0.33 ± 0.009 0.52 ± 0.006

RRSE

LSTM 1.62 ± 0.076 13.2 ± 0.002 0.85 ± 0.001 1.73 ± 0.009 0.86 ± 0.005 1.03 ± 0.031
WaveNet 1.01 ± 0.008 1.06 ± 0.012 1.03 ± 0.003 1.01 ± 0.013 1.10 ± 0.011 1.01 ± 0.003
MLCNN 0.65 ± 0.065 2.37 ± 0.299 0.22 ± 0.007 0.14 ± 0.015 0.55 ± 0.001 1.24 ± 0.019
LSTNet 1.03 ± 0.012 1.16 ± 0.019 1.03 ± 0.012 1.02 ± 0.011 1.12 ± 0.006 1.03 ± 0.014
MTNet 1.05 ± 0.006 2.77 ± 0.099 1.04 ± 0.06 1.12 ± 0.083 1.19 ± 0.064 1.02 ± 0.043
DARNN 0.82 ± 0.014 3.56 ± 0.034 0.23 ± 0.013 0.85 ± 0.004 0.71 ± 0.045 0.68 ± 0.024
StemGNN 1.04 ± 0.001 1.05 ± 0.148 1.04 ± 0.004 1.03 ± 0.002 1.12 ± 0.002 1.29 ± 0.003
Informer 1.02 ± 0.005 1.06 ± 0.022 1.01 ± 0.003 1.01 ± 0.002 1.11 ± 0.002 1.03 ± 0.001
Pyraformer 1.01 ± 0.000 1.52 ± 0.088 1.00 ± 0.000 1.00 ± 0.002 1.09 ± 0.004 1.03 ± 0.002
BHT-ARIMA 0.44 ± 0.000 1.18 ± 0.000 0.71 ± 0.000 0.41 ± 0.000 0.84 ± 0.000 1.49 ± 0.000
ST-NORM 0.72 ± 0.015 1.21 ± 0.061 0.18 ± 0.002 0.09 ± 0.028 0.75 ± 0.009 0.64 ± 0.009
DeepAR 1.01 ± 0.000 2.96 ± 0.015 1.01 ± 0.001 1.01 ± 0.000 1.09 ± 0.002 1.03 ± 0.000
prophet 0.76 ± 0.000 32.11 ± 0.000 0.35 ± 0.000 0.59 ± 0.000 0.34 ± 0.012 0.62 ± 0.000
SDPANet 0.15 ± 0.009 0.75 ± 0.028 0.17 ± 0.003 0.13 ± 0.007 0.33 ± 0.001 0.58 ± 0.011

CORR

LSTM 0.99 ± 0.001 0.41 ± 0.000 0.99 ± 0.001 0.99 ± 0.002 0.73 ± 0.008 0.30 ± 0.001
WaveNet 0.38 ± 0.019 0.24 ± 0.140 0.23 ± 0.023 0.50 ± 0.076 0.59 ± 0.058 0.28 ± 0.007
MLCNN 0.94 ± 0.006 0.68 ± 0.148 1.00 ± 0.001 0.96 ± 0.005 0.94 ± 0.004 0.59 ± 0.007
LSTNet 0.08 ± 0.002 0.38 ± 0.012 0.17 ± 0.010 0.02 ± 0.026 0.01 ± 0.046 0.02 ± 0.003
MTNet 0.05 ± 0.014 0.05 ± 0.003 0.23 ± 0.005 0.03 ± 0.026 0.12 ± 0.003 0.12 ± 0.011
DARNN 0.70 ± 0.004 0.20 ± 0.089 0.99 ± 0.001 0.77 ± 0.046 0.76 ± 0.011 0.74 ± 0.042
StemGNN 0.95 ± 0.018 0.39 ± 0.100 0.96 ± 0.001 0.92 ± 0.024 0.65 ± 0.043 0.14 ± 0.013
Informer 0.74 ± 0.186 0.31 ± 0.093 0.82 ± 0.105 0.86 ± 0.002 0.61 ± 0.051 0.53 ± 0.029
Pyraformer 0.79 ± 0.019 0.42 ± 0.029 0.86 ± 0.039 0.80 ± 0.086 0.50 ± 0.095 0.57 ± 0.004
BHT-ARIMA 0.95 ± 0.000 0.16 ± 0.000 0.94 ± 0.000 0.95 ± 0.000 0.80 ± 0.003 0.29 ± 0.000
ST-NORM 0.93 ± 0.014 0.17 ± 0.043 0.94 ± 0.001 0.95 ± 0.002 0.80 ± 0.155 0.78 ± 0.009
DeepAR 0.28 ± 0.032 0.32 ± 0.062 0.13 ± 0.166 0.36 ± 0.035 0.36 ± 0.047 0.08 ± 0.018
prophet 0.94 ± 0.000 0.20 ± 0.000 0.94 ± 0.000 0.78 ± 0.000 0.78 ± 0.000 0.89 ± 0.000
SDPANet 0.99 ± 0.000 0.73 ± 0.012 1.00 ± 0.001 1.00 ± 0.002 0.95 ± 0.006 0.93 ± 0.002

The performances of the proposed SDPANet on Traffic and Exchange-Rate data are shown in Tables 6 and 7. Horizon represents
ifferent training windows, and is assigned values of 3, 6, 12, 24 respectively for both Traffic and Exchange-Rate. Performances
f AR, RNN-GRU, LSTNet and MTNet are reported in Chang et al. (2019), Cheng et al. (2020), Lai et al. (2018). The three most
ompetitive baselines (MLCNN, StemGNN and ST-Norm) are also selected. 10-folder cross validation is used to make evaluations.
he Traffic time series has a strong periodic pattern, while the time series of different exchange rates has strong correlation
atterns; therefore, the effects of all models are relatively close. However, SDPANet still outperforms most of the baselines on both
raffic and Exchange-Rate. For RSE and CORR the average improvements are, respectively, 11% and 10% (Traffic), and 1.5% and
2% (Exchange-Rate). When compared with the best baselines, the average improvements are 2.7% and 0.5% for RSE and CORR
espectively.

We display a few qualitative examples based on selected products to further illustrate the performance of the proposed model
n large sales predictions and future 𝑡 + 𝑘 time periods sales predictions. Experimental results are summarized in Figs. 5 and 6. In
ig. 5, SDPANet could obtain the best performance in predicting large sales on 22 selected products compared with baselines. Take
roduct ID 2 as an example (The curve is marked by red rectangle), the predicted value 1968 is very close to the true value 1865.
hough the results of StemGNN, MLCNN and DARNN are competitive, the errors are still large compared with SPDANet. It seems
hat LSTNet and MTNet could not effectively capture useful patterns for sales predictions.

Fig. 6 shows two examples from both Galanz and Cainiao for performance evaluation on future 𝑡 + 𝑘 time periods predictions.
Experimental results clearly exhibit that the proposed SDPANet outperformances all the baselines for fusing and predicting different
future visions. The state-of-the-art methods could not effectively learn useful knowledge from train data to capture dynamic changes
in test data. While the proposed SDPANet could in one aspect obtain more accurate predictions at each future time point, and in
14

Information Processing and Management 59 (2022) 102987D. Li et al.
Table 4
Performance on Galanz dataset (GW = Galanz Warehouse, GW6∼GW10 are the last 5 ranked warehouses).

Galanz

Metrics Method GW6 GW7 GW8 GW9 GW10 GWN

RMAE

LSTM 0.19 ± 0.017 1.25 ± 0.126 0.85 ± 0.002 0.98 ± 0.008 1.18 ± 0.177 1.21 ± 0.011
WaveNet 1.14 ± 0.021 1.05 ± 0.098 1.38 ± 0.114 1.19 ± 0.239 1.24 ± 0.004 1.20 ± 0.023
MLCNN 0.15 ± 0.013 0.75 ± 0.025 0.60 ± 0.030 0.62 ± 0.048 0.52 ± 0.010 0.65 ± 0.006
LSTNet 0.04 ± 0.027 1.08 ± 0.035 0.93 ± 0.097 0.98 ± 0.008 1.05 ± 0.020 1.18 ± 0.014
MTNet 0.29 ± 0.011 0.95 ± 0.001 1.25 ± 0.023 1.12 ± 0.006 1.37 ± 0.004 1.24 ± 0.008
DARNN 0.29 ± 0.032 1.15 ± 0.068 1.08 ± 0.108 0.88 ± 0.056 0.98 ± 0.021 1.25 ± 0.026
StemGNN 0.04 ± 0.003 0.93 ± 0.013 1.25 ± 0.015 0.98 ± 0.008 1.23 ± 0.011 1.10 ± 0.007
Informer 0.47 ± 0.042 0.51 ± 0.046 1.10 ± 0.123 1.12 ± 0.096 1.16 ± 0.135 1.14 ± 0.007
Pyraformer 0.05 ± 0.003 0.98 ± 0.002 1.23 ± 0.001 1.03 ± 0.002 1.28 ± 0.004 1.21 ± 0.003
BHT-ARIMA 0.03 ± 0.000 0.79 ± 0.000 1.06 ± 0.003 0.81 ± 0.000 1.00 ± 0.000 0.95 ± 0.000
ST-NORM 0.08 ± 0.009 0.74 ± 0.011 0.85 ± 0.015 0.76 ± 0.006 0.94 ± 0.051 0.83 ± 0.004
DeepAR 0.08 ± 0.002 0.96 ± 0.000 1.20 ± 0.001 1.01 ± 0.001 1.27 ± 0.001 1.21 ± 0.001
prophet 0.34 ± 0.000 1.12 ± 0.000 1.03 ± 0.000 0.87 ± 0.000 0.72 ± 0.000 1.14 ± 0.000
SDPANet 0.09 ± 0.012 0.60 ± 0.005 0.54 ± 0.021 0.46 ± 0.011 0.37 ± 0.007 0.52 ± 0.006

RRSE

LSTM 4.17 ± 0.020 0.80 ± 0.000 0.59 ± 0.006 0.87 ± 0.006 0.50 ± 0.000 1.03 ± 0.031
WaveNet 0.98 ± 0.001 1.01 ± 0.034 0.94 ± 0.003 0.98 ± 0.010 1.05 ± 0.001 1.01 ± 0.003
MLCNN 2.61 ± 0.009 1.87 ± 0.136 0.83 ± 0.003 0.65 ± 0.019 0.47 ± 0.022 1.24 ± 0.019
LSTNet 1.03 ± 0.023 1.04 ± 0.003 1.09 ± 0.031 1.07 ± 0.004 1.10 ± 0.043 1.03 ± 0.014
MTNet 1.08 ± 0.033 1.15 ± 0.105 1.11 ± 0.003 1.08 ± 0.012 1.14 ± 0.109 1.02 ± 0.043
DARNN 5.16 ± 0.012 0.88 ± 0.015 0.74 ± 0.001 0.74 ± 0.044 0.84 ± 0.011 0.68 ± 0.024
StemGNN 1.05 ± 0.080 1.04 ± 0.000 1.12 ± 0.000 1.07 ± 0.001 1.05 ± 0.003 1.29 ± 0.003
Informer 1.04 ± 0.010 1.04 ± 0.000 1.10 ± 0.000 1.06 ± 0.001 1.04 ± 0.001 1.03 ± 0.001
Pyraformer 1.00 ± 0.000 1.04 ± 0.000 1.09 ± 0.004 1.06 ± 0.000 1.04 ± 0.000 1.03 ± 0.002
BHT-ARIMA 0.63 ± 0.000 0.91 ± 0.000 0.91 ± 0.001 0.85 ± 0.000 0.79 ± 0.000 1.49 ± 0.000
ST-NORM 0.99 ± 0.002 0.82 ± 0.018 0.70 ± 0.020 0.68 ± 0.012 0.74 ± 0.040 0.64 ± 0.009
DeepAR 0.97 ± 0.008 1.04 ± 0.000 1.09 ± 0.001 1.05 ± 0.000 1.04 ± 0.000 1.03 ± 0.000
prophet 7.80 ± 0.000 0.81 ± 0.000 0.93 ± 0.000 0.59 ± 0.000 0.33 ± 0.000 0.62 ± 0.000
SDPANet 0.73 ± 0.013 0.66 ± 0.021 0.51 ± 0.004 0.40 ± 0.007 0.18 ± 0.004 0.58 ± 0.011

CORR

LSTM 0.95 ± 0.002 0.64 ± 0.002 0.86 ± 0.008 0.76 ± 0.002 0.94 ± 0.009 0.30 ± 0.001
WaveNet 0.29 ± 0.004 0.08 ± 0.005 0.51 ± 0.061 0.33 ± 0.012 0.018 ± 0.010 0.28 ± 0.007
MLCNN 0.86 ± 0.007 0.64 ± 0.012 0.87 ± 0.002 0.91 ± 0.004 0.93 ± 0.064 0.59 ± 0.007
LSTNet 0.17 ± 0.012 0.05 ± 0.023 0.02 ± 0.065 0.01 ± 0.002 0.101 ± 0.090 0.02 ± 0.003
MTNet 0.21 ± 0.028 0.07 ± 0.030 0.01 ± 0.005 0.03 ± 0.019 0.18 ± 0.012 0.12 ± 0.011
DARNN 0.86 ± 0.004 0.52 ± 0.016 0.77 ± 0.033 0.67 ± 0.053 0.57 ± 0.016 0.74 ± 0.042
StemGNN 0.88 ± 0.003 0.61 ± 0.000 0.72 ± 0.000 0.72 ± 0.024 0.77 ± 0.018 0.14 ± 0.013
Informer 0.23 ± 0.116 0.49 ± 0.003 0.71 ± 0.051 0.58 ± 0.139 0.55 ± 0.040 0.53 ± 0.029
Pyraformer 0.36 ± 0.018 0.41 ± 0.007 0.50 ± 0.029 0.55 ± 0.115 0.74 ± 0.001 0.57 ± 0.004
BHT-ARIMA 0.88 ± 0.000 0.62 ± 0.000 0.67 ± 0.000 0.65 ± 0.001 0.87 ± 0.000 0.29 ± 0.000
ST-NORM 0.57 ± 0.013 0.60 ± 0.024 0.70 ± 0.021 0.72 ± 0.006 0.74 ± 0.094 0.78 ± 0.009
DeepAR 0.33 ± 0.051 0.24 ± 0.137 0.40 ± 0.009 0.42 ± 0.016 0.23 ± 0.122 0.08 ± 0.002
prophet 0.76 ± 0.000 0.76 ± 0.000 0.61 ± 0.000 0.88 ± 0.000 0.95 ± 0.000 0.89 ± 0.000
SDPANet 0.92 ± 0.004 0.84 ± 0.012 0.88 ± 0.016 0.95 ± 0.001 0.98 ± 0.002 0.93 ± 0.002

another aspect ensure the shape and trend correlations between true and predicted values to the maximum extent (Higher value of
CORR as seen in Fig. 6).

4.6. Ablation test

To demonstrate the effectiveness of each model component, we compare SDPANet with 9 variants as follows.

• SDPANet-SDK: We remove the SDK module and replace it with the CNN module.
• SDPANet-HA: We replace the Hierarchical Attention (HA) Component with shared-main LSTM of MLCNN.
• SDPANet-TA: We replace the Temporal Attention(TA) Component with shared-main LSTM of MLCNN.
• SDPANet-SA: We remove the Spatial Attention(SA) Component.
• SDPANet-DC: We remove the dynamic change (DC) loss function and replace it with the L1 loss function.
• SDPANet-HU: We replace the Homovariance Uncertainty (HU) loss with approximate optimal weight.
• SDPANet-SR: We remove the Simultaneous Regression (SR) component.
• SDPANet-SR+AR: We replace the Simultaneous Regression (SR) with Auto Regression (AR) component.
• SDPANet-SDK+DCA: We replace the Dynamic Kernel (SDK) component with Dynamic Convolution with Attention (DCA) (Chen

et al., 2020).
15

Information Processing and Management 59 (2022) 102987D. Li et al.

S
o

t
R
t
a
p
H
s
f
i

𝑋
t
d
d
c
s

Table 5
Performance on Cainiao dataset (CW = Cainiao Warehouse, CW1∼CW5 are the 5 warehouses).

Cainiao

Metrics Method CW1 CW2 CW3 CW4 CW5 GWN

RMAE

LSTM 1.192 ± 0.009 1.247 ± 0.039 0.940 ± 0.001 1.691 ± 0.049 0.939 ± 0.004 1.170 ± 0.001
WaveNet 1.364 ± 0.007 1.391 ± 0.000 1.053 ± 0.009 1.882 ± 0.022 1.135 ± 0.049 1.340 ± 0.002
MLCNN 1.198 ± 0.007 1.165 ± 0.000 0.994 ± 0.007 1.819 ± 0.008 1.016 ± 0.022 1.218 ± 0.001
LSTNet 1.229 ± 0.003 1.109 ± 0.005 1.004 ± 0.001 1.814 ± 0.003 0.982 ± 0.004 1.159 ± 0.006
MTNet 1.395 ± 0.004 1.255 ± 0.004 1.304 ± 0.003 2.274 ± 0.003 1.164 ± 0.004 1.461 ± 0.006
DARNN 1.197 ± 0.016 1.247 ± 0.089 1.315 ± 0.081 2.064 ± 0.098 1.343 ± 0.090 1.479 ± 0.043
StemGNN 1.090 ± 0.234 0.789 ± 0.143 0.881 ± 0.282 1.569 ± 0.328 0.810 ± 0.249 0.988 ± 0.215
Informer 1.329 ± 0.002 1.244 ± 0.000 1.056 ± 0.000 1.854 ± 0.047 1.063 ± 0.003 1.302 ± 0.001
Pyraformer 1.335 ± 0.000 1.244 ± 0.000 1.056 ± 0.001 1.907 ± 0.001 1.068 ± 0.000 1.307 ± 0.001
BHT-ARIMA 1.271 ± 0.000 1.188 ± 0.000 1.008 ± 0.000 1.796 ± 0.001 1.014 ± 0.000 1.241 ± 0.000
ST-NORM 0.758 ± 0.097 0.638 ± 0.007 0.591 ± 0.007 1.254 ± 0.012 0.704 ± 0.143 0.788 ± 0.015
DeepAR 1.012 ± 0.022 1.006 ± 0.062 0.837 ± 0.027 1.511 ± 0.009 0.826 ± 0.001 1.026 ± 0.001
prophet 0.852 ± 0.000 0.879 ± 0.000 0.700 ± 0.000 1.248 ± 0.000 0.950 ± 0.000 0.918 ± 0.000
SDPANet 0.751 ± 0.006 0.707 ± 0.004 0.587 ± 0.012 1.120 ± 0.009 0.572 ± 0.005 0.738 ± 0.006

RRSE

LSTM 1.121 ± 0.028 1.216 ± 0.013 1.307 ± 0.032 1.026 ± 0.010 1.014 ± 0.005 1.017 ± 0.004
WaveNet 1.875 ± 0.022 1.335 ± 0.033 1.977 ± 0.016 2.279 ± 0.026 1.165 ± 0.015 1.427 ± 0.021
MLCNN 0.951 ± 0.008 1.048 ± 0.039 1.015 ± 0.000 0.990 ± 0.003 0.982 ± 0.004 0.988 ± 0.001
LSTNet 1.000 ± 0.001 0.969 ± 0.002 1.036 ± 0.001 1.003 ± 0.001 0.991 ± 0.002 0.997 ± 0.003
MTNet 1.094 ± 0.005 1.132 ± 0.006 1.531 ± 0.001 1.346 ± 0.002 1.037 ± 0.004 1.093 ± 0.006
DARNN 0.897 ± 0.004 0.976 ± 0.029 0.952 ± 0.062 1.012 ± 0.011 1.005 ± 0.001 0.990 ± 0.010
StemGNN 0.847 ± 0.197 0.916 ± 0.284 2.792 ± 2.090 0.909 ± 0.120 0.804 ± 0.229 0.751 ± 0.031
Informer 1.043 ± 0.001 1.040 ± 0.001 1.049 ± 0.000 1.029 ± 0.000 1.032 ± 0.001 1.032 ± 0.000
Pyraformer 1.042 ± 0.001 1.038 ± 0.001 1.047 ± 0.000 1.029 ± 0.000 1.032 ± 0.000 1.032 ± 0.000
BHT-ARIMA 0.978 ± 0.000 1.019 ± 0.000 0.998 ± 0.000 0.936 ± 0.000 0.985 ± 0.000 0.961 ± 0.000
ST-NORM 0.646 ± 0.035 0.619 ± 0.012 0.673 ± 0.028 0.770 ± 0.018 0.650 ± 0.067 0.732 ± 0.008
DeepAR 0.859 ± 0.016 0.878 ± 0.014 0.899 ± 0.017 0.946 ± 0.001 0.892 ± 0.008 0.915 ± 0.004
prophet 1.110 ± 0.000 1.056 ± 0.000 1.113 ± 0.000 0.980 ± 0.000 1.317 ± 0.000 1.078 ± 0.000
SDPANet 0.720 ± 0.006 0.707 ± 0.022 0.654 ± 0.002 0.693 ± 0.031 0.641 ± 0.027 0.684 ± 0.009

CORR

LSTM 0.328 ± 0.007 0.327 ± 0.010 0.361 ± 0.001 0.261 ± 0.003 0.278 ± 0.002 0.287 ± 0.001
WaveNet 0.231 ± 0.024 0.262 ± 0.003 0.246 ± 0.001 0.184 ± 0.004 0.212 ± 0.001 0.087 ± 0.050
MLCNN 0.826 ± 0.014 0.743 ± 0.003 0.634 ± 0.002 0.803 ± 0.008 0.806 ± 0.010 0.713 ± 0.008
LSTNet 0.278 ± 0.003 0.337 ± 0.005 0.161 ± 0.000 0.216 ± 0.001 0.271 ± 0.008 0.246 ± 0.001
MTNet 0.012 ± 0.001 0.031 ± 0.002 0.005 ± 0.001 0.004 ± 0.001 0.029 ± 0.001 0.006 ± 0.001
DARNN 0.668 ± 0.010 0.557 ± 0.026 0.617 ± 0.020 0.615 ± 0.003 0.809 ± 0.012 0.192 ± 0.011
StemGNN 0.741 ± 0.013 0.713 ± 0.071 0.796 ± 0.051 0.790 ± 0.026 0.792 ± 0.028 0.509 ± 0.233
Informer 0.182 ± 0.066 0.177 ± 0.070 0.150 ± 0.013 0.199 ± 0.026 0.251 ± 0.081 0.185 ± 0.009
Pyraformer 0.195 ± 0.002 0.114 ± 0.000 0.146 ± 0.040 0.129 ± 0.032 0.178 ± 0.029 0.139 ± 0.003
BHT-ARIMA 0.681 ± 0.000 0.415 ± 0.000 0.676 ± 0.000 0.800 ± 0.003 0.618 ± 0.000 0.721 ± 0.002
ST-NORM 0.792 ± 0.037 0.776 ± 0.010 0.771 ± 0.017 0.743 ± 0.020 0.765 ± 0.055 0.739 ± 0.003
DeepAR 0.710 ± 0.018 0.645 ± 0.014 0.663 ± 0.024 0.581 ± 0.000 0.631 ± 0.008 0.610 ± 0.004
prophet 0.646 ± 0.000 0.676 ± 0.000 0.639 ± 0.000 0.587 ± 0.000 0.763 ± 0.000 0.636 ± 0.000
SDPANet 0.722 ± 0.027 0.783 ± 0.005 0.805 ± 0.001 0.808 ± 0.004 0.793 ± 0.019 0.758 ± 0.006

For all the variants, we tune their hidden dimension to make them have similar numbers of model parameters to the completed
DPANet model, eliminating the influences of different model complexity. Fig. 7 presents the results of comparison. Important
bservations from these results are listed as follows.

Removing the SR component (SDPANet-SR) from SDPANet causes the most significant performance drops on both datasets in
erms of all metrics. Compared with traditional AR components (SDPANet-SR+AR), the proposed SR could also improve RMAE,
RSE and CORR by 5.8%, 9.1% and 7.3% on average on both Galanz and Cainiao. Compared with Shared-Main LSTM of MLCNN,

he proposed HA (HA contains both ST and TA) could obtain significant improvement. The average improvement of RMAE, RRSE
nd CORR are 3.9%, 7.3% and 4.5% on average (SDPANet-HA). DC loss also provides significant contributions towards model
erformance. The improvements of RRSE and CORR are particularly obvious, which are 7.3%, 14.1% and 18.5%. DC loss considering
U also contributes positive improvement towards model performance. Removing the SDK component (SDPANet-SDK) causes

ignificant performance drops, which indicates using kernel-specific methods could effectively capture dynamic changing patterns
rom MTS. In addition, compared with Dynamic Convolution (SDPANet-SDK+DCA), the proposed model can also have obvious
mprovements, because SDK focuses on capturing correlations from more micro level.

A case study of illustrating working mechanism of SR component could be seen in Fig. 8. For a MTS with 6 sales time series
1∼𝑋6, Augmented Dickey–Fuller (ADF) test is proposed firstly to check whether each time series is stable. In this study, all sales

ime series pass ADF test with high confidence, and 𝑝 value of each time series is smaller than 0.05. Then co-integration based
ynamic programming (3.2.3) of SR is proposed to group the 6 time series into different subsets. The main advantage of adopting
ynamic programming is that it only needs to make co-integration test between two adjacent time series (ex. 𝑋2 only needs to make
o-integration test with 𝑋3). Three subsets 𝑆1(𝑋1, 𝑋4), 𝑆2(𝑋2, 𝑋3, 𝑋5) and 𝑆3(𝑋6) are detected. Time series in each subset have
table linear correlation patterns with each other, which could be calculated by using simultaneous equation.
16

Information Processing and Management 59 (2022) 102987D. Li et al.
Fig. 5. The performance of the proposed model on selected 22 products.

Fig. 6. The performance of the proposed model on selected products for 𝑡 + 𝑘 predictions.

Fig. 7. Results of variant comparison.
17

Information Processing and Management 59 (2022) 102987D. Li et al.

a
t
b
c
b
e

𝑋
k
k

Table 6
Performance of the proposed SDPANet model on Traffic dataset.

Dataset Traffic

Horizon

Methods Metrics 3 6 12 24

ARa RSE 0.5991 0.6218 0.6252 0.6293
CORR 0.7752 0.7568 0.7544 0.7519

RNN-GRUa RSE 0.5358 0.5522 0.5562 0.5633
CORR 0.8511 0.8405 0.8345 0.8300

LSTNet-Skipa RSE 0.4777 0.4893 0.4950 0.4973
CORR 0.8721 0.8690 0.8614 0.8588

LSTNet-Attna RSE 0.4897 0.4973 0.5173 0.5300
CORR 0.8704 0.8669 0.8540 0.8429

MTNeta RSE 0.4764 0.4855 0.4877 0.5023
CORR 0.8728 0.8681 0.8644 0.8570

ST-Normb RSE 0.9870 ± 0.0080 1.0320 ± 0.0010 0.9465 ± 0.0065 0.9770 ± 0.0080
CORR 0.3785 ± 0.0605 0.3515 ± 0.0175 0.3140 ± 0.0130 0.1160 ± 0.0120

MLCNNb RSE 0.4723 ± 0.0005 0.4808 ± 0.0015 0.4853 ± 0.0016 0.5129 ± 0.0020
CORR 0.8728 ± 0.0007 0.8688 ± 0.0013 0.8630 ± 0.0007 0.8448 ± 0.0003

SDPANet RSE 0.4716 ± 0.0008 0.4803 ± 0.0005 0.4845 ± 0.0008 0.4959 ± 0.0047
CORR 0.8730 ± 0.0002 0.8693 ± 0.0011 0.8632 ± 0.0008 0.8578 ± 0.0034

aThe results are retrieved from Lai et al. (2018), Chang et al. (2019) and Cheng et al. (2020).
bFor a fair comparison, we reproduce the results using their released implementation codes and configurations on the same
datasets.

Table 7
Performance of the proposed SDPANet model on Exchange-Rate dataset.

Dataset Exchange-Rate

Horizon

Methods Metrics 3 6 12 24

ARa RSE 0.0228 0.0279 0.0353 0.0445
CORR 0.9734 0.9656 0.9526 0.9357

RNN-GRUa RSE 0.0192 0.0264 0.0408 0.0626
CORR 0.9786 0.9712 0.9531 0.9223

LSTNet-Skipa RSE 0.0226 0.0280 0.0356 0.0449
CORR 0.9735 0.9658 0.9511 0.9354

LSTNet-Attna RSE 0.0276 0.0321 0.0448 0.0590
CORR 0.9717 0.9656 0.9499 0.9339

MTNeta RSE 0.0212 0.0258 0.0347 0.0442
CORR 0.9767 0.9703 0.9561 0.9388

StemGNNb RSE 0.0687 ± 0.0012 0.0729 ± 0.0016 0.0985 ± 0.0004 0.1139 ± 0.0004
CORR 0.8535 ± 0.0007 0.8420 ± 0.0003 0.6521 ± 0.0011 0.5571 ± 0.0004

ST-Normb RSE 0.0710 ± 0.0010 0.0625 ± 0.0005 0.0485 ± 0.0065 0.0585 ± 0.0015
CORR 0.3210 ± 0.1450 0.1990 ± 0.0010 0.2040 ± 0.0070 0.1675 ± 0.0265

MLCNNb RSE 0.0212 ± 0.0003 0.0280 ± 0.0013 0.0420 ± 0.0006 0.0522 ± 0.0025
CORR 0.9769 ± 0.0003 0.9674 ± 0.0004 0.9488 ± 0.0008 0.9329 ± 0.0020

SDPANet RSE 0.0186 ± 0.0003 0.0250 ± 0.0001 0.0341 ± 0.0003 0.0441 ± 0.0002
CORR 0.9784 ± 0.0004 0.9706 ± 0.0003 0.9564 ± 0.0006 0.9391 ± 0.0004

aThe results are retrieved from Lai et al. (2018), Chang et al. (2019) and Cheng et al. (2020).
bFor a fair comparison, we reproduce the results using their released implementation codes and configurations on the same
datasets.

Fig. 9 illustrates an example of the importance of SR in sales prediction. For an input sales MTS 𝑋1∼𝑁
1∼𝑡 with 𝑁 = 22, 5 time

series 𝑋1∼𝑋5 are selected using SR. Any 2 of the 5 time series pass the Co-Integration test (ex. the P-Value between 𝑋1 and 𝑋5
re smaller than 0.05), which indicates that there are linear correlations between the 5 time series. The series all have similar
rend patterns, with sales in the first half period being high, before peaking in the middle period, then remaining relatively low
ut starting to grow at the end of the time period. Obviously, there is a delay in the linear correlations between the series, which
ould be modeled by using simultaneous regression. SDPANet-SR removes SR from SDPANet. The weight-sum of the predictions of
oth SR and SDPANet-SR significantly improve the performances, as indicated by MAE, RSE and CORR, which further confirms the
ffectiveness of the proposed SR component.

Another case study of comparing SDK of SDPANet and CNN of MLCNN can be seen in Fig. 10. For a MTS with 4 time series 𝑋1,
2, 𝑋3 and 𝑋4, assume the filter number is set as 4, then each convolutional window (red rectangle) will be assigned 4 specific
ernels with size as 3 × 4. Different colors in each cell of a kernel represents different kernel weights. Compared with MLCNN,
ernel weights of SDK are dynamically changing along the times. The top part of Fig. 10(a) and (b) represents the filter output
18

Information Processing and Management 59 (2022) 102987D. Li et al.
Fig. 8. Case study of SR component.

Fig. 9. An example showing the important role of SR in sales prediction.

after CNN and SDK convolution operations. Compared with filter output based on dynamic convolution and traditional CNN, it is
obvious that the output of SDK has a significant correlation with the changing patterns of original time series.

Fig. 11(a) and (b) show two examples of HA being applied to sales prediction. The attention weight distributions of HA are more
closely correlated to the target time series than DARNN. In Fig. 11(a), the level of sales to be predicted is relatively high, and its
HA attention is focused on the time point of high historical sales. In Fig. 11(b), the sales to be predicted is relatively small, and its
HA attention is focused on the time point of low historical sales. The two examples show that HA component can effectively detect
19

Information Processing and Management 59 (2022) 102987D. Li et al.
Fig. 10. Case studies of SDK component.

Fig. 11. Pattern analysis based on HA component.

meaningful patterns that are highly correlated with future sales. DARNN however, fails to generate effective attention weights for
either target time series. The attention mechanism of HA is similar to that of DARNN: they both contain spatiotemporal attentions.
The main difference is that HA uses the output of SDK as its input, while DARNN uses the output of traditional CNN. The examples
shown in Fig. 11 provide further evidence that SDK can help to capture more useful dependent correlations.
20

Information Processing and Management 59 (2022) 102987D. Li et al.
Fig. 12. Results of parameter sensitivity tests.

Fig. 13. Running efficiency of SDPANet.

4.7. Parameter sensitive analysis

Parameter sensitive analysis in SPDANet as well as its variants on Galanz dataset could be seen in Fig. 12. The optimal hidden
size is set at 128; the optimal filter number is set at 50; the optimal input window is set at 56; the optimal predict time length is
set at 4 respectively. Compared with the MLCNN and the variants, our model is less sensitive to the parameter changes, showing
the effectiveness of the proposed deep learning framework.

4.8. Running efficiency

Running efficiency of each component is conducted in this section. SDPANet and its 2 variants, SDPANet-SR+AR and SD-
PANet+SREA are selected. The new variant SDPANet+SREA adopts a parallel double-loop algorithm to replace parallel dynamic
programming of SR component. In addition, MLCNN is also taken as a benchmark. The experiment is executed on a server with 48
cpu cores and 8 GPUs. The number of processors in python multi-processor pool is assigned as 10. All models were iterated 500
times on Cainiao dataset, and we also compare the running efficiency of all models as a function of the number of training data.
The experimental results can be seen in Fig. 13.

Compared with SDPANet+SREA, SDPANet adopts parallel dynamic programming strategy, and can improve 20% running
efficiency on average. Because the optimized dynamic programming can significantly reduce the number of repeated calculations
when adopting multi-processor. In another aspect, the running efficiency of SDPANet is also close to that of SDPANet-SR+AR.
21

Information Processing and Management 59 (2022) 102987D. Li et al.

c
v
c
f
t
r
S
i

m
d

t
r
p
p

5

c
b
c
m
p
l
m
s

6

o
t
u
c
p
b
a
4
T

c
a
b

C

e

This indicates that adopting parallel computing strategy can significantly reduce the efficiency reduction caused by large-scale co-
Integration tests. If the parallel strategy is not adopted, time consuming of model training will be very large (More than tens of
thousands of seconds). Compared with MLCNN, SDPANet-SR+AR model also indicates that incorporating SDK, HA, DC components
will not increase complexity too much.

5. Discussion

5.1. Theoretical contribution

The theoretical contribution of this paper fall within three main areas. Firstly, our model adds to existing approaches that use
onvolution network to extract dependent correlations from MTS by extending the application of dynamic kernel from computer
ision to time series predictions. We also provide a theoretical analysis using formulas (7) and (8) to explain how, by combining
haracteristics of sales predictions, we improve on traditional dynamic kernels. The SDK has been shown to be more flexible in
itting changes of time series caused by the influence of a complex external environment, which cannot be properly observed due
o uncertain factors. Earlier research considered that MTS could use patterns of commonness, or difference between time series, to
eflect the impact of external changes on the predicted value. Inspired by their research, we have illustrated that HA combined with
DK can detect more useful correlation patterns between time series from a larger parameter space, and the larger parameter space
ndicates that the potential generalization capability of the model is stronger (Cen et al., 2019; Liang et al., 2020).

Secondly, existing deep learning-based MTS prediction models seldom consider stable linear correlations between MTS. One
ain challenge is that the linear correlations between time series are dynamic, and change over time. Thus, the SR model with its
ynamic co-integration mechanism, is proposed here to address the problem.

Finally, traditional DNN-based MTS prediction models use L1 and L2-based loss functions. This often leads to a situation where
he model’s predictions are very accurate at some time points, while at others there are large deviations from the true values. The
eason is that the L1 and L2-based loss functions only considers the deviation between true and predicted values at a specific time
oint, but seldom consider correlations between different future time points, which are essential to ensure consistency between the
redicted and the true series. In this paper, we propose a novel DC loss to make up for the lack of research on this problem.

.2. Practical implication

The value of this study lies in its excellent performance in predicting sales, giving it the potential to make a significant
ontribution to enterprises’ decision making. The proposed SDPANet model has relevance to the inventory optimization of enterprises
ecause the forecasting of future sales specific to a particular warehouse has the potential to streamline inventory planning, which
ould reduce inventory costs. The recent five months’ online tests show that, compared with manual strategies and with a traditional
achine learning based ensemble learning strategy used by some enterprises, use of SDPANet could significantly improve online
erformances, and could result in large savings of inventory cost. In addition, the proposed model can detect more non-linear and
inear patterns that are significantly correlated to future sales trends. Such patterns can improve managers’ understanding of the
arket, helping them make more accurately informed decisions. Finally, the proposed SDK, HA, SR and DC components also have

trong practical values in MTS prediction tasks applied in other fields, such as trend predictions of traffic, exchange-rate and etc.

. Conclusion

In this paper, we proposed a novel SDPANet model for sales prediction based on its unique characteristics. Compared with
ther MTS, the sales time series is more sensitive to changes from the external environment, and the correlation patterns between
ime series are more complex. Thus, we have designed a novel Spatiotemporal Dynamic Kernel (SDK) component to extract more
seful features from sales MTS to fit the complex non-linear correlations between time series. A novel Hierarchical Attention (HA)
omponent is then proposed to further select important features from SDK through a spatiotemporal attention mechanism for
redicting sales. We have also designed a Simultaneous Regression (SR) component to detect dynamic linear stable correlations
etween time series of MTS. In addition, a DC loss was designed to solve the problem of existing L1 and L2-loss, which are widely
pplied in current MTS prediction. Experimental results on Galanz and Cainiao verify the effectiveness of SDPANet with average
1.5% reduction on RMAE, average 39.5% reduction on RRSE and average 46% improvement on CORR. Experiments conducted on
raffic and Exchange-Rate further verifies the strong generalization capability of the proposed model.

In the future, we will consider combining stochastic process theory with deep learning to detect more stable non-linear
orrelations from MTS and verify the new model on more time series from other application domains, we will also attempt to
dopt new structures to further accelerate the training speed. In addition, meta-learning, transfer learning and data argument will
e taken into considerations. This, we anticipate, will further improve predictions.

RediT authorship contribution statement

Daifeng Li: Conceptualization, Methodology, Funding acquisition, Software, Resources, Supervision, Writing – review &
diting. Kaixin Lin: Conceptualization, Methodology, Software, Investigation, Formal analysis, Writing – original draft. Xuting
Li: Investigation, Resources, Data curation. Jianbin Liao: Visualization, Validation. Ruo Du: Project administration, Resources.
22

Dingquan Chen: Project administration, Supervision. Andrew Madden: Writing – review & editing.

Information Processing and Management 59 (2022) 102987D. Li et al.

o
(

R

B

Acknowledgments

This article was supported by the National Natural Science Foundation of China (Grant No. 72074231). Soft Science Foundation
f Guangdong Province, China (Grant No. 2019A101002020). Key Project of ‘‘Pandeng’’ Program in Guangdong Province, China
Grant No. pdjh2021a0001).

eferences

ello-Orgaz, G., M. Mesas, R., Zarco, C., Rodriguez, V., Cordón, O., & Camacho, D. (2020). Marketing analysis of wineries using social collective behavior from
users’ temporal activity on Twitter. Information Processing & Management, 57(5), Article 102220. http://dx.doi.org/10.1016/j.ipm.2020.102220.

Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons, http://dx.doi.org/10.5555/
3454287.3454722.

Cao, D., Wang, Y., Duan, J., Zhang, C., Zhu, X., Huang, C., et al. (2020). Spectral temporal graph neural network for multivariate time-series forecasting.
In Thirty-third conference on neural information processing systems. URL https://proceedings.neurips.cc/paper/2020/file/cdf6581cb7aca4b7e19ef136c6e601a5-
Paper.pdf.

Cen, Y., Zou, X., Zhang, J., Yang, H., Zhou, J., & Tang, J. (2019). Representation learning for attributed multiplex heterogeneous network. In KDD’19 (pp.
1358–1368). URL https://dl.acm.org/doi/pdf/10.1145/3292500.3330964.

Chang, Y.-Y., Sun, F.-Y., Wu, Y.-H., & Shou-De, L. (2019). A memory-network based solution for multivariate time-series forecasting. In AAAI’19 (pp. 835–844).
Chen, Y., Dai, X., Liu, M., Chen, D., Yuan, L., & Liu, Z. (2020). Dynamic convolution: Attention over convolution kernels. In 2020 International conference on

computer vision and pattern recognition. http://dx.doi.org/10.1109/CVPR42600.2020.01104.
Chen, L., Liu, Y., Zheng, Z., & Yu, P. (2018). Heterogeneous neural attentive factorization machine for rating prediction. In Proceedings of the 27th ACM international

conference on information and knowledge management (pp. 833–842). http://dx.doi.org/10.1145/3269206.3271759.
Cheng, J., Huang, K., & Zheng, Z. (2020). Towards better forecasting by fusing near and distant future visions. 34, In Proceedings of the AAAI Conference on

Artificial Intelligence (04), (pp. 3593–3600). http://dx.doi.org/10.1609/aaai.v34i04.5766.
Christopher Westland, J., Mou, J., & Yin, D. (2019). Demand cycles and market segmentation in bicycle sharing. Information Processing & Management, 56(4),

1592–1604. http://dx.doi.org/10.1016/j.ipm.2018.09.006.
Cuturi, M., & Blondel, M. (2017). Soft-DTW: A differentiable loss function for time-series. In Proceedings of the 34th International Conference on Machine Learning.
Das, M., & Ghosh, S. K. (2017). Sembnet: A semantic Bayesian network for multivariate prediction of meteorological time series data. Pattern Recognition Letters,

93, 192–201. http://dx.doi.org/10.1016/j.patrec.2017.01.002.
Dasgupta, S., & Osogami, T. (2017). Nonlinear dynamic Boltzmann machines for time-series prediction. 31, In Proceedings of the AAAI conference on artificial

intelligence. (1), URL https://ojs.aaai.org/index.php/AAAI/article/view/10806.
Deng, J., Chen, X., Jiang, R., Song, X., & Tsang, I. W. (2021). ST-norm: Spatial and temporal normalization for multi-variate time series forecasting. In Proceedings

of the 27th ACM SIGKDD conference on knowledge discovery & data mining (pp. 269–278). URL https://dl.acm.org/doi/abs/10.1145/3447548.3467330.
Ekambaram, V., Manglik, K., Mukherjee, S., Sajja, S. S. K., Dwivedi, S., & Raykar, V. (2020). Attention based multi-modal new product sales time-series forecasting.

In Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 3110–3118). http://dx.doi.org/10.1145/3394486.
3403362.

Fan, C., Zhang, Y., Pan, Y., Li, X., Zhang, C., Yuan, R., et al. (2019). Multi-horizon time series forecasting with temporal attention learning. In Proceedings of the
25th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 2527–2535). http://dx.doi.org/10.1145/3292500.3330662.

Gao, H., Kong, D., Lu, M., Bai, X., & Yang, J. (2018). Attention convolutional neural network for advertiser-level click-through rate forecasting. In Proceedings
of the 2018 world wide web conference (pp. 1855–1864). http://dx.doi.org/10.1145/3178876.3186184.

He, Y., Zhu, C., Wang, M., Marios, S., & Zhang, X. (2019). Bounding box regression with uncertainty for accurate object detection. In CVPR’19, Conference on
computer vision and pattern recognition 2019.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. http://dx.doi.org/10.1162/neco.1997.9.8.1735.
Hu, J., Shen, L., Albanie, S., Sun, G., & Wu, E. (2020). Squeeze-and-excitation networks. 42, In Proceedings of the IEEE conference on computer vision and pattern

recognition (8), (pp. 2011–2023). http://dx.doi.org/10.1109/TPAMI.2019.2913372.
Hu, W., Yang, Y., Wang, J., Huang, X., & Cheng, Z. (2020). Understanding electricity-theft behavior via multi-source data. In Proceedings of the world wide web

conference (WWW’20). 20-24 April. http://dx.doi.org/10.1145/3366423.3380291.
Huang, S., Wang, D., Wu, X., & Tang, A. (2019). DSANet: Dual self-attention network for multivariate time series forecasting. In Proceedings of the 28th ACM

international conference on information and knowledge management (pp. 2129–2132). http://dx.doi.org/10.1145/3357384.3358132.
Kaya, K., Yılmaz, Y., Yaslan, Y., Öğüdücü, Ş. G., & Çıngı, F. (2021). Demand forecasting model using hotel clustering findings for hospitality industry. Information

Processing & Management, 59, http://dx.doi.org/10.1016/j.ipm.2021.102816.
Kendall, A., Gal, Y., & Cipolla, R. (2018). Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In Proceedings of the IEEE

conference on computer vision and pattern recognition (pp. 7482–7491). http://dx.doi.org/10.1109/CVPR.2018.00781.
Lai, G., Chang, W.-C., Yang, Y., & Liu, H. (2018). Modeling long-and short-term temporal patterns with deep neural networks. In The 41st international ACM

SIGIR conference on research & development in information retrieval (pp. 95–104). http://dx.doi.org/10.1145/3209978.3210006.
Laptev, N., Yosinski, J., Li, L. E., & Smyl, S. (2017). Time-series extreme event forecasting with neural networks at uber. In International conference on machine

learning, Vol. 34 (pp. 1–5). URL http://roseyu.com/time-series-workshop/submissions/TSW2017_paper_3.pdf.
Lee, H., Jin, S., Chu, H., Lim, H., & Ko, S. (2021). Learning to remember patterns: Pattern matching memory networks for traffic forecasting. In Tenth International

Conference on Learning Representations. URL https://arxiv.org/pdf/2110.10380.pdf.
Li, X., Wu, P., & Wang, W. (2020). Incorporating stock prices and news sentiments for stock market prediction: A case of Hong Kong. Information Processing &

Management, 57(5), Article 102212. http://dx.doi.org/10.1016/j.ipm.2020.102212.
Li, H., Xu, Z., Taylor, G., Studer, C., & Tom, G. (2018). Visualizing the loss landscape of neural nets. In NIPs’18, Proceedings of the 32nd conference on neural

information processing systems (pp. 6391–6401).
Liang, X., Li, D., & Madden, A. (2020). Attributed network embedding based on mutual information estimation. In CIKM’20 (pp. 835–844). URL https:

//dl.acm.org/doi/pdf/10.1145/3292500.3330964.
Liang, Z., Mao, J., Lu, K., Bai, Z., & Gang, L. (2021). Combining deep neural network and bibliometric indicator for emerging research topic prediction. Information

Processing & Management, 58(5), 1–18, URL https://www.sciencedirect.com/science/article/pii/S0306457321001072#!.
Lim, B., Ark, S., Loeff, N., & Pfister, T. (2021). Temporal fusion transformers for interpretable multi-horizon time series forecasting. International Journal of

Forecasting, (1), http://dx.doi.org/10.1016/j.ijforecast.2021.03.012.
Liu, S., Yu, H., Liao, C., Li, J., Lin, W., Liu, A. X., et al. (2021). Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and

forecasting. In International conference on learning representations. URL https://openreview.net/forum?id=0EXmFzUn5I.
Mellit, A., Pavan, A. M., & Benghanem, M. (2013). Least squares support vector machine for short-term prediction of meteorological time series. Theoretical and

Applied Climatology, 111(1), 297–307, URL https://linkspringer.fenshishang.com/article/10.1007/s00704-012-0661-7.
23

http://dx.doi.org/10.1016/j.ipm.2020.102220
http://dx.doi.org/10.5555/3454287.3454722
http://dx.doi.org/10.5555/3454287.3454722
http://dx.doi.org/10.5555/3454287.3454722
https://proceedings.neurips.cc/paper/2020/file/cdf6581cb7aca4b7e19ef136c6e601a5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/cdf6581cb7aca4b7e19ef136c6e601a5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/cdf6581cb7aca4b7e19ef136c6e601a5-Paper.pdf
https://dl.acm.org/doi/pdf/10.1145/3292500.3330964
http://refhub.elsevier.com/S0306-4573(22)00102-9/sb5
http://dx.doi.org/10.1109/CVPR42600.2020.01104
http://dx.doi.org/10.1145/3269206.3271759
http://dx.doi.org/10.1609/aaai.v34i04.5766
http://dx.doi.org/10.1016/j.ipm.2018.09.006
http://refhub.elsevier.com/S0306-4573(22)00102-9/sb10
http://dx.doi.org/10.1016/j.patrec.2017.01.002
https://ojs.aaai.org/index.php/AAAI/article/view/10806
https://dl.acm.org/doi/abs/10.1145/3447548.3467330
http://dx.doi.org/10.1145/3394486.3403362
http://dx.doi.org/10.1145/3394486.3403362
http://dx.doi.org/10.1145/3394486.3403362
http://dx.doi.org/10.1145/3292500.3330662
http://dx.doi.org/10.1145/3178876.3186184
http://refhub.elsevier.com/S0306-4573(22)00102-9/sb17
http://refhub.elsevier.com/S0306-4573(22)00102-9/sb17
http://refhub.elsevier.com/S0306-4573(22)00102-9/sb17
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1109/TPAMI.2019.2913372
http://dx.doi.org/10.1145/3366423.3380291
http://dx.doi.org/10.1145/3357384.3358132
http://dx.doi.org/10.1016/j.ipm.2021.102816
http://dx.doi.org/10.1109/CVPR.2018.00781
http://dx.doi.org/10.1145/3209978.3210006
http://roseyu.com/time-series-workshop/submissions/TSW2017_paper_3.pdf
https://arxiv.org/pdf/2110.10380.pdf
http://dx.doi.org/10.1016/j.ipm.2020.102212
http://refhub.elsevier.com/S0306-4573(22)00102-9/sb28
http://refhub.elsevier.com/S0306-4573(22)00102-9/sb28
http://refhub.elsevier.com/S0306-4573(22)00102-9/sb28
https://dl.acm.org/doi/pdf/10.1145/3292500.3330964
https://dl.acm.org/doi/pdf/10.1145/3292500.3330964
https://dl.acm.org/doi/pdf/10.1145/3292500.3330964
https://www.sciencedirect.com/science/article/pii/S0306457321001072#!
http://dx.doi.org/10.1016/j.ijforecast.2021.03.012
https://openreview.net/forum?id=0EXmFzUn5I
https://linkspringer.fenshishang.com/article/10.1007/s00704-012-0661-7

Information Processing and Management 59 (2022) 102987D. Li et al.

S

Z

Z

Nguyen, L., Pan, Z., Openiyi, O., Abu-gellban, A., Moghadasi, M., & Jin, F. (2020). Self-boosted time-series forecasting with multi-task and multi-view learning.
In Proceedings of the thirty-fourth AAAI conference on artificial intelligence. AAAI’20. 7-12 February. New York. USA. URL https://arxiv.org/pdf/1909.08181.pdf.

Oreshkin, B. N., Carpov, D., Chapados, N., & Bengio, Y. (2019). N-BEATS: Neural basis expansion analysis for interpretable time series forecasting. In Eighth
international conference on learning representations. URL https://arxiv.org/pdf/1905.10437.pdf.

Qin, Y., Song, D., Chen, H., Cheng, W., Jiang, G., & Cottrell, G. (2017). A dual-stage attention-based recurrent neural network for time series prediction. In
Twenty-sixth international joint conference on artificial intelligence. URL https://arxiv.org/pdf/1704.02971.pdf.

Roberts, S., Osborne, M., Ebden, M., Reece, S., Gibson, N., & Aigrain, S. (2019). Gaussian processes for time-series modelling. Philosophical Transactions of the
Royal Society, Series A, 371, http://dx.doi.org/10.1098/rsta.2011.0550.

Sakoe, H., & ChibaLim, S. (1990). Dynamic programming algorithm optimization for spoken word recognition. Read. Speech Recognit., 159–224. http://dx.doi.
org/10.1109/TASSP.1978.1163055.

Salinas, D., Flunkert, V., Gasthaus, J., & Januschowski, T. (2020). DeepAR: Probabilistic forecasting with autoregressive recurrent networks. International Journal
of Forecasting, 36(3), 1181–1191. http://dx.doi.org/10.1016/j.ijforecast.2019.07.001.

Shen, Z., Yuan, R., Wu, D., & Pei, J. (2018). Data science in retail-as-a-service. In Proceedings of the 24th ACM SIGKDD international conference on knowledge
discovery & data mining (KDD’18 tutorial speak). London. UK. http://dx.doi.org/10.1145/3219819.3219943.

Shi, J., Yao, H., Wu, X., Li, T., Lin, Z., Wang, T., et al. (2021). Relation-aware meta-learning for E-commerce market segment demand prediction with limited
records. In The fourth ACM international conference on web search and data mining. http://dx.doi.org/10.1145/3437963.3441750.

hi, Q., Yin, J., Cai, J., Cichocki, A., Yokota, T., Chen, L., et al. (2020a). Block Hankel tensor ARIMA for multiple short time series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, Vol. 34 (04), (pp. 5758–5766). http://dx.doi.org/10.1609/aaai.v34i04.6032.

Shi, Q., Yin, J., Cai, J., Cichocki, A., Yokota, T., Chen, L., et al. (2020b). Block Hankel tensor ARIMA for multiple short time series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, Vol. 34 (04), (pp. 5758–5766). http://dx.doi.org/10.1609/aaai.v34i04.6032.

Song, C., Lin, Y., Guo, S., & Wan, H. (2020). Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data
forecasting. In Proceedings of the 34th AAAI conference on artificial intelligence (AAAI’20). URL https://ojs.aaai.org/index.php/AAAI/article/download/5438/
5294.

Tang, X., Yao, H., Sun, Y., Aggarwal, C., Mitra, P., & Wang, S. (2020). Joint modeling of local and global temporal dynamics for multivariate time series forecasting
with missing values. In Proceedings of the AAAI conference on artificial intelligence, Vol. 34 (04), (pp. 5956–5963). http://dx.doi.org/10.1609/aaai.v34i04.6056.

Taylor, S. J., & Letham, B. (2018). Forecasting at scale. The American Statistician, 72(1), 37–45. http://dx.doi.org/10.1080/00031305.2017.1380080.
Vallance, L., Charbonnier, B., Paul, N., Dubost, S., & Blanc, P. (2017). Towards a standardized procedure to assess solar forecast accuracy: A new ramp and time

alignment metric. Solar Energy, 150, 408–422. http://dx.doi.org/10.1016/j.solener.2017.04.064.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al. (2017). Attention is all you need. In NIPS’17, Proceedings of the 31st international

conference on neural information processing systems (pp. 6000–6010). Red Hook, NY, USA: Curran Associates Inc., URL https://dl.acm.org/doi/10.5555/3295222.
3295349.

Yakhchi, S., Behehsti, A., mohssen Ghafari, S., Razzak, I., Orgun, M., & Elahi, M. (2022). A convolutional attention network for unifying general and sequential
recommenders. Information Processing & Management, 59(1), URL https://www.sciencedirect.com/science/article/pii/S0306457321002363.

Ye, M., Luo, J., Xiao, C., & Ma, F. (2020). LSAN: Modeling long-term dependencies and short-term correlations with hierarchical attention for risk prediction. In
Proceedings of the 29th ACM international conference on information & knowledge management (pp. 1753–1762). http://dx.doi.org/10.1145/3340531.3411864.

Yu, J., Jiang, Y., Wang, Z., Cao, Z., & Huang, T. (2016). Unitbox: An advanced object detection network. In MM’16, Proceedings of the 24th ACM international
conference on multimedia (pp. 516–520). New York, NY, USA: http://dx.doi.org/10.1145/2964284.2967274.

hou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H., et al. (2021a). Informer: Beyond efficient transformer for long sequence time-series forecasting. In
Proceedings of the thirty-fifth AAAI conference on artificial intelligence. URL https://www.aaai.org/AAAI21Papers/AAAI-7346.ZhouHaoyi.pdf.

hou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H., et al. (2021b). Informer: Beyond efficient transformer for long sequence time-series forecasting. In
Proceedings of AAAI. URL https://www.aaai.org/AAAI21Papers/AAAI-7346.ZhouHaoyi.pdf.
24

https://arxiv.org/pdf/1909.08181.pdf
https://arxiv.org/pdf/1905.10437.pdf
https://arxiv.org/pdf/1704.02971.pdf
http://dx.doi.org/10.1098/rsta.2011.0550
http://dx.doi.org/10.1109/TASSP.1978.1163055
http://dx.doi.org/10.1109/TASSP.1978.1163055
http://dx.doi.org/10.1109/TASSP.1978.1163055
http://dx.doi.org/10.1016/j.ijforecast.2019.07.001
http://dx.doi.org/10.1145/3219819.3219943
http://dx.doi.org/10.1145/3437963.3441750
http://dx.doi.org/10.1609/aaai.v34i04.6032
http://dx.doi.org/10.1609/aaai.v34i04.6032
https://ojs.aaai.org/index.php/AAAI/article/download/5438/5294
https://ojs.aaai.org/index.php/AAAI/article/download/5438/5294
https://ojs.aaai.org/index.php/AAAI/article/download/5438/5294
http://dx.doi.org/10.1609/aaai.v34i04.6056
http://dx.doi.org/10.1080/00031305.2017.1380080
http://dx.doi.org/10.1016/j.solener.2017.04.064
https://dl.acm.org/doi/10.5555/3295222.3295349
https://dl.acm.org/doi/10.5555/3295222.3295349
https://dl.acm.org/doi/10.5555/3295222.3295349
https://www.sciencedirect.com/science/article/pii/S0306457321002363
http://dx.doi.org/10.1145/3340531.3411864
http://dx.doi.org/10.1145/2964284.2967274
https://www.aaai.org/AAAI21Papers/AAAI-7346.ZhouHaoyi.pdf
https://www.aaai.org/AAAI21Papers/AAAI-7346.ZhouHaoyi.pdf

	Improved sales time series predictions using deep neural networks with spatiotemporal dynamic pattern acquisition mechanism
	Introduction
	Related work
	Product sales prediction
	Deep Neural Network based MTS predictions

	Model descriptions
	Problem statement
	Model framework
	Spatiotemporal Dynamic Kernel (SDK) component
	Hierarchical Attention (HA) component
	Simultaneous Regression (SR) component
	Loss function

	Experiments
	Experiment data
	Metrics
	Baselines
	Training details
	Main results
	Ablation test
	Parameter sensitive analysis
	Running efficiency

	Discussion
	Theoretical contribution
	Practical implication

	Conclusion
	CRediT authorship contribution statement
	Acknowledgments
	References

