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Abstract

Semantic matching is a fundamental task
in Natural Language Processing (NLP),
which is widely used in information re-
trieval, recommendation, and other applica-
tions. Transformer-based pre-trained language
models have achieved remarkable improve-
ments in semantic matching. However, the
transformer uses only one attention mechanism,
which might not be optimal for semantic match-
ing that relies on the modeling of complex
relationships. In this paper, we propose the
Commix Dimensional Attention(CDA) frame-
work to enhance the ability of language mod-
els to capture the relationships between sen-
tence pairs from diverse aspects by exploiting
and commixing four complementary attention
mechanisms. Building based upon the trans-
former architecture, the method adopts diverse
types of attention functions to capture mani-
fold types of interactive information and ef-
fectively fuses them with a well-designed self-
interactive augmentation layer and a normal-
ized aggregation layer. Specifically, the CDA
language model includes three key modules, 1)
a commix dimensional attention module, 2) a
self-interactive augmentation module, and 3)
a normalized aggregation module. We apply
the proposed CDA language model to conduct
extensive experiments. Results show that the
proposed model achieves consistent improve-
ment on 10 well-studied semantic matching
datasets.

1 Introduction

Semantic Sentence Matching (SSM) plays an im-
portant role in Natural Language Processing (NLP).
SSM aims to compare two sentences and iden-
tify their semantic relationship. In recent years,
with the development of pre-trained language mod-
els(PLMs), PLMs with attention are regarded as
the core structure, such as Bert (Devlin et al., 2018),
RoBERTa (Liu et al., 2019b). The PLMs gen-
erally adopt large-scale training corpus and self-
supervised learning objectives to learn sentence
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Figure 1: Examples of other PLMs like BERT,
RoBERTa, or even chatGPT can not distinguish the
semantics of similar texts well.

representation better. With the powerful context
representation ability, they have achieved state-of-
the-art performance in semantic matching tasks.
Recent work shows that using external knowledge
to enhance the attention mechanism can further
improve the performance of the model(Han et al.,
2021). For example, SyntaxBERT(Bai et al., 2021)
proposes to exploit the text sentence structure and
enhance the model by adding syntactic informa-
tion to the attention. By introducing synonym in-
formation to enhance the attention mechanism in
the pre-trained language model, UERBERT(Xia
et al., 2021) achieves significant performance im-
provements. These works show the importance of
incorporating some inductive bias into the attention
mechanism for text sequence learning. Besides,
Large language models (LLMs) have revolution-
ized natural language task solving through prompt-
ing(Brown et al., 2020) and have demonstrated im-
pressive capabilities in a variety of natural language



processing tasks. Large language models such
as GPT3(Brown et al., 2020), GLM2(Zeng et al.,
2022), chatGPT, LLaMa(Touvron et al., 2023), etc.
have strong capabilities in the field of generative
domain. However, with their huge model parame-
ters and complex model structures, they also have
strong abilities in semantic matching.

Most of the current language models are based
on transformer architecture. The calculation of the
attention score in the transformer is merely based
on the dot-product to model the relationship be-
tween sentence pairs, which may not be optimal
for the transformer-based language model. How-
ever, These models do not perform very well in
distinguishing sentence pairs with high literal simi-
larities. Figure 1 demonstrates a few cases suffer-
ing from this problem. Although the sentence pairs
in this figure are semantically different, they are
too similar in literally for those language models
like BERT, RoBERTa, or even chatGPT to distin-
guish accurately. In addition, from case 3 and case
4 in this figure, there is a phenomenon of instability
in the task of determining semantic similarity in
chatGPT, and two opposite results are given for
the same input sentence pair. At the same time,
De-attention (Tay et al., 2019) and MwAN (Tan
et al., 2018) work in the non-pre-trained model
have verified the effectiveness of a flexible atten-
tion mechanism. But it is still not sure whether a
more flexible attention model in the large-scale pre-
trained model works well on semantic matching
and how to design an effective flexible attention
model to enhance semantic matching.

To this end, in this paper, we propose a new
model, named Commix Dimensional Attention
Language Model (CDA-LM), Bert is a represen-
tative model of bidirectional language models, so
we apply our CDA mechanism in Bert, as the atten-
tion in the first layer transformer of Bert is broad
and uninformed (Xia et al., 2021), meanwhile, so
as to avoid adding unnecessary parameters, The
proposed model reforms the multi-head attention
module of the first layer transformer of BERT by
incorporating four complementary attention mech-
anisms, interactively augment and adaptively inte-
grate four kinds of attention information for sen-
tence matching. due to the fact that the attention
information is captured from commix perspectives
or views, we call our attention mechanism Com-
mix Dimensional Attention. Specifically, it includes
three modules:

1) Commix Dimensional Attention module. We
analyze that the four dimensions of attention are
complementary clues for sentence matching, which
can capture different levels of information in the
text sequence. We propose a commix dimensional
attention model by considering four different at-
tention mechanisms, including dot-product atten-
tion, additive attention, minus attention, and bilin-
ear attention. Compared with the single attention-
based model, our framework can model the relation-
ship between sentences from different dimensions
through commix dimensional attention, so as to
obtain more fine-grained matching information.
2) Self-interactive Augmentation module. We
observe that The representations obtained through
different dimensional attention mechanisms do not
interact well with input information, We propose
to apply the self-interactive augmentation module
to interact with the matching information together
with each word in the sentence in each attention
function. So in order to augment the interaction
with input information and thus obtain better se-
mantic representations.

3) Normalized Aggregation module. We find that
the simple aggregation with fixed or average impor-
tance weights may destroy the learned knowledge
of the pre-trained language model. We propose to
adaptively aggregate the representations obtained
by the self-interactive augmentation module, nor-
malized aggregation combines the matching infor-
mation of all attention functions. We apply the
normalized aggregation module to aggregate the
four representations adaptively.

In order to verify the effectiveness of our pro-
posed model, we conducted intensive experiments
on 10 datasets, including GLUE datasets such as
QQP, MRPC, and SNLI, and fully studied datasets
such as Sci and Twi. The results show that com-
pared with BERT-base, CDA-LM achieves an ab-
solute improvement of more than 2.2% avg, and
is superior to other Bert-based models and large
language models(LLMs) in more advanced tech-
nology and external data use.

The main contributions of this work can be sum-
marized as follows:

* We provide an in-depth analysis of the feasi-
bility of improving the attention mechanism in
the pre-trained model and propose a new Com-
mix Dimensional Attention Language Model
(CDA-LM).

* The proposed CDA-LM effectively augments



and aggregates four complementary attention
models, such that the intrinsic complex rela-
tionship between sentence pairs can be fully
discovered for effective semantic matching.

» Extensive experiments are conducted on 10
semantic matching datasets. The results show
that the proposed CDA-LM achieves remark-
able performance gain compared with BERT
(with 2.2% improvements on average) and
also outperforms the state-of-the-art external
knowledge enhancement-based methods.

2 Related Work

Semantic Sentence Matching plays an important
role in many applications, such as information re-
trieval (IR) and natural language inference (NLI).
Recently, the shift from neural network architec-
ture engineering to large-scale pre-training has sig-
nificantly improved NLP tasks, demonstrating the
power of unsupervised pre-training. large-scale pre-
trained language models (PLMs) have boosted the
performance of text semantic matching by making
full use of massive text resources. Most of them are
composed of multiple transformer layers(Vaswani
et al., 2017) with multi-head attention and are pre-
trained with well-designed self-supervised learn-
ing objectives. Outstanding examples include Em-
bedding from Language Models(ELMo) (Peters
et al., 2018), Generative Pre-trained Transformers
(GPT) (Radford et al., 2018), Bidirectional Encoder
Representations from Transformers (BERT) (De-
vlin et al., 2018), and Generalized Auto-regressive
Pre-training (XLNet) (Yang et al., 2019). Provid-
ing fine-grained contextual word embedding, these
pre-trained models can be either easily applied
to downstream tasks as encoders or directly fine-
tuned for downstream tasks. As the most promi-
nent model in recent years, BERT and many of
its variants, including AIBERT (Lan et al., 2019),
RoBERTa (Liu et al., 2019b), ERNIE (Zhang et al.,
2019), K-BERT (Liu et al., 2020), DeBERTa (He
et al., 2020), DABERT(Wang et al., 2022), DC-
Match(Zou et al., 2022), DAFA(Song et al., 2022)
and Large Language Models(LLMs) such as GPT3
(Brown et al., 2020), LLaMa (Touvron et al., 2023)
have achieved superior results in many NLP tasks.
Although the pre-trained model shows a strong
representation ability in sentence encoding, there
are still some improvements for multi-head atten-
tion, which is used to improve the coding ability
of the pre-trained model and improve the perfor-

mance effect on downstream tasks, Such as 1) Syn-
tax Bert(Bai et al., 2021) improves the model’s
understanding of text sentence structure by adding
syntactic information to attention, 2) UER Bert(Xia
et al.,, 2021) enhances the attention mechanism
in the pre-trained model by introducing synonym
information, and 3) SemBert(Zhang et al., 2020)
improves the effect of text representation by inte-
grating semantic role tagging and multi-label se-
mantics into attention. In this work, we propose
a scheme, which is used to provide commix dif-
ferent dimensional attention modes to capture the
relationship between different components in a sen-
tence, interactively augment and aggregate the four
different attention modes (Commix Dimensional
Attention) is used to improve the encoding ability
of multi-head attention for text, and significantly
improve the matching of short text, which can be
easily combined with PLMs to stack additional im-
provements for text semantic matching.

3 Approach

We show the Commix Dimensional Attention Lan-
guage Model in Figure 2. We take Bert as our
base model, According to the findings in (Xia et al.,
2021), the attention in the first layer transformer
of Bert is broad and uninformed, so in order to
improve the performance of the BERT as much as
possible without adding extra parameters, We de-
cided to apply our commix dimensional attention
mechanism only in the first transformer layer of
bert. Regarding this point, we also compared the
results of changes in attention in each layer and
changes in attention in all layers in the experiments.
It also indirectly verified that adding only changes
to attention in the first layer is optimal, please re-
fer to the 4.2 for more details. Which consists
of four parts under the augmentation-aggregation
framework. Specifically, For every word embed-
ding from q and k, we can obtain four matching
scores using four different dimensional attention
functions. Next, we augment the matching infor-
mation along with words in q. We match two vec-
tors inside each attention function interactively and
then combine the matching information from all
functions. The Multi-Layer Perception(MLP) is ap-
plied to fuse the matching information both in the
self-interactive augmentation and normalized ag-
gregation. Finally, that is, we obtain an aggregated
commix dimensional attention result after different
dimensional attention, self-interactive augmenta-
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Figure 2: The overall architecture of the CDA-LM is shown in (a). The detailed structures of the Commix
Dimensional Attention module, Self-interactive Augmentation module, and Normalized Aggregation module are

shown in (b), (c), and (d), respectively.

tion, and normalized aggregation, which is used
to replace the self-attention part in the first layer
transformer of Bert.

3.1 Commix Dimensional Attention

In the commix dimensional attention module, we
use four different dimensional attention functions
to model the semantic relationship between sen-
tence pairs from different perspectives. Note that
this is in stark contrast to the single Attention used
by default in the transformer. The four attentions
are dot attention, additive attention, minus atten-
tion, and bilinear attention, respectively. The input
of the commix dimensional attention module is a
triple of Q, K,V € RY%sea x d,, where d, is the
latent dimension, d ., is the length of the utterance.
We use ¢;, k; and v; to denote the ¢-th dimension of
Q, K, and V respectively. Four independent atten-
tion mechanisms compute potential relationships
between (), K, and V' to measure their semantic
interaction alignment.

3.1.1 Dot Attention

Dot attention is part of the commix dimensional at-
tention module, which can directly compute corre-
lations using matrix operations, and the computed
scores are correlation weights. It is also the most
commonly used attention mechanism in semantic
correlation modeling. And it follows the standard
dot-product attention that the transformer operates
by default. The input of the dot attention module
consists of queries and keys of dimension dj, and
values of dimension d,. We compute the dot prod-
ucts of the query with all keys, and apply a softmax
function to obtain the weights on the values. For
the sake of simplicity, the formulations of BERT

not be repeated here, please refer to (Devlin et al.,
2018) for more details. We denote the output vector
as:

s5 = q; Ok (1a)
t
exp(s;
Zj:1 exp(sj)
N
ai = ajvi (1o)
=1

where qf € R'*% is the output of the ¢-th posi-
tion obtained after the dot attention calculation and
© is element-wise dot product.

3.1.2 Additive Attention

The second part of commix dimensional attention
1s the additive attention module, which is more in-
clined to capture aligned representations between
sentence pairs from a global perspective since it
applies a concatenated alignment of two vectors.
Specifically, its input is the concatenation of two
vectors, the output after the activation function rep-
resents the correlation between the vectors, and
finally, the softmax function is applied to get the
weights of the values. We denote the output vector
as:

s = tanh(W([q;; ki]) (2a)
¢ exp(s;)
i = <N . (2b)
> eap(sh)
N
qi = Z akv; (2¢c)
i=1



where q € R % is the output of the ¢-th posi-
tion obtained after the additive attention calculation,
and W, € R2% are weights of our model.

3.1.3 Minus Attention

The third part of commix dimensional attention
is the minus attention module which captures
and aggregates the different information between
sentence pairs. The difference attention module
adopts a subtraction-based cross-attention mecha-
nism, which allows the model to pay attention to
dissimilar parts between sentence pairs by element-
wise subtraction as:

55- = tanh(W,,(q; — ky)) (3a)
¢ exp(s})
i = <N . (3b)
S exp(st)
N
q' = Z agvi (3¢)
i=1

where g € R'*% is the output of the ¢-th posi-
tion obtained after the minus attention calculation,
and W,,, € R1¥% are weights of our model.

3.1.4 Bilinear Attention

The last part of commix dimensional attention is
a bilinear attention module, which can learn a bi-
linear attention distribution of two vectors to seam-
lessly utilize the given sentence pair information.
It models the bilinear interaction between two sets
of input channels, facilitating the extraction of a
joint representation of each pair of channels. Its
calculation formula is as follows:

st = q] Wk (4a)
¢
exp(st
af = -~ (s0) - (4b)
Zj:l exp(sj)
N
qf = Z a’;fvl- (4c)
i=1

where q? € R'*9 is the output of the ¢-th posi-
tion obtained after the bilinear attention calculation
and W, € R%*4% are weights of our model.

3.2 Self-interactive Augmentation

Self-interactive augmentation is to fuse each word
in the query vector in each attention function. For
each position t, we splice the word representation

hf of v; with its representation gy of the correspond-
ing attention, where v; denotes the ¢-th dimension
of K, c=(a, b, d, m). which will better augment
each word representation with single attention to
capture the input information. then using a gating
structure to select the importance after splicing, and
then applying an MLP to fuse the representation
of each position more fully after the above opera-
tions. After that, the output after self-interactive
augmentation is obtained. As shown below, This is
an example of our self-interactive augmentation of
additive attention:

xt = [af hf] (52)

gi = sigmoid (Wyx{) (5b)
xi" = g; O x (5¢)
h{ = tanh(Wyx{™ + b,) (5d)

For bilinear, dot, and minus attention, we will also
get hY, h{, and R}, respectively. Where W, €
R1X2dv W, € R%*2dv b are weights and bias
of our model.

3.3 Normalized Aggregation

Normalized aggregation is to fuse all the attention
functions. We use a parameter z¢ as an input to
adaptively fuse four different attention mechanisms.

Sj = tanh(Wlh{ + WQZC)(j = a, ba d7 ’I?’L)

(6a)
0 — exp(s;) (6b)
Zj:(a,b,d,m) exp(s;)
x;= Y ah (6¢)
i=(a,b,d,m)

Then, we input this X, into an MLP neural network
to fuse the information in different attention func-
tions, and we will obtain different h{ for different
positions in P.

h? = tanh(tht + bt) (7)

Where W; € R%*d b, are weights and bias
of our model, respectively.

After aggregating the commix dimensional atten-
tion matching information, we will obtain the fused
representation of the vectors at different positions
for t from 1 to N.

A% = (h{,hg,...,h%) (8)



Table 1: The performance comparison of CDA-LM with other methods. We report Accuracy x 100 on 6 GLUE
datasets. Methods with } indicate the results from their papers, while methods with I indicate our implementation.

Method Pre-trained MRPC QQP MNLI-m/mm QNLI RTE STS-B Avg
BiMPM{t(Wang et al., 2017) X 79.6  85.0 72.3/72.1 81.4 564 - -

CAFEf{(Tay et al., 2017) X 824 83.0 78.7/77.9 81.5 56.8 - -

ESIM7{(Chen et al., 2016) X 80.3 832 - 80.5 - - -

Transformert(Vaswani et al., 2017) X 81.7 844 72.3/71.4 80.3 58.0 73.6 74.53
BiLSTM+ELMo+Attnf(Peters et al., 2018) v 84.6 86.7 76.4/76.1 79.8 56.8 733 76.24
OpenAl GPTf(Radford et al., 2018) v 823 70.2 82.1/81.4 87.4 56.0 80.0 77.06
UERBERTZ(Xia et al., 2021) v 88.3 905 84.2/83.5 90.6 67.1 85.1 84.19
SemBERT}(Zhang et al., 2020) v 882 903 84.4/84.0 909 69.3 873 84.90
BERT-basef(Devlin et al., 2018) v 87.2 89.0 84.3/83.7 90.4 664 858 83.83
RoBERTai(Liu et al., 2019b) v 87.9 89.2 84.7/84.1 90.7 67.2 86.7 84.43
SyntaxBERT-base{(Bai et al., 2021) v 89.2 89.6 84.9/84.6 91.1 689 88.1 8520
CDA-LM-base} v 89.1  92.0 84.9/85.3 92.1 69.8 889 86.13
BERT-largef(Devlin et al., 2018) v 89.3 893 86.8/85.9 927 70.1 86.5 85.80
RoBERTa-largef(Devlin et al., 2018) v 904 894 86.8/86.1 927 723 875 86.32
SyntaxBERT-largef(Bai et al., 2021) v 92.0 895 86.7/86.6 928 747 885 87.26
CDA-LM-large} v 919 923 87.3/87.4 952 757 89.8 88.59

A° is the final fused semantic feature and it will ~ Table 3: The performance comparison of CDA-

be propagated to the next computation flow.

Table 2: The performance comparison of CDA-LM
with other methods on 4 popular datasets, including
SNLI, Scitail(Sci), SICK, and TwitterURL(Twi).

Model SNLI Sci SICK Twi
ESIM7{(Chen et al., 2016) 88.0 70.6 - -
CAFEf(Tay et al., 2017) 88.5 83.3 723 -
CSRAN7(Tay et al., 2018) 88.7 86.7 - 84.0
BERT-base{(Devlin et al., 2018) 90.7 91.8 87.2 84.8
RoBERTa-basef(Liu et al., 2019b)  90.9 92.3 87.9 85.9
UERBERT{(Xia et al., 2021) 90.8 92.2 87.8 86.2
SemBERTY(Zhang et al., 2020) 90.9 92.5 87.9 86.8
MT-DNN-basef(Liu et al., 2019a)  91.1 94.1 - -
SyntaxBERT-basef(Bai et al., 2021) 91.0 92.7 88.5 87.3

CDA-LM-base} 91.8 94.0 89.2 88.2

BERT-large}(Devlin et al., 2018) 91.0 944 91.1 915
RoBERTa-largef(Liu et al., 2019b) 91.2 94.5 91.2 91.9
SyntaxBERT-largef(Bai et al., 2021) 91.3 94.7 91.4 92.1

CDA-LM-large? 92.1 95.5 929 92.8

4 Experiment

The datasets, baselines, and all details of our exper-
iments are shown in Appendix A.3.

4.1 Results

In the experiments, we replace the original atten-
tion module with our CDA mechanism in the BERT

LM-large with LLaMa family and GPT3 on several
datasets. including SNLI, Scitail(Sci), SICK, and Twit-
terURL(Twi).

Model SNLI Sci SICK Twi
LLaMA-7Bi(Touvron et al., 2023) 73.1 75.2 68.4 64.7
LLaMa-13Bi(Touvron et al., 2023) 78.5 83.2 80.6 83.1
GPT3i(Brown et al., 2020) 84.3 90.1 88.7 85.8

CDA-LM-large} 92.1 95.5 929 92.8

model.

Firstly, we fine-tune our model on 6 GLUE
datasets. Table 1 shows the performance of CDA-
LM compared with some other baseline models.
It can be seen that the effect of non-pre-trained
models is significantly worse than pre-trained mod-
els. This is mainly because the pre-trained model
has more data from the learning corpus and a pow-
erful information extraction ability. The perfor-
mance of our CDA-based BERT-base and BERT-
large model improves the original BERT models
by 2.2% and 2.7%, respectively. Moreover, our
model also outperforms SyntaxBert (which is the
state-of-the-art external knowledge-based model)
by 0.9% on BERT-base and 1.3% on Bert-large,
respectively.

Secondly, to verify the overall performance of
our method, we also conduct experiments on four
other popular datasets. The results are shown in
Table 2, CDA-LM outperforms vanilla Bert and
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other competitive models on almost all datasets.
In addition, the amount of data in Scitail is rela-
tively small, which makes the variance of the model
prediction results larger. However, CDA-LM still
shows very competitive performance on Scitail,
which also shows that our method can make up
for the lack of generalization ability with fewer pa-
rameters by endowing Bert with subtle difference
awareness.

Overall, consistent conclusions can be drawn
from these results. Compared with previous work,
our method shows very competitive performance in
judging semantic similarity, and the experimental
results also confirm our idea.

4.1.1 VsLLMs

We also compared the semantic understanding abil-
ity of the Large Language Models(LLMs) with
our model. Considering that the answers provided
by the Large Language Models(LLMs) involve
content analysis and generation, in order to make
the comparison results more comparative, we per-
formed the following operations on the experiment.
For the convenience of statistics, we have extracted

partial data randomly from several datasets as test
data. In addition, We have made the following set-
tings for the prompt: Please provide the similarity
between the following two sentences. If similar,
provide 1; if dissimilar, provide O.

From the table 3, we can see that although LLMs
have strong comprehension and generation abili-
ties, there are still some shortcomings in dealing
with semantic matching tasks, mainly due to the
inability to understand prompts well. For example,
for some sentence pairs, providing some unwanted
answers cannot directly provide 1 or 0, especially
in large-scale data processing, which can gener-
ate many answers that cannot be programmed and
batch processed in downstream tasks. In addition,
there may be some deviations in the understanding
of sentences, leading to incorrect judgments. More-
over, some sentence pairs generate very unstable
answers. For example, after the model’s judgment,
sometimes it gives a result of 1, but when executed
again later, the model gives a result of 0. These also
indicate the instability of large language models in
semantic matching tasks.

4.1.2 Stability Analysis

We also performed extensive experiments on QQP,
SNLI, QNLI, and Scitail datasets to explore the
stability of our method. To minimize the impact
of randomness in Bert’s training, performance lev-
els were averaged over 10 different runs on the
development set. The performance distribution box
diagram is shown in Figure 3. The median and
average levels of our model exceeded the ordinary
Bert on all four datasets, and the performance fluc-
tuation range of our method was within + 1% of
the average level, which indicates that our method
has better stability than Bert on different data dis-
tributions.

4.2 layer-by-layer Analysis

Regarding why we only applied commix attention
to the first layer transformer in BERT, in addition
to being inspired by the article in UERBERT (Xia
et al., 2021), we also made changes in each layer
and also in all layers, as shown in the figure 4. We
applied commix attention to the attention of trans-
formers in each layer of BERT, and at the end, we
also made changes to transformers in all layers of
BERT, selecting the MRPC and QQP datasets, The
experimental results are basically consistent with
the conclusion in (Xia et al., 2021), that is, the in-
formation understanding capability of the first layer
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Figure 5: Distribution of Dot attention (a), Additive attention (b), Minus attention (c) and Bilinear attention (d).

transformer in BERT is the worst, and modifying
the commix attention in this layer is the most ef-
fective, better than applying commix attention in
all layers, and also better than applying commix
attention in all layers.

4.3 Attention Distribution

To visually demonstrate the impact of different at-
tention functions inside commix dimensional atten-
tion on the interactive alignment of sentence pairs,
we show the weight distribution of four kinds of
attention in the figure 5. We can observe that the
word-pair information in the sentence pairs con-
cerned with different attention functions is incon-
sistent. First, in Figure (a), Dot attention can pay at-
tention to the same words and semantically related
words in sentence pairs, but it is heavily influenced
by the same words in sentence pairs. It focuses too
much on the shallow features of the same text and
ignores the deep semantic association of the dif-
ferent words between "software" and "hardware".
This shows that using Dot attention alone may lead
to wrong predictions. Secondly, in Figure (b), we
can see that the distribution of attention weights is
more uniform, because the calculation method of
additive attention tends to fuse the two signals, so
it pays attention to different word pairs of software
and hardware to a certain extent, but the interac-
tion weights still small. Next, in Figure (c), it can
be observed that Minus attention explicitly pays
attention to the difference between "software" and
"hardware", and its attention weight is the largest
among all word pairs. This is because subtractive
attention uses element-wise subtraction to compare
the differences between sentence pairs. The greater
the difference between word pairs, the greater their
weight. Therefore, it can also be complementary
to Dot attention. Finally, in Figure (d), the atten-
tion weights in bilinear attention focus on the same
words, which indicates that bilinear attention tends

to focus on the same parts of sentence pairs, and
this mechanism is beneficial for capturing sentence
pairs’ commonality. In summary, different atten-
tion focus on different word pairs in sentence pairs.
Intuitively, commix dimensional attention can ef-
fectively combine the alignment relationships of
multiple views in sentence pairs to generate vectors
that better describe the matching details of sentence
pairs.

The more result of our additional experiments is
shown in Appendix A.

5 Conclusion

In this paper, we propose a novel Commix Dimen-
sional Attention (CDA) mechanism to improve the
large-scale pre-trained model, such as BERT, and
RoBERTa for the semantic matching task. The
commix dimensional attention module fully ex-
ploits complementary and complex relationships
between sentences compared to the single attention-
based model. Moreover, the self-interactive aug-
mentation enables better interaction between each
attention function and its input, enhancing the rep-
resentation ability of each attention mechanism.
Furthermore, the proposed adaptive aggregation
module with normalized aggregation mechanisms
can effectively fuse the key features and filter out
the unrelated features produced by the commix
dimensional attention module for semantic under-
standing. Extensive experiments on 6 GLUE bench-
mark datasets, as well as 4 other commonly used
semantic understanding datasets, verify that the
proposed CDA-LM achieves remarkable perfor-
mance improvements over the original single at-
tention mechanism-based BERT model as well as
other state-of-the-art semantic understanding mod-
els. Since the CDA mechanism is a universal trans-
formation mechanism for transformers, it is ex-
pected to be applied to other large-scale pre-trained
models in the future.



Limitations

This work has the following limitations: (1) The
proposed method is based on the introduction of
multiple attention functions. Since the introduced
attention functions have not been pre-trained, if
they are not fine-tuned on the labeled dataset, errors
may be introduced and propagated to the decision
model, resulting in label prediction errors. (2) We
initially demonstrated that external structures can
be combined with BERT to improve performance
on various SSM tasks. We are also interested in
trying to combine it with other PLMs. However,
due to computational resource constraints, we did
not conduct more experiments on other PLMs. (3)
Introducing an extrinsic structure significantly im-
proves the generalization ability of PLMs in few-
shot scenarios, but a deeper understanding of why
this is the case is still lacking. This may inspire
better methods to exploit pre-trained models.
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A Appendix

A.1 The Result of Additional Experiments
A.1.1 Ablation Study

To evaluate the contribution of each component in
our method, we conduct ablation experiments on
the QQP datasets based on BERT. The experimen-
tal results are shown in table 4.

The commix dimensional attention module con-
sists of four core components that use different at-
tention functions to model the correlation between
sentence pairs. We want to know if each com-
ponent is useful for the sentence-matching task.
First, after removing dot attention, the performance
of the model drops by 2.3%. While dot attention
can capture the dynamic alignment relationship
between word pairs, which is crucial for seman-
tic matching tasks. Then, When additive attention
and bilinear attention are removed respectively, the
performance of the model on the datasets drops
to 90.4% and 90.2%, respectively. They are sig-
nificantly smaller than Dot attention, which indi-
cates that these two kinds of attention are weaker
than dot attention in distinguishing sentence pair
relations. Finally, after removing minus attention
from the model, the performance dropped by 2.1%.
The different information can further describe the
interaction between words and can provide more
fine-grained comparison information for the pre-
trained model so that the model can obtain a better
representation. The above experiments show that
the performance drops when the sub-module is re-
moved, which demonstrates the effectiveness of the
internal components of the commix dimensional
attention module.

Next, in the aggregation module, we also con-
duct multiple experiments to verify the effect of
augmentation and aggregation of multiple match-
ing features. On the QQP datasets, we first re-
move the self-interactive augmentation module,
and the performance drops to 90.8%. Since self-
interactive augmentation can capture interactions
between multiple signals, this interaction infor-
mation is crucial for fusing multi-source vectors.
Second, after removing the normalized aggrega-
tion module, we only integrate multiple signals by
simple averaging. The accuracy drops to 90.5%,
which proves that dynamic aggregation according
to different weights can further improve the perfor-
mance of the model. Finally, when we remove the
both augmentation module and aggregation mod-
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ule and use simple averaging instead, the perfor-
mance drops sharply to 89.6%, which is the largest
drop among all ablation components. This suggests
that while commix dimensional attention mecha-
nisms are crucial for judging sentence pair rela-
tions, hard-integrating multi-attention mechanisms
without interactive augmentation into PLMs may
destroy their pre-existing knowledge, while self-
interactive augmentation and soft aggregation can
better enhance and aggregate multiple attention.

Table 4: Results of component ablation experiment.

Model Dev  Test
CDA-LM 92.6 92.0
w/o Dot attention 90.4 89.7
w/o Additive attention 91.1 904
w/o Minus attention 90.7 89.9
w/o Bilinear attention 91.3 90.2
w/o Self-interactive augmentation 919 90.8
w/o Normalized aggregation 91.6 90.5
w/o Augmentation and Aggregation 90.3 89.6

Finally, to explore whether any two kinds of
attention can serve as complementary cues, we ag-
gregate the four kinds of attention in pairs, and
the performance improvement over baseline BERT
is shown in Figure 6. First, we can find that af-
ter the aggregation of different kinds of attention,
the performance of the baseline based on a single
attention mechanism is improved. Second, The fu-
sion of dot attention and minus attention achieves
the best complementary performance improvement
among all aggregations, and the combination of dot
attention and other attentions significantly outper-
forms other attention pairs, which reflects that dot
attention contributes more to the text matching task
than other attentions. Finally, it is worth noting that
other types of attention aggregation minus atten-
tion can also achieve better results. This may be
because minus attention can capture the different
information in sentence pairs, and can intuitively
reflect the differences between sentence pairs.

Opverall, due to the efficient combination of each
component, CDA-LM can adaptively fuse vectors
generated from different attentions from multiple
perspectives into a pre-trained model and leverage
its powerful contextual representation to better in-
fer semantics.



Table 5: The robustness experiments results of CDA-LM and other models. The data transformation methods we uti-
lized mainly include SwapAnt(SA), NumWord(NW), AddSent(AS), InsertAdv(IA), AppendLrr(AL), AddPunc(AP),
BackTrans(BT), TwitterType(TT), SwapNameEnt(SN), SwapSyn-WordNet(SW)

Quora SNLI
Model
| sA NW IA AL BT | AS SA TT SN SW
ESIM{(Chen et al., 2016) - - - - - 64.00 84.22 78.32 53.76 65.38
DistilBERT{(Sanh et al., 2019) 42.24 56.85 83.10 84.09 83.20 - - - - -
BERTY(Devlin et al., 2018) 48.58 5696 86.32 8548 83.42 |79.66 94.84 83.56 50.45 76.42
ALBERTf(Lan et al., 2019) 51.08 55.24 81.87 7894 8237 |45.17 96.37 81.62 57.66 74.93
SyntaxBERTT(Bai et al., 2021) 49.30 56.37 86.43 84.62 84.19 | 78.63 9531 86.91 58.26 76.90
CDA-LMz 55.93 63.26 87.75 85.08 87.99|81.56 97.35 85.64 60.62 81.23
MNLI-m/mm
Model
AS SA AP TT SN SW

BERTZ(Devlin et al., 2018) 55.32/55.25 52.76/55.69  82.30/82.31  77.08/77.22 51.97/51.84 76.41/77.05
ALBERTf(Lan et al., 2019) 53.09/53.58 50.25/50.20  83.98/83.68 77.98/78.03 56.43/50.03 76.63/77.43
SyntaxBERT{(Bai et al., 2021) | 54.92/54.63 53.54/54.73  80.01/79.71  75.46/74.93  57.11/51.95 78.57/79.31
CDA-LMz 60.75/59.82 58.33/60.83 83.63/83.59 78.24/78.36  60.77/60.35 82.58/83.21

training model. The performance of the improved
s BA“’M oLs T pre-trained model SyntaxBERT is better than that
%05 Al Al 05 +Attnin Aty of the original Bert model, which reflects that suf-

+A“dva“h|l ‘Alli\dd}‘/\“bll

Figure 6: The influence of different attention integration
methods on the QQP test set. The baseline model is
BERT-base. Atty,; indicates Dot Attention, Att,qq
indicates Additive Attention, Att,,;, indicates Minus
Attention and Atty;; indicates Bilinear Attention.

A.1.2 Robustness Performance Test

To examine the performance of CDA-LM and com-
petition models in terms of their ability to capture
subtle differences in sentence pairs. We performed
robustness tests on three widely studied datasets.
Table 5 lists the accuracy of the 6 models on the
three data sets. We can observe that SwapAnt leads
to maximum performance degradation, which in-
dicates that the model cannot handle the semantic
contradiction expressed by antonyms (non-explicit
negations) between sentence pairs. The model per-
formance on NumWord drops to 63.26% in Quora
datasets, because it requires the model to capture
subtle numerical differences for correct language
reasoning. Meanwhile, ESIM performed worst.
The results reflect that the pre-trained mechanism
benefits from abundant external resources and pro-
vides better generalization ability than the denovo
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ficient pre-trained corpus and appropriate exter-
nal knowledge fusion strategy are helpful to im-
prove the generalization performance of the model.
On TwitterType and AddPunc, the performance of
CDA-LM is lower than that of AIBERT but still
better than that of Bert, which may be related to the
pre-trained corpus and training mechanism. In the
other 8 conversions, CDA-LM can show attention
to subtle differences and obtain better performance.

A.2 Model Parameter Analysis

Our model is based on the fusion of four different
kinds of attention, meanwhile, attention modules
are often used to explore the interpretability of
the model (Clark et al., 2019; Hao et al., 2020;
Lin et al., 2019), in order to prove the impact of
the increase of parameter quantity on the model
effect, and the impact of multiple fusion of a single
attention and the effect of multiple fusion models
of different attention, as shown in Table 6, we have
conducted experiments on four separate attention
on the QQP datasets, and for these four separate
attention, 4 times the number of attention are used
to participate in the calculation to achieve the same
level of parameter quantity as our CDA-LM. The
experimental results show that:

¢ The effect of a single kind of attention model
is basically the same as that of a model with a



single kind of attention expanded by four times,
which means that the increase of the number of
parameters of the model caused by a simple four-
fold increase in the number of single attention
does not have a significant improvement on the
performance of the model.

Our CDA-LM compared to the model with a
single kind of attention expanded by four times
have a significant improvement of the result, This
shows that the effective fusion of different attach-
ments does have complementary advantages in
semantic extraction.

Table 6: Results of model parameter experiment.

Model Dev Test
CDA-LM 92.6 92.0
Dot attention x 1 90.4 89.1
Dot attention x 4 91.2 89.5
Additive attention x 1 90.7 88.9
Additive attention x 4 91.8 89.3
Minus attention x 1 91.9 89.9
Minus attention x 4 90.1 90.2
Bilinear attention X 1 89.6 88.8
Bilinear attention x 4 90.3 89.2

A.3 Case Study

In order to intuitively understand how CDA-LM
works, we use the three cases in Table 7 for quali-
tative analysis. First, although S1 and S2 are liter-
ally similar in the first example, they express two
completely different semantics due to the subtle
difference the phrases bring to "eat fruit" and "eat
early". The non-pre-trained language model ESIM
is difficult to capture the semantic conflict caused
by the different words in case 1, so ESIM gives
wrong prediction results. The pre-trained language
model BERT can identify semantic differences in
case 1 and give correct predictions with the help of
strong contextual representation capabilities. It is
worth noting that the similarity of Bert’s predicted
sentence pairs is 46.32%, while that of CDA-LM is
only 1.87%. Second, in case 2, "from 70 to 60" and
"from 60 to 50" in sentence pairs express different
semantics, but they are mainly caused by numerical
differences. Although BERT identified the correct
label in case 1 by a small margin, in case 2 it was
unable to capture numerically induced differences
and gave wrong predictions because it requires the
model to capture subtle numerical differences for
correct language reasoning. Finally, our model
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made correct predictions in all of the above cases.
Since CDA-LM models sentence pairs from mul-
tiple perspectives, it can pay attention to the small
differences in sentence pairs, and adaptively aggre-
gate multi-source information in the aggregation
module to better identify the semantics within sen-
tence pairs’ differences. At the same time, we can
observe that ESIM performs the worst, and the
results reflect that the pre-trained mechanism bene-
fits from abundant external resources and provides
better generalization ability than the denovo train-
ing model. And our BERT-based improved model
CDA-LM outperforms the original BERT model,
reflecting that a reasonable structure improvement
and an effective aggregation strategy can further
improve the model’s generalization performance.

A.4 Implementation Details of Qur
Experiments

Implementation Details CDA-LM is based on
BERT-base and BERT-large. We set the num-
ber of both self-attention layers and heads as
12, and the dimension of embedding vectors as
768. The total number of trainable parameters
of both the original BERTbase and our proposed
model is the same 110M For distinct targets, be-
sides, our hyper-parameters are different. We use
AdamW (Loshchilov and Hutter, 2017) in the BERT
and set the learning rate in {16_5, 2¢7°, 375,
8¢76}. As for the learning rate decay, we use a
warmup(He et al., 2016) of 0.1 and L2 weight de-
cay of 0.01. Furthermore, we set the epoch to 5 and
the batch size is selected in {16, 32, 64}. We also
set dropout at 0.1-0.3. To prevent gradient explo-
sion, we set gradient clipping in {7.5, 10.0, 15.0}.
All the experiments are conducted by Tesla V100
and PyTorch platform. In addition, to ensure that
the experimental results are statistically significant,
we conduct each experiment five times and report
the average results.

A.5 Datasets Statistics
The statistics of all 10 datasets are shown in Table
8.

A.5.1 GLUE Datasets

We experimented with 6 datasets of the GLUE!
datasets (Wang et al., 2018): MRPC, QQP, STS-B,
MNLI-m/mm, QNLI, and RTE, The following is a
detailed introduction to these datasets.

"https://huggingface.co/datasets/glue



Case

ESIM BERT CDA-LM

S1: Can eat only fruit for dinner lead to weight loss?

S2: Does ate dinner earlier in the evening help with weight loss?

similarity:92.76% similarity:46.32% similarity:1.87%
label:1 label:0 label:0

S1: How do girls lose weight from 70 to 60 ?
S2: How should I lose weight from 60 to 50 ?

similarity:99.51% similarity:72.66% similarity:12.06%
label:1 label:1 label:0

S1: What skills do I need to learn to be a successful hardware engineer? similarity:99.99% similarity:99.26% similarity:18.63%

S2: What should I do to become a successful software engineer?

label:1 label:1 label:0

Table 7: The example sentence pairs of our cases. Red and Blue are different phrases in sentence pair.

o MRPC is a dataset that automatically extracts
sentence pairs from online news sources and
manually annotates whether the sentences in sen-
tence pairs are semantically equivalent. The task
is to determine whether there are two categories
of interpretation: interpretation or not interpreta-
tion.

QQP comes from the famous community Q&A
website quora. Its goal is to predict which of the
provided question pairs contains two questions
with the same meaning.

STS-B is a collection of sentence pairs extracted
from news headlines, video titles, image titles,
and natural language inference data. Each pair is
annotated by humans, and its similarity score is
0-5. The task is to predict these similarity scores,
which is essentially a regression problem, but it
can still be classified into five text classification
tasks of sentence pairs.

MNLI-m/mm is a crowd-sourced collection
of sentence pairs annotated with textual entail-
ment information. Given the promise statement
and hypothesis statement, the task is to predict
whether the premise statement contains assump-
tions (entailment), conflicts with assumptions
(contradiction), or neither (neutral).

QNLI is a question and answer data set com-
posed of a question paragraph pair, in which the
paragraph is from Wikipedia, and a sentence in
the paragraph contains the answer to the question.
The task is to judge whether the question and
sentence (sentence, a sentence in a Wikipedia
paragraph) contain, contain and do not contain,
and classify them.

RTE is a series of datasets from the annual text
implication challenge. These data samples are
constructed from news and Wikipedia. All these
data are converted into two categories. For the
data of three categories, neutral and contradiction
are converted into not implication in order to
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Datasets #Train #Dev #Test #Class
MRPC 3669 409 1380 2
QQP 363871 1501 390965 2
MNLI-m/mm 392703 9816/9833 9797/9848 3
QNLI 104744 40432 5464 2
RTE 2491 5462 3001 2
STS-B 5749 1500 1379 2
SNLI 549367 9842 9824 3
SICK 4439 495 4906 3
Scitail 23596 1304 2126 2
TwittertURL 42200 3000 9324 2

Table 8: The statistics of all 10 datasets.

maintain consistency.

A.5.2 Other Datasets

We also experimented with 4 other popular datasets:
SNLI?, Scitail’, SICK* and TwitterURLS. The fol-
lowing is an introduction to these 4 datasets.

o SNLI(Bowman et al., 2015) is a dataset used
for classification (or natural language inference).
The task is to determine whether two sequences
entail, contradict or are mutually neutral.

o Scitail(Khot et al., 2018) is an entailment dataset
created from multiple-choice science exams and
web sentences. Each question and the correct
answer choice are converted into an assertive
statement to form the hypothesis.

o SICK(Marelli et al., 2014) is a dataset for se-
mantic textual similarity estimation. The task is
to assign a similarity score to each sentence pair.

o TwitterURL(Lan et al., 2017) is a collection
of sentence-level paraphrases from Twitter by
linking tweets through shared URLs. Its goal is
to discriminate between duplicates and not.

*https://nlp.stanford.edu/projects/snli/
3https://allenai.org/data/scitail
*http://marcobaroni.org/composes/sick.html
Shttps://github.com/lanwuwei/Twitter-URL-Corpus



A.6 Baselines

To evaluate the effectiveness of our proposed CDA-
LM in SSM, we mainly introduce BERT (Devlin
et al., 2018), SemBERT (Zhang et al., 2020), Syn-
taxBERT(Liu et al., 2020), UERBERT (Xia et al.,
2021) and multiple PLMs (Radford et al., 2018;
Devlin et al., 2018) for comparison. Moreover,
we also selected several competitive no pre-trained
models as baselines, such as ESIM (Chen et al.,
2016), Transformer (Vaswani et al., 2017), etc
(Hochreiter and Schmidhuber, 1997; Wang et al.,
2017; Tay et al., 2017). Besides, We also compared
with Large Language Models, such as GPT3, and
the LLaMa family.

* BIMPM is proposed in (Wang et al., 2017) pro-
poses a Bilateral Multi-Perspective Matching
(Bilateral Multi-Perspective Matching, BIMPM)
model for sentence matching.

* CAFE (Tay et al., 2017) introduces a new ar-
chitecture where alignment pairs are compared,
compressed, and then propagated to upper layers
for enhanced representation learning. And then
it adopts factorization layers for efficient and ex-
pressive compression of alignment vectors into
scalar features, which are then used to augment
the base word representations.

¢ ESIM (Chen et al., 2016) is a model that com-
bines BiLSTM and attention proving that the
sequential inference model based on chained
LSSM can outperform previous complex struc-
tures. It further achieved new SOTA perfor-
mances.

* CSRAN (Tay et al., 2018) is a deep architecture,
involving stacked recurrent encoders. CSRAN
incorporates two novel components to take ad-
vantage of the stacked architecture. It first intro-
duces a new bidirectional alignment mechanism
that learns affinity weights by fusing sequence
pairs across stacked hierarchies. And then it
leverages a multi-level attention refinement com-
ponent between stacked recurrent layers.

e Transformer (Vaswani et al., 2017) uses the
attention mechanism to reduce the distance be-
tween any two positions in the sequence to a
constant. It is not a sequential structure similar
to RNN, so it has better parallelism.

* ELMO (Peters et al., 2018) adopts a typical two-
stage process. The first stage is pre-training using
a language model; The second stage is to extract
the word embedding of each layer of the network
corresponding to the word from the pre-training
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network and add it to the downstream task as a
new feature. It can solve the problem of poly-
semy of the previous language model because
the generated word vector is changed according
to the change of the specific use context.

GPT (Radford et al., 2018) is a semi-supervised
learning method that uses a large amount of unla-
beled data to let the model learn "common sense”
to alleviate the problem of insufficient labeled in-
formation. The specific method is to pre-train the
model Pretrain with unlabeled data before train-
ing Fine-tune for labeled data, and ensure that
the two kinds of training have the same network
structure.

BERT (Devlin et al., 2018) Given that our model
implements based on BERT, we naturally com-
pare it with vanilla BERT without prior knowl-
edge. We adopt the configuration of Google’s
BERT-base in our experiments.

UERBERT (Xia et al., 2021) conducted lots
of experiments to analyze which kind of exter-
nal knowledge BERT has already known, and
directly injected the synonym knowledge into
BERT without fine-tuning.

SemBERT (Zhang et al., 2020) incorporates con-
textual semantics from pre-trained semantic role
labeling and is capable of explicitly absorbing
contextual semantics over a BERT backbone.
SemBERT keeps the convenient usability of its
BERT precursor in a light fine-tuning way with-
out substantial task-specific modifications.
Syntax-BERT (Liu et al., 2020) is a framework
that integrates the syntax trees into transformer-
based models. Unlike us, it explicitly injected
syntactic knowledge into checkpoints of models.
MT-DNN(Liu et al., 2019a) not only leverages
large amounts of cross-task data but also benefits
from a regularization effect that leads to more
general representations to help adapt to new tasks
and domains. MT-DNN extends the model by
incorporating a pre-trained bidirectional trans-
former language model.

GPT3 (Brown et al., 2020) As the successor of
GPT-2, GPT-3 has become the largest language
model, further expanding the parameter space
(175 billion vs. 1.5 billion) and data size (45 TB
vs. 40 GB). The model requires no fine-tuning
to formulate downstream tasks and has excellent
performance in zero-shot and few-shot settings.
Based on the multi-task generalization capabili-
ties of GPT-2, GPT-3 has achieved good results



on many new tasks, including mathematical ad-
dition, news article generation, vocabulary inter-
pretation, and code writing. As the number of
parameters increases, the model becomes more
powerful.

LLaMa(Touvron et al., 2023) trained on a new
mix of publicly available data. LLaMa is a collec-
tion of pretrained and fine-tuned large language
models (LLMs) ranging in scale from 7 billion to
70 billion parameters. Testing conducted to date
has been in English and has not and could not
cover all scenarios. Therefore, before deploying
any applications of LLaMa, developers should
perform safety testing and tuning tailored to their
specific applications of the model to facilitate the
safe deployment of LLaMa.
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