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Abstract

Distributional reinforcement learning aims to learn distribution of return under
stochastic environments. Since the learned distribution of return contains rich
information about the stochasticity of the environment, previous studies have relied
on descriptive statistics, such as standard deviation, for optimism in the face of
uncertainty. However, using the uncertainty from an empirical distribution can
hinder convergence and performance when exploring with the certain criterion that
has an one-sided tendency on risk in these methods. In this paper, we propose
a novel distributional reinforcement learning that explores by randomizing risk
criterion to reach a risk-neutral optimal policy. First, we provide a perturbed
distributional Bellman optimality operator by distorting the risk measure in action
selection. Second, we prove the convergence and optimality of the proposed
method by using the weaker contraction property. Our theoretical results support
that the proposed method does not fall into biased exploration and is guaranteed
to converge to an optimal return distribution. Finally, we empirically show that
our method outperforms other existing distribution-based algorithms in various
environments including 55 Atari games.

1 Introduction

Distributional reinforcement learning (DRL) learns the stochasticity of returns in the reinforcement
learning environments and has shown remarkable performance in several benchmark tasks. Its model
generates the approximated distribution of returns, where the mean value implies the traditional
Q-value [1, 4, 10]. Learning procedure with stochasticity through return distribution is represented
by parametric (epistemic) uncertainty, which is due to insufficient or inaccurate data, and intrinsic
(aleatoric) uncertainty, which is inherently possessed randomness in the environment [5, 9]. The
learned stochasticity gives rise to the notion of risk-sensitivity, and some distributional reinforcement
learning algorithms distort the learned distribution to create a risk-averse or risk-seeking policy.

Another way to employ the uncertainty is to design an efficient exploration method which is essential
to find an optimal behavior with a few trials. Optimism in the face of uncertainty (OFU) is one of
the fundamental exploration principles that employs parametric uncertainty to promote exploring
less understood behaviors and to construct confidence set. Most OFU algorithms select an action
with the highest upper-confidence bound (UCB) of parametric uncertainty which can be considered
as the optimism at the moment [3, 7]. In deep RL, several OFU studies often model the parametric
uncertainty explicitly through the Bayesian posterior, which is estimated by using neural networks.
However, learning the representation of high-dimensional state-action space and Bellman update
simultaneously leads to unstable propagation [32].
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Figure 1: Environmental stochasticity: LunarLander-v2 is a simple RL benchmarks, but RL agents
suffer from random initial force, action stochasticity by random dispersion, and extreme reward
distribution. (Left) Three environmental factors cause high intrinsic uncertainty during episode.
(Right) The proposed perturbation-based algorithms (PQR, p-DLTV) achieve the threshold (score
200) for safe landing.

On the other hand, DRL, which aims to capture the intrinsic uncertainty can provide more statistical
information during control such as mode, median, or variance by addressing full characteristics of
the return distribution. Despite the richness of risk-sensitive information for return distribution, only
a few DRL methods have tried to employ the benefits of distributional perspective for exploration
[8, 17, 19, 29, 34] by utilizing the estimated uncertainty from distributional output that is composed
of a mixture of intrinsic and parametric uncertainty.

Unfortunately, separating these two types of uncertainty during learning is not a trivial task. Mavrin
et al. [17] propose a distribution-based OFU exploration that schedules a decaying bonus rate to
suppress the effect of intrinsic uncertainty, which unintentionally induces a risk-seeking policy.
Although OFU based approaches try to reduce parametric uncertainty by revisiting the state with
high uncertainty, there exists the side effect that the criteria unfortunately force the agent to chase the
intrinsic uncertainty (risk) simultaneously due to the indistinguishability of two distinct uncertainties
during updates. In Figure 1, DLTV which is based on optimism fails to reach the threshold while its
baseline algorithm, QR-DQN, can achieve the goal in an environment with high intrinsic uncertainty.
In the entangled case, relying on specific criteria causes a one-sided tendency on risk and makes an
agent consistently select certain actions during exploration that degrades performance. We call this
phenomenon ‘fixedness’ and present a simple, yet effective approach to resolve such an issue.

In this paper, we propose perturbed quantile regression (PQR) which perturbs the criterion on
uncertainty by randomizing the risk criterion in action selection to avoid a one-sided tendency on risk.
We define the distributional perturbation on return distribution to re-evaluate the estimate of return by
distorting the learned distribution with perturbation weight. Unlike the typical worst-case approach
in risk-sensitive settings or OFU based approaches, we instead randomly sample a risk measure from
an ambiguity set, which represents that the risk setting is ambiguous when the characteristics of a
given environment are unknown.

In summary, our contributions are as follows.

• A risk-neutral strategy called perturbed quantile regression (PQR) is proposed, which
improves over naive risk-seeking strategies.

• A sufficient condition for convergence is provided for the proposed Bellman operator with a
weaker contraction property.

2 Backgrounds & Related works

2.1 Distributional RL

We consider a Markov decision process (MDP) which is defined as a tuple (S,A, P,R, γ) where S is
a finite state space, A is a finite action space, P : S ×A× S → [0, 1] is the transition probability, R
is the random variable of rewards in [−Rmax, Rmax], and γ ∈ [0, 1) is the discount factor. We define a
stochastic policy π(·|s) which is a conditional distribution over A given state s. For a fixed policy π,
we denote Zπ(s, a) as a random variable of return distribution of state-action pair (s, a) following
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the policy π. We attain Zπ(s, a) =
∑∞

t=0 γ
tR(St, At), where St+1 ∼ P (·|St, At), At ∼ π(·|St)

and S0 = s, A0 = a. Then, we define an action-value function as Qπ(s, a) = E[Zπ(s, a)] in
[−Vmax, Vmax] where Vmax = Rmax/(1 − γ). For regularity, we further notice that the space of
action-value distributions Z has the first moment bounded by Vmax:

Z =
{
Z : S ×A →P(R)

∣∣ E[|Z(s, a)|] ≤ Vmax,∀(s, a)
}
.

In distributional RL, the return distribution for the fixed π can be computed via dynamic programming
with the distributional Bellman operator defined as,

τ πZ(s, a)
D
= R(s, a) + γZ(S′, A′), S′ ∼ P (·|s, a), A′ ∼ π(·|S′)

where D
= denotes that both random variables share the same probability distribution. We can compute

the optimal return distribution by using the distributional Bellman optimality operator defined as,

τZ(s, a)
D
= R(s, a) + γZ(S′, a∗), S′ ∼ P (·|s, a), a∗ = argmax

a′
EZ [Z(S′, a′)].

Bellemare et al. [1] have shown that τ π is a contraction in a maximal form of the Wasserstein
metric but τ is not a contraction in any metric. Combining with the expectation operator, Eτ is a
contraction so that we can guarantee that the expectation of Z converges to the optimal state-action
value, while the convergence of a return distribution itself is not guaranteed.

2.2 Exploration on Distributional Reinforcement Learning

To combine with deep RL, a parametric distribution Zθ is used to learn a return distribution by using
τ . Dabney et al. [10] have employed a quantile regression to approximate the full distribution by
letting Zθ(s, a) =

1
N

∑N
i=1 δθi(s,a) where the parameter θ represents the locations of a mixture of N

Dirac delta functions. Each θi represents the value where the cumulative probability is τi = i
N . By

using the quantile representation with the distributional Bellman optimality operator, the problem can
be formulated as a minimization problem as,

θ = argmin
θ′

D (Zθ′(st, at), τ Zθ−(st, at)) = argmin
θ′

N∑
i,j=1

ρκτ̂i(rt + γθ−j (st+1, a
′)− θ′i(st, at))

N

where (st, at, rt, st+1) is a given transition pair, τ̂i =
τi−1+τi

2 , a′ := argmaxa′ EZ [Zθ(st+1, a
′)],

ρκτ̂i(x) := |τ̂i−δ{x<0}|Lκ(x), and Lκ(x) := x2/2 for |x| ≤ κ and Lκ(x) := κ(|x|− 1
2κ), otherwise.

Based on the quantile regression, Dabney et al. [10] have proposed a quantile regression deep Q
network (QR-DQN) that shows better empirical performance than the categorical approach [1], since
the quantile regression does not restrict the bounds for return. As deep RL typically did, QR-DQN
adjusts ϵ-greedy schedule, which selects the greedy action with probability 1−ϵ and otherwise selects
random available actions uniformly. The majority of QR-DQN variants [9, 30] rely on the same
exploration method. However, such approaches do not put aside inferior actions from the selection
list and thus suffers from a loss [21]. Hence, selecting a statistically plausible action is crucial for
efficient exploration.

In recent studies, Mavrin et al. [17] modifies the criterion of selecting an action for efficient exploration
with optimism in the face of uncertainty. Using left truncated variance as a bonus term to estimate
optimistic way and decaying ratio ct to suppress the intrinsic uncertainty, DLTV was proposed as an
uncertainty-based exploration in DRL without using ϵ-greedy exploration. At timestep t, the action
selection of DLTV can be described as:

a∗ = argmax
a′

(
EP [Z(s′, a′)] + ct

√
σ2
+(s

′, a′)

)
, ct = c

√
log t

t
, σ2

+ =
1

2N

N∑
i=N

2

(θN
2
− θi)

2,

where θi’s are the values of quantile level τi. DLTV shows that a constant schedule degrades the
performance significantly compared to a decaying schedule.
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Figure 2: Illustration of the N-Chain environment starting from state s2. To emphasize the stochastic-
ity, the reward of state s4 was set as a mixture model composed of two Gaussian distributions. Blue
arrows indicate the risk-neutral optimal policy in this MDPs.

2.3 Risk in Distributional RL

Instead of an expected value, risk-sensitive RL tries to maximize a certain risk measure such as Mean-
Variance [33], Value-at-Risk (VaR) [6], or Conditional Value-at-Risk (CVaR) [24, 25], which result
in different classes of optimal policy. Especially, Dabney et al. [9] interprets risk measures as the
expected utility function of the return, i.e., EZ [U(Z(s, a))]. Under this interpretation, risk-sensitive
RL can be formulated as the maximization problem with various types of utility functions. If the
utility function U is linear, the policy obtained under such risk measure is called risk-neutral. If U
is concave or convex, the resulting policy is termed as risk-averse or risk-seeking, respectively. In
general, a distortion risk measure is a generalized expression of risk measure generated from the
distortion function.
Definition 2.1. Let h : [0, 1] → [0, 1] be a distortion function such that h(0) = 0, h(1) = 1 and
non-decreasing. Given a probability space (Ω,F ,P) and a random variable Z : Ω→ R, a distortion
risk measure ρh corresponding to a distortion function h is defined by:

ρh(Z) := Eh(P)[Z] =

∫ ∞

−∞
z
∂

∂z
(h ◦ FZ)(z)dz,

where FZ is the cumulative distribution function of Z.

In fact, non-decreasing property of h makes it possible to distort the distribution of Z while satisfying
the fundamental property of CDF. Note that the concavity or the convexity of distortion function also
implies risk-averse or seeking behavior, respectively. Dhaene et al. [11] showed that any distorted
expectation can be expressed as weighted averages of quantiles. In other words, generating a distortion
risk measure is equivalent to choosing a reweighting distribution.

Fortunately, distributional RL has a suitable configuration to apply those uncertainty-based approaches
that could naturally expand the class of policies. Chow et al. [5] and Stanko and Macek [28]
considered risk-sensitive RL with a CVaR objective, where risk is related to robust decision making.
Dabney et al. [9] expanded the class of policies on arbitrary distortion risk measures and investigated
the effects of a distinct distortion risk measures by changing the sampling distribution for quantile
targets τ . Unlike the usual risk-sensitive RL, DLTV applied the risk measure only on action selection,
while it keeps the standard objective to obtain a risk-neutral optimal policy. Our paper will also utilize
the risk measure only to select action, and focus on achieving the original risk-neutral purpose.

3 Perturbation in Distributional RL

3.1 Motivation

Distribution-based OFU exploration [15, 18] was proposed to give a bonus for the uncertainty that can
be extracted from the distribution. However, we found that keeping optimism on uncertainty tends to
select sub-optimal behaviors over a long period. For example, suppose we choose a criterion based on
mean-standard deviation with decaying coefficient ct. Consider two actions a1, a2 with mean µ1, µ2

and variance σ1, σ2 respectively, under the following conditions: µ1 ≥ µ2, σ1 ≤ σ2, and µ1+ctσ1 ≤
µ2+ ctσ2. Then, the agent prefers to select a2 based on OFU. To change the decision towards the true
optimal action a1, the following steps η = min

{
t′ > t : ct′ ≤ µ1−µ2

σ2−σ1

}
− t. need to be spent. Hence,

if there is a bias in the criterion itself, such fixedness often occurs and degrades the performance as
the agent has no experience with the optimal policy during that period.

To empirically demonstrate shortcomings of OFU exploration in distributional RL, we build a
representative environment that is easy to interpret intuitively among the cases in which intrinsic
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Figure 3: (a) Empirical return distribution of DLTV during training in N-Chain environment.
The dashed lines denote the exact mean, and the dots on the x-axis denote the perturbed mean
of each action. No-op actions are not shown for visibility. (b) Total count of performing true
optimal action. The oracle (dashed line) is to perform the true optimal action from start to end.

uncertainty exists. We experiment on the stochastic variant of N-Chain environment used in Osband
et al. [20] as a toy experiment. A schematic diagram of the N-Chain environment is shown in Figure
2. The reward is only given in the leftmost and rightmost states and the game terminates when one of
the reward states is reached. We set the leftmost reward as N (10, 0.12) and the rightmost reward as
1
2N (5, 0.12) + 1

2N (13, 0.12) which has a lower mean as 9 but higher variance. The agent always
starts from the middle state s2 and should move toward the leftmost state s0 to achieve the greatest
expected return. For each state, the agent can take one of six available actions: left, right, and 4
no-op actions. The optimal policy with respect to mean is to move left twice from the start. Despite
the simple configuration, the possibility to obtain a higher reward in the suboptimal state than the
optimal state makes the agent difficult which policy is optimal until it experiences enough to detect
the characteristics of each distribution. Thus, the goal of our toy experiment is to evaluate how
quickly each algorithm could find a risk-neutral optimal policy.

Rather than maintaining optimism with decaying schedule to suppress intrinsic uncertainty, we
modify the optimism into a randomized risk criterion and named the perturbed variant as p-DLTV. In
short, p-DLTV is a simple modification of DLTV where randomness is given to the coefficient ct
through normal distribution. We compare QR-DQN and DLTV with our randomized variants of two
algorithms PQR and p-DLTV to examine the effect of randomized risk criteria. We describe our main
algorithm, PQR, in detail in Section 3.4. Pseudocode are given in Appendix C.5.

In Figure 3(a), DLTV fails to estimate the true optimal return distribution of action a1. Due to the
erroneous estimation, the agent takes longer to recognize its error. Hence, the deterministic selection
based on a fixed criterion could mislead toward exploitation rather than exploration. This indicates
that DLTV may not gather experiences well in stochastic environment. Hence, decaying schedule
while maintaining optimism is not sufficient to avoid risk-seeking behavior.

In Figure 3(b), we count the number of timesteps when the optimal policy was actually performed for
each algorithm to show the occurrence of fixedness. Since the optimal policy consists of the same
index a1, we plot the total count of performing the optimal action with 10 different seeds. The interval
with a slope of 1 implies that the optimal policy was performed every time. From the slope of each
line, it is observed that DLTV selects the suboptimal action even if the optimal policy was initially
performed. Although the mean return of a1 (move left) is estimated to be superior, the agent only
selects a2 (move right) during training due to its consistent optimism on uncertainty. Even if DLTV
has spent enough number of time steps to choose the true optimal policy, the remaining procedure
is already close to greedy selection as it starts from a decreased coefficient. In contrast, p-DLTV
alleviates the fixedness early and finds the true optimal policy, which implies that a randomized
criterion is a simple but effective on training process.

By applying this approach to risk measure, we propose a novel distributional Bellman operator
which converges with a weaker contraction property, and build a practical algorithm called PQR,
which produces steeper line by quickly obtaining the optimal policy. Our key idea is to select the
statistically plausible action which can be maximal in a certain risk measure. Compared to QR-DQN,
PQR improves efficiency by excluding inferior actions implicitly that cannot be maximal in any risk
criterion. In addition, Even-Dar et al. [13] theoretically showed action elimination, which reduces the
size of the action sets to be searched by explicitly eliminating sub-optimal action early, can speedup
learning to find an optimal policy. In Section 3.2, we derive the first theoretical sufficient condition
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for the convergence of exploration method in DRL, which implies that the proposed operator has the
same unique fixed point as the standard distributional Bellman equation.

3.2 Perturbed Distributional Bellman Optimality Operator

To choose statistically plausible actions which may be maximal for certain risk criterion, we will
generate a distortion risk measure involved in a pre-defined constraint set called an ambiguity set.
The ambiguity set, originated from distributionally robust optimization (DRO) literature, is a family
of distribution characterized by a certain statistical distance such as ϕ-divergence or Wasserstein
distance [12, 26]. In this paper, we will examine the ambiguity set defined by the discrepancy
between distortion risk measure and expectation. We say the sampled reweighting distribution ξ as
(distributional) perturbation and define it as follows:

Definition 3.1. (Perturbation, Perturbation Gap, and Ambiguity Set) Given a probability space
(Ω,F ,P), let X : Ω → R be a random variable and Ξ =

{
ξ : ξ(w) ≥ 0,

∫
w∈Ω

ξ(w)P(dw) = 1
}

be a set of probability density functions. For a given constraint set U ⊂ Ξ, we say ξ ∈ U as a
(distributional) perturbation from U and denote the ξ−weighted expectation of X as follows:

Eξ[X] :=

∫
w∈Ω

X(w)ξ(w)P(dw),

which can be interpreted as the expectation of X under perturbed probability distribution ξP. We
further define d(X; ξ) = |E[X]− Eξ[X]| as perturbation gap of X with respect to ξ. Then, for a
given constant ∆ ≥ 0, we define the ambiguity set with the bound ∆ as

U∆(X) =
{
ξ ∈ Ξ : d(X; ξ) ≤ ∆

}
.

For brevity, we omit the input w from a random variable unless confusing. Since ξ is a probability
density function, Eξ[X] is an induced risk measure with respect to a reference measure P. Intuitively,
ξ(w) can be viewed as a distortion to generate a different probability measure and allow to vary
the risk tendency. The aspect of using distortion risk measures looks similar to IQN [9]. However,
instead of changing the sampling distribution of quantile level τ implicitly, we reweight each quantile
from the ambiguity set. This allows us to control the maximum allowable distortion with bound ∆,
whereas in IQN the risk measure does not change throughout learning. In Section 3.4, we suggest a
practical method to construct the ambiguity set.

Now, we characterize perturbed distributional Bellman optimality operator (PDBOO) τ ξ for a fixed
perturbation ξ ∈ U∆(Z) written as below:

τ ξZ(s, a)
D
= R(s, a) + γZ(S′, a∗(ξ)),

S′ ∼ P (·|s, a) , a∗(ξ) = argmax
a′

Eξ,P [Z(s′, a′)].

Notice that ξ ≡ 1 corresponds to a base expectation, i.e., Eξ,P = EP , which recovers the standard
distributional Bellman optimality operator τ . In risk-sensitive DRL or distributionally robust RL,
the Bellman optimality equation is reformulated for a pre-defined risk measure [5, 27, 31]. PDBOO
has a significant distinction in that it performs dynamic programming that adheres to the risk-neutral
optimal policy while randomizing the risk criterion at every step.

If we consider the time-varying bound of ambiguity set, scheduling ∆t is a key ingredient to determine
whether PDBOO will efficiently explore or converge. Intuitively, if an agent continues to sample the
distortion risk measure from a fixed ambiguity set with a constant ∆, there is a possibility of selecting
sub-optimal actions after sufficient exploration, which may not guarantee eventual convergence.

Based on the quantile model Zθ, our algorithm can be summarized into two parts. First, we aim
to minimize the expected discrepancy between Zθ and τ ξZθ− where ξ is sampled from ambiguity
set U∆. To clarify notation, we write Eξ[·] as a ξ−weighted expectation and Eξ∼P(U∆)[·] as an
expectation with respect to ξ which is sampled from U∆. Then, our goal is to minimize the perturbed
distributional Bellman objective with sampling procedure P:

min
θ′

Eξt∼P(U∆t )
[D(Zθ′(s, a), τ ξtZθ−(s, a))] (1)
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where we use the Huber quantile loss as a discrepancy on Zθ′ and τ ξZθ− at timestep t. It is clearly
different from DRO which performs the worst-case optimization by using a minimax objective. By
using min-expectation instead of min-max operator, we investigate risk-neutral exploration that can
avoid overly pessimistic policies. Second, considering a sequence ξt which converges uniformly
to 1 so that τ ξt converges uniformly to standard τ , we derive a sufficient condition of ∆t that the
expectation of any composition of the operators Eτ ξn:1

:= Eτ ξnτ ξn−1
· · ·τ ξ1 has the same unique

fixed point as the standard.

3.3 Convergence of the perturbed distributional Bellman optimality operator

In this section, we provide the theoretical result of PDBOO about its convergence through E[Z(n)].
We denote the iteration as Z(n+1) := τ ξn+1Z

(n), Z(0) = Z for each timestep n > 0 , and the
intersection of ambiguity set as Ū∆n(Z

(n−1)) :=
⋂

s,a U∆n

(
Z(n−1)(s, a)

)
.

Assumption 3.2. Suppose that the bound ∆n satisfies the condition,
∑∞

n=1 ∆n <∞.

Practically, satisfying the above assumption is not strict to characterize the landscape of scheduling.
For this update rule, we first state our main theorem below.
Theorem 3.3. (Weaker Contraction Property) Let ξn be sampled from Ū∆n

(Z(n−1)) for every
iteration. If Assumption 3.2 holds, then the expectation of any composition of operators Eτ ξn:1

converges, i.e., Eτ ξn:1 [Z]→ E[Z∗]. Moreover, the following bound holds,

sup
s,a

∣∣∣E[Z(n)(s, a)]− E[Z∗(s, a)]
∣∣∣ ≤ ∞∑

k=n

(
2γk−1Vmax + 2

k∑
i=1

γi(∆k+2−i +∆k+1−i)

)
.

Although the above theorem does not imply γ-contraction property which guarantees an unique fixed
point generally, we can show that E[Z∗] is the unique fixed point for the operator Eτ ξn:1

in the
following theorem.
Theorem 3.4. If Assumption 3.2 holds, E[Z∗] is the unique fixed point of Bellman optimality equation
for any Z ∈ Z .

We now know that the converged value E[Z∗] is the unique solution of the standard Bellman optimality
equation. It means that PDBOO, which only has weaker contraction property, can achieve the unique
fixed point of standard Bellman operator by Assumption 3.2. Unlike the previous distribution-based or
risk-sensitive approaches, PDBOO can be considered as a novel operator which has the compatibility
for obtaining a risk-neutral optimal policy by randomizing risk measure during exploration.

3.4 Practical Algorithm with Distributional Perturbation

We propose a perturbed quantile regression (PQR) that is a practical algorithm for distributional
reinforcement learning. Our quantile model is updated by minimizing the objective function (1)
induced by PDBOO. To compute the target distribution of (1), we propose a sampling method of
ξ from ambiguity set U∆. Since we employ a quantile model, sampling a reweight function ξ can
be reduced into sampling an N -dimensional weight vector ξ := [ξ1, · · · , ξN ] where

∑N
i=1 ξi =

N and ξi ≥ 0 for all i ∈ {1, · · · , N}. Based on the QR-DQN setup, note that the condition∫
w∈Ω

ξ(w)P(dw) = 1 turns into
∑N

i=1
1
N ξi = 1, since the quantile level is set as τi = i

N .

A key issue is how to construct an ambiguity set with bound ∆t and then sample ξ. A natural class
of distribution for practical use is the symmetric Dirichlet distribution with concentration β, which
represents distribution over distributions. (i.e. x ∼ Dir(β).) If β is small, most of the mass is
concentrated on a few elements. Otherwise, all elements are similar to each other and produce evenly
distributed weight. By using the Dirichlet distribution, we sample a random vector, x ∼ Dir(β), and
define the reweight distribution as ξ := 1N + α(Nx− 1N ). From the construction of ξ, we have
1− α ≤ ξi ≤ 1 + α(N − 1) for all i and it follows that |1− ξi| ≤ α(N − 1). By controlling α, we
can bound the deviation of ξi from 1 and bound the perturbation gap as

sup
s,a
|E[Z(s, a)]− Eξ[Z(s, a)]| = sup

s,a

∣∣∣∣∫
w∈Ω

Z(w; s, a)(1− ξ(w))P(dw)
∣∣∣∣

≤ sup
w∈Ω
|1− ξ(w)| sup

s,a
E[|Z(s, a)|] ≤ sup

w∈Ω
|1− ξ(w)|Vmax ≤ α(N − 1)Vmax.

7



Ground Truth µ = 8.1 σ = 0.081

∆µ
(µ̂− µ)

∆σ
(σ̂ − σ)

QR-DQN 1.23 0.01
DLTV -1.02 1.01

p-DLTV 0.02 0.38

PQR(ours) -0.03 -0.01

Figure 4: (Left) Empirical return distribution plot in N-Chain environment. Since QR-DQN does
not depend on other criterion, the dots are omitted. (Right) Mean and standard-deviation difference
between each algorithm and ground truth N (8.1, 0.0812).

Hence, letting α ≤ ∆
(N−1)Vmax

is sufficient to obtain d(Z; ξ) ≤ ∆ in the quantile setting. We set
β = 0.05 · 1N to generate a constructive perturbation ξn which gap is close to the bound ∆n.
To satisfy Assumption 3.2, we set ∆t = ∆0t

−(1+ϵ) where ∆0 is a hyperparameter. The detailed
procedure is summarized in Algorithm 2 in Appendix C.5.

4 Experimental Results and Details

Our experiments aim to answer the following questions: (1) Does our PQR method successfully
escape from the fixedness phenomenon in stochastic environments? (2) Can PQR with perturbed
action selection accurately capture a stochastic return distribution? (3) Can a randomized perturbation
based exploration serve as a good behavior policy for the full Atari benckmark? We compare
our algorithm to various DRL baselines, which has been shown to achieve better performance on
stochastic RL environments. This comparison is particularly interesting since the proposed methods
outperform the advanced DRL models, such as ϵ-greedy for QRDQN, IQN, and Rainbow by only
applying the randomized exploration strategy. The detailed experimental setup and implementation
details can be found in Appendix C.
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Figure 5: Evaluation curves on 8 Atari games with 3 random seeds for 50 million frames following
sticky actions protocol [16]. Reference values are from Castro et al. [2].

4.1 Learning on Stochastic Environments with High Intrinsic Uncertainty

N-Chain. As the mean of each return is designed to be similar, it is useful to examine the learning
behavior of the empirical return distribution for each algorithm. Figure 4 shows the empirical PDF
of return distribution by using Gaussian kernel density estimation. Notably, p-DLTV made a much
better estimate than DLTV only by changing from optimism to a randomized scheme. Although the
optimal policy was performed, QR-DQN overestimates the optimal Q-value of (s2, a1) as µ̂ = 9.33,
while the ground truth is computed as µ = 10γ2 = 8.1. However, PQR estimates the ground truth
much better than other baselines with much closer mean and standard-deviation.
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LunarLander-v2. Figure 1 shows that p-DLTV and PQR reach the threshold faster than the other
baselines. Surprisingly, p-DLTV with the randomized approach successfully reach the goal with
high extreme reward, but DLTV failed to reach the landing pad. The result implies that maintaining
optimism on intrinsic uncertainty leads to longer fixedness during training and therefore randomized
approach could alleviate fixedness within an affordable time budget.

Atari Games with sticky actions. To avoid the deterministic dynamics of Atari games, [16]
proposes injecting stochasticity scheme, called sticky actions, by forcing to repeat the previous action
with probability p = 0.25. Sticky actions protocol prevents agents from relying on memorization
and allows to evaluate the robustness during training. In Figure 5, as we expected, PQR shows the
steeper learning curves by escaping fixedness earlier without any support of advanced schemes, such
as n-step updates for Rainbow. PQR dramatically improves over IQN and Rainbow in ASSAULT,
BATTLEZONE, BEAMRIDER, BEZERK and BOWLING at 50 million steps.

4.2 Full Atari Results

Finally, we evaluate the performance on full set
of Atari games, each of which contained intrinsic
uncertainty in different ways. Even if it is well
known that Atari benchmarks without sticky ac-
tions do not have ‘enough’ stochasticity, intrinsic
uncertainty is still prevalent in various manners.
In Table 1, we evaluated 55 Atari results at 50M
frames comparing with published score of QR-
DQN [10], IQN [9], and Rainbow [14] via the
report of DQN-Zoo benchmark [22] for reliability.

Mean Median > human > DQN
DQN-zoo(50M) 314% 55% 18 0
QR-DQN-zoo(50M) 559% 118% 29 47
IQN-zoo(50M) 902% 131% 21 50
RAINBOW-zoo(50M) 1160% 154% 37 52
PQR(50M) 1121% 124% 33 53

Table 1: Mean and median of best scores
across 55 games on 50M frames, measured
as percentages of human baseline. Reference
values are from Quan and Ostrovski [22].

While PQR cannot enjoy the environmental stochasticity by the deterministic dynamics compared to
sticky action protocol, PQR achieved 562% performance gain in the mean of human-normalized score
over QR-DQN, which is comparable results to IQN. From the raw scores of 55 games, PQR wins 39
games against QR-DQN and 34 games against IQN. Note that IQN benefits from the generalized form
of distributional outputs which reduce the approximation error from the number of quantiles output.
While Rainbow is a combination of several orthogonal improvements such as double q-learning,
prioritized replay, dueling networks, and n-step updates, PQR has another orthogonal benefit from
exploration strategies which are based on the rich information of distributional output and shows
the competitive performance with Rainbow.

4.3 Discussion

In section 4.1, a notable consistent result is that just adding randomness to the coefficient ct on DLTV
shows the significant improvement supporting that the randomized risk criterion was superior to
OFU in distributional RL. In section 4.2, PQR successfully escapes the fixedness better than ϵ-greedy
methods. In most RL environments with intrinsic uncertainty, we observe that OFU and ϵ-greedy
have difficulty in making a decision that matches risk-neutral purpose, because two uncertainties are
intertwined during learning.

5 Conclusions

In this paper, we proposed a general framework of perturbation in distributional RL which is based
on the characteristics of a return distribution. Without resorting to a pre-defined risk criterion, we
revealed and resolved fixedness where one-sided tendency on risk can lead to biased action selection
under the stochastic environment. To our best knowledge, this paper is the first attempt to integrate
risk-sensitivity and exploration by using time-varying Bellman objective with theoretical analysis.
In order to validate the effectiveness of PQR, we evaluate on various environments including 55
Atari games with several distributional RL baselines. Without separating the two uncertainties, the
results show that perturbing the risk criterion is an effective approach to resolve the issue of fixedness.
We believe that PQR can be combined with other distributional RL or risk-sensitive algorithms as a
perturbation-based exploration method without sacrificing their original objectives.
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