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Abstract
Semantic matching is a fundamental task001
in Natural Language Processing (NLP),002
which is widely used in information re-003
trieval, recommendation, and other applica-004
tions. Transformer-based pre-trained language005
models have achieved remarkable improve-006
ments in semantic matching. However, the007
transformer uses only one attention mechanism,008
which might not be optimal for semantic match-009
ing that relies on the modeling of complex010
relationships. In this paper, we propose the011
Commix Dimensional Attention(CDA) frame-012
work to enhance the ability of language mod-013
els to capture the relationships between sen-014
tence pairs from diverse aspects by exploiting015
and commixing four complementary attention016
mechanisms. Building based upon the trans-017
former architecture, the method adopts diverse018
types of attention functions to capture mani-019
fold types of interactive information and ef-020
fectively fuses them with a well-designed self-021
interactive augmentation layer and a normal-022
ized aggregation layer. Specifically, the CDA023
language model includes three key modules, 1)024
a commix dimensional attention module, 2) a025
self-interactive augmentation module, and 3)026
a normalized aggregation module. We apply027
the proposed CDA language model to conduct028
extensive experiments. Results show that the029
proposed model achieves consistent improve-030
ment on 10 well-studied semantic matching031
datasets.032

1 Introduction033

Semantic Sentence Matching (SSM) plays an im-034

portant role in Natural Language Processing (NLP).035

SSM aims to compare two sentences and iden-036

tify their semantic relationship. In recent years,037

with the development of pre-trained language mod-038

els(PLMs), PLMs with attention are regarded as039

the core structure, such as Bert (Devlin et al., 2018),040

RoBERTa (Liu et al., 2019b). The PLMs gen-041

erally adopt large-scale training corpus and self-042

supervised learning objectives to learn sentence043

Case 1

The similarity between the two sentences is "similar."

Case 2 Determine the similarity between the following two sentences and reply
whether they are similar or not

S1: What time does the flight from London to Paris depart?
S2: What time does the flight from Paris to London depart?

The similarity between the two sentences is "similar."

Case 3 Determine the similarity between the following two sentences and reply
whether they are similar or not

S1: How do girls lose weight from 70 to 60?
S2: How should i lose weight from 70 to 60?

The similarity between the two sentences is "similar."

Case 4 Determine the similarity between the following two sentences and reply
whether they are similar or not

S1: How do girls lose weight from 70 to 60?
S2: How should i lose weight from 70 to 60?

The similarity between the two sentences is "not similar."

Determine the similarity between the following two sentences and reply
whether they are similar or not

S1: What it feels to be loved?
S2: What is the feeling of love?

Figure 1: Examples of other PLMs like BERT,
RoBERTa, or even chatGPT can not distinguish the
semantics of similar texts well.

representation better. With the powerful context 044

representation ability, they have achieved state-of- 045

the-art performance in semantic matching tasks. 046

Recent work shows that using external knowledge 047

to enhance the attention mechanism can further 048

improve the performance of the model(Han et al., 049

2021). For example, SyntaxBERT(Bai et al., 2021) 050

proposes to exploit the text sentence structure and 051

enhance the model by adding syntactic informa- 052

tion to the attention. By introducing synonym in- 053

formation to enhance the attention mechanism in 054

the pre-trained language model, UERBERT(Xia 055

et al., 2021) achieves significant performance im- 056

provements. These works show the importance of 057

incorporating some inductive bias into the attention 058

mechanism for text sequence learning. Besides, 059

Large language models (LLMs) have revolution- 060

ized natural language task solving through prompt- 061

ing(Brown et al., 2020) and have demonstrated im- 062

pressive capabilities in a variety of natural language 063
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processing tasks. Large language models such064

as GPT3(Brown et al., 2020), GLM2(Zeng et al.,065

2022), chatGPT, LLaMa(Touvron et al., 2023), etc.066

have strong capabilities in the field of generative067

domain. However, with their huge model parame-068

ters and complex model structures, they also have069

strong abilities in semantic matching.070

Most of the current language models are based071

on transformer architecture. The calculation of the072

attention score in the transformer is merely based073

on the dot-product to model the relationship be-074

tween sentence pairs, which may not be optimal075

for the transformer-based language model. How-076

ever, These models do not perform very well in077

distinguishing sentence pairs with high literal simi-078

larities. Figure 1 demonstrates a few cases suffer-079

ing from this problem. Although the sentence pairs080

in this figure are semantically different, they are081

too similar in literally for those language models082

like BERT, RoBERTa, or even chatGPT to distin-083

guish accurately. In addition, from case 3 and case084

4 in this figure, there is a phenomenon of instability085

in the task of determining semantic similarity in086

chatGPT, and two opposite results are given for087

the same input sentence pair. At the same time,088

De-attention (Tay et al., 2019) and MwAN (Tan089

et al., 2018) work in the non-pre-trained model090

have verified the effectiveness of a flexible atten-091

tion mechanism. But it is still not sure whether a092

more flexible attention model in the large-scale pre-093

trained model works well on semantic matching094

and how to design an effective flexible attention095

model to enhance semantic matching.096

To this end, in this paper, we propose a new097

model, named Commix Dimensional Attention098

Language Model (CDA-LM), Bert is a represen-099

tative model of bidirectional language models, so100

we apply our CDA mechanism in Bert, as the atten-101

tion in the first layer transformer of Bert is broad102

and uninformed (Xia et al., 2021), meanwhile, so103

as to avoid adding unnecessary parameters, The104

proposed model reforms the multi-head attention105

module of the first layer transformer of BERT by106

incorporating four complementary attention mech-107

anisms, interactively augment and adaptively inte-108

grate four kinds of attention information for sen-109

tence matching. due to the fact that the attention110

information is captured from commix perspectives111

or views, we call our attention mechanism Com-112

mix Dimensional Attention. Specifically, it includes113

three modules:114

1) Commix Dimensional Attention module. We 115

analyze that the four dimensions of attention are 116

complementary clues for sentence matching, which 117

can capture different levels of information in the 118

text sequence. We propose a commix dimensional 119

attention model by considering four different at- 120

tention mechanisms, including dot-product atten- 121

tion, additive attention, minus attention, and bilin- 122

ear attention. Compared with the single attention- 123

based model, our framework can model the relation- 124

ship between sentences from different dimensions 125

through commix dimensional attention, so as to 126

obtain more fine-grained matching information. 127

2) Self-interactive Augmentation module. We 128

observe that The representations obtained through 129

different dimensional attention mechanisms do not 130

interact well with input information, We propose 131

to apply the self-interactive augmentation module 132

to interact with the matching information together 133

with each word in the sentence in each attention 134

function. So in order to augment the interaction 135

with input information and thus obtain better se- 136

mantic representations. 137

3) Normalized Aggregation module. We find that 138

the simple aggregation with fixed or average impor- 139

tance weights may destroy the learned knowledge 140

of the pre-trained language model. We propose to 141

adaptively aggregate the representations obtained 142

by the self-interactive augmentation module, nor- 143

malized aggregation combines the matching infor- 144

mation of all attention functions. We apply the 145

normalized aggregation module to aggregate the 146

four representations adaptively. 147

In order to verify the effectiveness of our pro- 148

posed model, we conducted intensive experiments 149

on 10 datasets, including GLUE datasets such as 150

QQP, MRPC, and SNLI, and fully studied datasets 151

such as Sci and Twi. The results show that com- 152

pared with BERT-base, CDA-LM achieves an ab- 153

solute improvement of more than 2.2% avg, and 154

is superior to other Bert-based models and large 155

language models(LLMs) in more advanced tech- 156

nology and external data use. 157

The main contributions of this work can be sum- 158

marized as follows: 159

• We provide an in-depth analysis of the feasi- 160

bility of improving the attention mechanism in 161

the pre-trained model and propose a new Com- 162

mix Dimensional Attention Language Model 163

(CDA-LM). 164

• The proposed CDA-LM effectively augments 165
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and aggregates four complementary attention166

models, such that the intrinsic complex rela-167

tionship between sentence pairs can be fully168

discovered for effective semantic matching.169

• Extensive experiments are conducted on 10170

semantic matching datasets. The results show171

that the proposed CDA-LM achieves remark-172

able performance gain compared with BERT173

(with 2.2% improvements on average) and174

also outperforms the state-of-the-art external175

knowledge enhancement-based methods.176

2 Related Work177

Semantic Sentence Matching plays an important178

role in many applications, such as information re-179

trieval (IR) and natural language inference (NLI).180

Recently, the shift from neural network architec-181

ture engineering to large-scale pre-training has sig-182

nificantly improved NLP tasks, demonstrating the183

power of unsupervised pre-training. large-scale pre-184

trained language models (PLMs) have boosted the185

performance of text semantic matching by making186

full use of massive text resources. Most of them are187

composed of multiple transformer layers(Vaswani188

et al., 2017) with multi-head attention and are pre-189

trained with well-designed self-supervised learn-190

ing objectives. Outstanding examples include Em-191

bedding from Language Models(ELMo) (Peters192

et al., 2018), Generative Pre-trained Transformers193

(GPT) (Radford et al., 2018), Bidirectional Encoder194

Representations from Transformers (BERT) (De-195

vlin et al., 2018), and Generalized Auto-regressive196

Pre-training (XLNet) (Yang et al., 2019). Provid-197

ing fine-grained contextual word embedding, these198

pre-trained models can be either easily applied199

to downstream tasks as encoders or directly fine-200

tuned for downstream tasks. As the most promi-201

nent model in recent years, BERT and many of202

its variants, including AlBERT (Lan et al., 2019),203

RoBERTa (Liu et al., 2019b), ERNIE (Zhang et al.,204

2019), K-BERT (Liu et al., 2020), DeBERTa (He205

et al., 2020), DABERT(Wang et al., 2022), DC-206

Match(Zou et al., 2022), DAFA(Song et al., 2022)207

and Large Language Models(LLMs) such as GPT3208

(Brown et al., 2020), LLaMa (Touvron et al., 2023)209

have achieved superior results in many NLP tasks.210

Although the pre-trained model shows a strong211

representation ability in sentence encoding, there212

are still some improvements for multi-head atten-213

tion, which is used to improve the coding ability214

of the pre-trained model and improve the perfor-215

mance effect on downstream tasks, Such as 1) Syn- 216

tax Bert(Bai et al., 2021) improves the model’s 217

understanding of text sentence structure by adding 218

syntactic information to attention, 2) UER Bert(Xia 219

et al., 2021) enhances the attention mechanism 220

in the pre-trained model by introducing synonym 221

information, and 3) SemBert(Zhang et al., 2020) 222

improves the effect of text representation by inte- 223

grating semantic role tagging and multi-label se- 224

mantics into attention. In this work, we propose 225

a scheme, which is used to provide commix dif- 226

ferent dimensional attention modes to capture the 227

relationship between different components in a sen- 228

tence, interactively augment and aggregate the four 229

different attention modes (Commix Dimensional 230

Attention) is used to improve the encoding ability 231

of multi-head attention for text, and significantly 232

improve the matching of short text, which can be 233

easily combined with PLMs to stack additional im- 234

provements for text semantic matching. 235

3 Approach 236

We show the Commix Dimensional Attention Lan- 237

guage Model in Figure 2. We take Bert as our 238

base model, According to the findings in (Xia et al., 239

2021), the attention in the first layer transformer 240

of Bert is broad and uninformed, so in order to 241

improve the performance of the BERT as much as 242

possible without adding extra parameters, We de- 243

cided to apply our commix dimensional attention 244

mechanism only in the first transformer layer of 245

bert. Regarding this point, we also compared the 246

results of changes in attention in each layer and 247

changes in attention in all layers in the experiments. 248

It also indirectly verified that adding only changes 249

to attention in the first layer is optimal, please re- 250

fer to the 4.2 for more details. Which consists 251

of four parts under the augmentation-aggregation 252

framework. Specifically, For every word embed- 253

ding from q and k, we can obtain four matching 254

scores using four different dimensional attention 255

functions. Next, we augment the matching infor- 256

mation along with words in q. We match two vec- 257

tors inside each attention function interactively and 258

then combine the matching information from all 259

functions. The Multi-Layer Perception(MLP) is ap- 260

plied to fuse the matching information both in the 261

self-interactive augmentation and normalized ag- 262

gregation. Finally, that is, we obtain an aggregated 263

commix dimensional attention result after different 264

dimensional attention, self-interactive augmenta- 265
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(b) Commix Dimensional Attention
Module

(c) Self-interactive Aggregation
Module
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Figure 2: The overall architecture of the CDA-LM is shown in (a). The detailed structures of the Commix
Dimensional Attention module, Self-interactive Augmentation module, and Normalized Aggregation module are
shown in (b), (c), and (d), respectively.

tion, and normalized aggregation, which is used266

to replace the self-attention part in the first layer267

transformer of Bert.268

3.1 Commix Dimensional Attention269

In the commix dimensional attention module, we270

use four different dimensional attention functions271

to model the semantic relationship between sen-272

tence pairs from different perspectives. Note that273

this is in stark contrast to the single Attention used274

by default in the transformer. The four attentions275

are dot attention, additive attention, minus atten-276

tion, and bilinear attention, respectively. The input277

of the commix dimensional attention module is a278

triple of Q, K, V ∈ Rdseq × dv, where dv is the279

latent dimension, dseq is the length of the utterance.280

We use qi, ki and vi to denote the i-th dimension of281

Q, K, and V respectively. Four independent atten-282

tion mechanisms compute potential relationships283

between Q, K, and V to measure their semantic284

interaction alignment.285

3.1.1 Dot Attention286

Dot attention is part of the commix dimensional at-287

tention module, which can directly compute corre-288

lations using matrix operations, and the computed289

scores are correlation weights. It is also the most290

commonly used attention mechanism in semantic291

correlation modeling. And it follows the standard292

dot-product attention that the transformer operates293

by default. The input of the dot attention module294

consists of queries and keys of dimension dk, and295

values of dimension dv. We compute the dot prod-296

ucts of the query with all keys, and apply a softmax297

function to obtain the weights on the values. For298

the sake of simplicity, the formulations of BERT299

not be repeated here, please refer to (Devlin et al., 300

2018) for more details. We denote the output vector 301

as: 302

stj = qj ⊙ kt (1a) 303

ati =
exp(sti)∑N
j=1 exp(s

t
j)

(1b) 304

qd
t =

N∑
i=1

ativi (1c) 305

where qd
t ∈ R1×dv is the output of the t-th posi- 306

tion obtained after the dot attention calculation and 307

⊙ is element-wise dot product. 308

3.1.2 Additive Attention 309

The second part of commix dimensional attention 310

is the additive attention module, which is more in- 311

clined to capture aligned representations between 312

sentence pairs from a global perspective since it 313

applies a concatenated alignment of two vectors. 314

Specifically, its input is the concatenation of two 315

vectors, the output after the activation function rep- 316

resents the correlation between the vectors, and 317

finally, the softmax function is applied to get the 318

weights of the values. We denote the output vector 319

as: 320

stj = tanh(Wa([qj ;kt]) (2a) 321

ati =
exp(sti)∑N
j=1 exp(s

t
j)

(2b) 322

qa
t =

N∑
i=1

ativi (2c) 323
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where qa
t ∈ R1×dv is the output of the t-th posi-324

tion obtained after the additive attention calculation,325

and Wa ∈ R1×2dv are weights of our model.326

3.1.3 Minus Attention327

The third part of commix dimensional attention328

is the minus attention module which captures329

and aggregates the different information between330

sentence pairs. The difference attention module331

adopts a subtraction-based cross-attention mecha-332

nism, which allows the model to pay attention to333

dissimilar parts between sentence pairs by element-334

wise subtraction as:335

stj = tanh(Wm(qj − kt)) (3a)336

ati =
exp(sti)∑N
j=1 exp(s

t
j)

(3b)337

qm
t =

N∑
i=1

ativi (3c)338

where qm
t ∈ R1×dv is the output of the t-th posi-339

tion obtained after the minus attention calculation,340

and Wm ∈ R1×dv are weights of our model.341

3.1.4 Bilinear Attention342

The last part of commix dimensional attention is343

a bilinear attention module, which can learn a bi-344

linear attention distribution of two vectors to seam-345

lessly utilize the given sentence pair information.346

It models the bilinear interaction between two sets347

of input channels, facilitating the extraction of a348

joint representation of each pair of channels. Its349

calculation formula is as follows:350

stj = qT
j Wbkt (4a)351

ati =
exp(sti)∑N
j=1 exp(s

t
j)

(4b)352

qb
t =

N∑
i=1

ativi (4c)353

where qb
t ∈ R1×dv is the output of the t-th posi-354

tion obtained after the bilinear attention calculation355

and Wb ∈ Rdv×dv are weights of our model.356

3.2 Self-interactive Augmentation357

Self-interactive augmentation is to fuse each word358

in the query vector in each attention function. For359

each position t, we splice the word representation360

hkt of vt with its representation qct of the correspond- 361

ing attention, where vt denotes the t-th dimension 362

of K, c = (a, b, d, m). which will better augment 363

each word representation with single attention to 364

capture the input information. then using a gating 365

structure to select the importance after splicing, and 366

then applying an MLP to fuse the representation 367

of each position more fully after the above opera- 368

tions. After that, the output after self-interactive 369

augmentation is obtained. As shown below, This is 370

an example of our self-interactive augmentation of 371

additive attention: 372

xa
t =

[
qat , h

k
t

]
(5a) 373

gi = sigmoid (Wgx
a
t ) (5b) 374

xa∗
t = gi ⊙ xa

t (5c) 375

ha
t = tanh(Wdx

a∗
t + ba) (5d) 376

For bilinear, dot, and minus attention, we will also 377

get hbt , h
d
t , and hmt , respectively. Where Wg ∈ 378

R1×2dv , Wd ∈ Rdv×2dv , ba are weights and bias 379

of our model. 380

3.3 Normalized Aggregation 381

Normalized aggregation is to fuse all the attention 382

functions. We use a parameter zc as an input to 383

adaptively fuse four different attention mechanisms. 384

385

sj = tanh(W1h
j
t +W2z

c)(j = a, b, d,m)

(6a)

386

ai =
exp(si)∑

j=(a,b,d,m) exp(sj)
(6b) 387

xt =
∑

i=(a,b,d,m)

aih
i
t (6c) 388

Then, we input this Xt into an MLP neural network 389

to fuse the information in different attention func- 390

tions, and we will obtain different hot for different 391

positions in P. 392

ho
t = tanh(Wtxt + bt) (7) 393

Where Wt ∈ Rdv×dv , bt are weights and bias 394

of our model, respectively. 395

After aggregating the commix dimensional atten- 396

tion matching information, we will obtain the fused 397

representation of the vectors at different positions 398

for t from 1 to N. 399

Ao = (ho1, h
o
2, ..., h

o
N ) (8) 400
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Table 1: The performance comparison of CDA-LM with other methods. We report Accuracy × 100 on 6 GLUE
datasets. Methods with † indicate the results from their papers, while methods with ‡ indicate our implementation.

Method Pre-trained MRPC QQP MNLI-m/mm QNLI RTE STS-B Avg

BiMPM†(Wang et al., 2017) % 79.6 85.0 72.3/72.1 81.4 56.4 - -
CAFE†(Tay et al., 2017) % 82.4 88.0 78.7/77.9 81.5 56.8 - -
ESIM†(Chen et al., 2016) % 80.3 88.2 - 80.5 - - -
Transformer†(Vaswani et al., 2017) % 81.7 84.4 72.3/71.4 80.3 58.0 73.6 74.53
BiLSTM+ELMo+Attn†(Peters et al., 2018) ! 84.6 86.7 76.4/76.1 79.8 56.8 73.3 76.24
OpenAI GPT†(Radford et al., 2018) ! 82.3 70.2 82.1/81.4 87.4 56.0 80.0 77.06
UERBERT‡(Xia et al., 2021) ! 88.3 90.5 84.2/83.5 90.6 67.1 85.1 84.19
SemBERT†(Zhang et al., 2020) ! 88.2 90.3 84.4/84.0 90.9 69.3 87.3 84.90
BERT-base‡(Devlin et al., 2018) ! 87.2 89.0 84.3/83.7 90.4 66.4 85.8 83.83
RoBERTa‡(Liu et al., 2019b) ! 87.9 89.2 84.7/84.1 90.7 67.2 86.7 84.43
SyntaxBERT-base†(Bai et al., 2021) ! 89.2 89.6 84.9/84.6 91.1 68.9 88.1 85.20
CDA-LM-base‡ ! 89.1 92.0 84.9/85.3 92.1 69.8 88.9 86.13
BERT-large‡(Devlin et al., 2018) ! 89.3 89.3 86.8/85.9 92.7 70.1 86.5 85.80
RoBERTa-large‡(Devlin et al., 2018) ! 90.4 89.4 86.8/86.1 92.7 72.3 87.5 86.32
SyntaxBERT-large†(Bai et al., 2021) ! 92.0 89.5 86.7/86.6 92.8 74.7 88.5 87.26
CDA-LM-large‡ ! 91.9 92.3 87.3/87.4 95.2 75.7 89.8 88.59

Ao is the final fused semantic feature and it will401

be propagated to the next computation flow.402

Table 2: The performance comparison of CDA-LM
with other methods on 4 popular datasets, including
SNLI, Scitail(Sci), SICK, and TwitterURL(Twi).

Model SNLI Sci SICK Twi

ESIM†(Chen et al., 2016) 88.0 70.6 - -
CAFE†(Tay et al., 2017) 88.5 83.3 72.3 -
CSRAN†(Tay et al., 2018) 88.7 86.7 - 84.0

BERT-base‡(Devlin et al., 2018) 90.7 91.8 87.2 84.8
RoBERTa-base‡(Liu et al., 2019b) 90.9 92.3 87.9 85.9
UERBERT‡(Xia et al., 2021) 90.8 92.2 87.8 86.2
SemBERT†(Zhang et al., 2020) 90.9 92.5 87.9 86.8
MT-DNN-base†(Liu et al., 2019a) 91.1 94.1 - -
SyntaxBERT-base†(Bai et al., 2021) 91.0 92.7 88.5 87.3
CDA-LM-base‡ 91.8 94.0 89.2 88.2

BERT-large‡(Devlin et al., 2018) 91.0 94.4 91.1 91.5
RoBERTa-large‡(Liu et al., 2019b) 91.2 94.5 91.2 91.9
SyntaxBERT-large†(Bai et al., 2021) 91.3 94.7 91.4 92.1
CDA-LM-large‡ 92.1 95.5 92.9 92.8

4 Experiment403

The datasets, baselines, and all details of our exper-404

iments are shown in Appendix A.3.405

4.1 Results406

In the experiments, we replace the original atten-407

tion module with our CDA mechanism in the BERT408

Table 3: The performance comparison of CDA-
LM-large with LLaMa family and GPT3 on several
datasets. including SNLI, Scitail(Sci), SICK, and Twit-
terURL(Twi).

Model SNLI Sci SICK Twi

LLaMA-7B‡(Touvron et al., 2023) 73.1 75.2 68.4 64.7
LLaMa-13B‡(Touvron et al., 2023) 78.5 83.2 80.6 83.1
GPT3‡(Brown et al., 2020) 84.3 90.1 88.7 85.8

CDA-LM-large‡ 92.1 95.5 92.9 92.8

model. 409

Firstly, we fine-tune our model on 6 GLUE 410

datasets. Table 1 shows the performance of CDA- 411

LM compared with some other baseline models. 412

It can be seen that the effect of non-pre-trained 413

models is significantly worse than pre-trained mod- 414

els. This is mainly because the pre-trained model 415

has more data from the learning corpus and a pow- 416

erful information extraction ability. The perfor- 417

mance of our CDA-based BERT-base and BERT- 418

large model improves the original BERT models 419

by 2.2% and 2.7%, respectively. Moreover, our 420

model also outperforms SyntaxBert (which is the 421

state-of-the-art external knowledge-based model) 422

by 0.9% on BERT-base and 1.3% on Bert-large, 423

respectively. 424

Secondly, to verify the overall performance of 425

our method, we also conduct experiments on four 426

other popular datasets. The results are shown in 427

Table 2, CDA-LM outperforms vanilla Bert and 428
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Figure 3: Stability experiments on QQP (a), SNLI (a),
QNLI (b), Scitail(b) datasets.

Figure 4: layer-by-layer experiments on MRPC and
QQP datasets

other competitive models on almost all datasets.429

In addition, the amount of data in Scitail is rela-430

tively small, which makes the variance of the model431

prediction results larger. However, CDA-LM still432

shows very competitive performance on Scitail,433

which also shows that our method can make up434

for the lack of generalization ability with fewer pa-435

rameters by endowing Bert with subtle difference436

awareness.437

Overall, consistent conclusions can be drawn438

from these results. Compared with previous work,439

our method shows very competitive performance in440

judging semantic similarity, and the experimental441

results also confirm our idea.442

4.1.1 Vs LLMs443

We also compared the semantic understanding abil-444

ity of the Large Language Models(LLMs) with445

our model. Considering that the answers provided446

by the Large Language Models(LLMs) involve447

content analysis and generation, in order to make448

the comparison results more comparative, we per-449

formed the following operations on the experiment.450

For the convenience of statistics, we have extracted451

partial data randomly from several datasets as test 452

data. In addition, We have made the following set- 453

tings for the prompt: Please provide the similarity 454

between the following two sentences. If similar, 455

provide 1; if dissimilar, provide 0. 456

From the table 3, we can see that although LLMs 457

have strong comprehension and generation abili- 458

ties, there are still some shortcomings in dealing 459

with semantic matching tasks, mainly due to the 460

inability to understand prompts well. For example, 461

for some sentence pairs, providing some unwanted 462

answers cannot directly provide 1 or 0, especially 463

in large-scale data processing, which can gener- 464

ate many answers that cannot be programmed and 465

batch processed in downstream tasks. In addition, 466

there may be some deviations in the understanding 467

of sentences, leading to incorrect judgments. More- 468

over, some sentence pairs generate very unstable 469

answers. For example, after the model’s judgment, 470

sometimes it gives a result of 1, but when executed 471

again later, the model gives a result of 0. These also 472

indicate the instability of large language models in 473

semantic matching tasks. 474

4.1.2 Stability Analysis 475

We also performed extensive experiments on QQP, 476

SNLI, QNLI, and Scitail datasets to explore the 477

stability of our method. To minimize the impact 478

of randomness in Bert’s training, performance lev- 479

els were averaged over 10 different runs on the 480

development set. The performance distribution box 481

diagram is shown in Figure 3. The median and 482

average levels of our model exceeded the ordinary 483

Bert on all four datasets, and the performance fluc- 484

tuation range of our method was within ± 1% of 485

the average level, which indicates that our method 486

has better stability than Bert on different data dis- 487

tributions. 488

4.2 layer-by-layer Analysis 489

Regarding why we only applied commix attention 490

to the first layer transformer in BERT, in addition 491

to being inspired by the article in UERBERT (Xia 492

et al., 2021), we also made changes in each layer 493

and also in all layers, as shown in the figure 4. We 494

applied commix attention to the attention of trans- 495

formers in each layer of BERT, and at the end, we 496

also made changes to transformers in all layers of 497

BERT, selecting the MRPC and QQP datasets, The 498

experimental results are basically consistent with 499

the conclusion in (Xia et al., 2021), that is, the in- 500

formation understanding capability of the first layer 501
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Figure 5: Distribution of Dot attention (a), Additive attention (b), Minus attention (c) and Bilinear attention (d).

transformer in BERT is the worst, and modifying502

the commix attention in this layer is the most ef-503

fective, better than applying commix attention in504

all layers, and also better than applying commix505

attention in all layers.506

4.3 Attention Distribution507

To visually demonstrate the impact of different at-508

tention functions inside commix dimensional atten-509

tion on the interactive alignment of sentence pairs,510

we show the weight distribution of four kinds of511

attention in the figure 5. We can observe that the512

word-pair information in the sentence pairs con-513

cerned with different attention functions is incon-514

sistent. First, in Figure (a), Dot attention can pay at-515

tention to the same words and semantically related516

words in sentence pairs, but it is heavily influenced517

by the same words in sentence pairs. It focuses too518

much on the shallow features of the same text and519

ignores the deep semantic association of the dif-520

ferent words between "software" and "hardware".521

This shows that using Dot attention alone may lead522

to wrong predictions. Secondly, in Figure (b), we523

can see that the distribution of attention weights is524

more uniform, because the calculation method of525

additive attention tends to fuse the two signals, so526

it pays attention to different word pairs of software527

and hardware to a certain extent, but the interac-528

tion weights still small. Next, in Figure (c), it can529

be observed that Minus attention explicitly pays530

attention to the difference between "software" and531

"hardware", and its attention weight is the largest532

among all word pairs. This is because subtractive533

attention uses element-wise subtraction to compare534

the differences between sentence pairs. The greater535

the difference between word pairs, the greater their536

weight. Therefore, it can also be complementary537

to Dot attention. Finally, in Figure (d), the atten-538

tion weights in bilinear attention focus on the same539

words, which indicates that bilinear attention tends540

to focus on the same parts of sentence pairs, and 541

this mechanism is beneficial for capturing sentence 542

pairs’ commonality. In summary, different atten- 543

tion focus on different word pairs in sentence pairs. 544

Intuitively, commix dimensional attention can ef- 545

fectively combine the alignment relationships of 546

multiple views in sentence pairs to generate vectors 547

that better describe the matching details of sentence 548

pairs. 549

The more result of our additional experiments is 550

shown in Appendix A. 551

5 Conclusion 552

In this paper, we propose a novel Commix Dimen- 553

sional Attention (CDA) mechanism to improve the 554

large-scale pre-trained model, such as BERT, and 555

RoBERTa for the semantic matching task. The 556

commix dimensional attention module fully ex- 557

ploits complementary and complex relationships 558

between sentences compared to the single attention- 559

based model. Moreover, the self-interactive aug- 560

mentation enables better interaction between each 561

attention function and its input, enhancing the rep- 562

resentation ability of each attention mechanism. 563

Furthermore, the proposed adaptive aggregation 564

module with normalized aggregation mechanisms 565

can effectively fuse the key features and filter out 566

the unrelated features produced by the commix 567

dimensional attention module for semantic under- 568

standing. Extensive experiments on 6 GLUE bench- 569

mark datasets, as well as 4 other commonly used 570

semantic understanding datasets, verify that the 571

proposed CDA-LM achieves remarkable perfor- 572

mance improvements over the original single at- 573

tention mechanism-based BERT model as well as 574

other state-of-the-art semantic understanding mod- 575

els. Since the CDA mechanism is a universal trans- 576

formation mechanism for transformers, it is ex- 577

pected to be applied to other large-scale pre-trained 578

models in the future. 579
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Limitations580

This work has the following limitations: (1) The581

proposed method is based on the introduction of582

multiple attention functions. Since the introduced583

attention functions have not been pre-trained, if584

they are not fine-tuned on the labeled dataset, errors585

may be introduced and propagated to the decision586

model, resulting in label prediction errors. (2) We587

initially demonstrated that external structures can588

be combined with BERT to improve performance589

on various SSM tasks. We are also interested in590

trying to combine it with other PLMs. However,591

due to computational resource constraints, we did592

not conduct more experiments on other PLMs. (3)593

Introducing an extrinsic structure significantly im-594

proves the generalization ability of PLMs in few-595

shot scenarios, but a deeper understanding of why596

this is the case is still lacking. This may inspire597

better methods to exploit pre-trained models.598
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A Appendix769

A.1 The Result of Additional Experiments770

A.1.1 Ablation Study771

To evaluate the contribution of each component in772

our method, we conduct ablation experiments on773

the QQP datasets based on BERT. The experimen-774

tal results are shown in table 4.775

The commix dimensional attention module con-776

sists of four core components that use different at-777

tention functions to model the correlation between778

sentence pairs. We want to know if each com-779

ponent is useful for the sentence-matching task.780

First, after removing dot attention, the performance781

of the model drops by 2.3%. While dot attention782

can capture the dynamic alignment relationship783

between word pairs, which is crucial for seman-784

tic matching tasks. Then, When additive attention785

and bilinear attention are removed respectively, the786

performance of the model on the datasets drops787

to 90.4% and 90.2%, respectively. They are sig-788

nificantly smaller than Dot attention, which indi-789

cates that these two kinds of attention are weaker790

than dot attention in distinguishing sentence pair791

relations. Finally, after removing minus attention792

from the model, the performance dropped by 2.1%.793

The different information can further describe the794

interaction between words and can provide more795

fine-grained comparison information for the pre-796

trained model so that the model can obtain a better797

representation. The above experiments show that798

the performance drops when the sub-module is re-799

moved, which demonstrates the effectiveness of the800

internal components of the commix dimensional801

attention module.802

Next, in the aggregation module, we also con-803

duct multiple experiments to verify the effect of804

augmentation and aggregation of multiple match-805

ing features. On the QQP datasets, we first re-806

move the self-interactive augmentation module,807

and the performance drops to 90.8%. Since self-808

interactive augmentation can capture interactions809

between multiple signals, this interaction infor-810

mation is crucial for fusing multi-source vectors.811

Second, after removing the normalized aggrega-812

tion module, we only integrate multiple signals by813

simple averaging. The accuracy drops to 90.5%,814

which proves that dynamic aggregation according815

to different weights can further improve the perfor-816

mance of the model. Finally, when we remove the817

both augmentation module and aggregation mod-818

ule and use simple averaging instead, the perfor- 819

mance drops sharply to 89.6%, which is the largest 820

drop among all ablation components. This suggests 821

that while commix dimensional attention mecha- 822

nisms are crucial for judging sentence pair rela- 823

tions, hard-integrating multi-attention mechanisms 824

without interactive augmentation into PLMs may 825

destroy their pre-existing knowledge, while self- 826

interactive augmentation and soft aggregation can 827

better enhance and aggregate multiple attention. 828

Table 4: Results of component ablation experiment.

Model Dev Test

CDA-LM 92.6 92.0
w/o Dot attention 90.4 89.7
w/o Additive attention 91.1 90.4
w/o Minus attention 90.7 89.9
w/o Bilinear attention 91.3 90.2
w/o Self-interactive augmentation 91.9 90.8
w/o Normalized aggregation 91.6 90.5
w/o Augmentation and Aggregation 90.3 89.6

Finally, to explore whether any two kinds of 829

attention can serve as complementary cues, we ag- 830

gregate the four kinds of attention in pairs, and 831

the performance improvement over baseline BERT 832

is shown in Figure 6. First, we can find that af- 833

ter the aggregation of different kinds of attention, 834

the performance of the baseline based on a single 835

attention mechanism is improved. Second, The fu- 836

sion of dot attention and minus attention achieves 837

the best complementary performance improvement 838

among all aggregations, and the combination of dot 839

attention and other attentions significantly outper- 840

forms other attention pairs, which reflects that dot 841

attention contributes more to the text matching task 842

than other attentions. Finally, it is worth noting that 843

other types of attention aggregation minus atten- 844

tion can also achieve better results. This may be 845

because minus attention can capture the different 846

information in sentence pairs, and can intuitively 847

reflect the differences between sentence pairs. 848

Overall, due to the efficient combination of each 849

component, CDA-LM can adaptively fuse vectors 850

generated from different attentions from multiple 851

perspectives into a pre-trained model and leverage 852

its powerful contextual representation to better in- 853

fer semantics. 854
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Table 5: The robustness experiments results of CDA-LM and other models. The data transformation methods we uti-
lized mainly include SwapAnt(SA), NumWord(NW), AddSent(AS), InsertAdv(IA), AppendLrr(AL), AddPunc(AP),
BackTrans(BT), TwitterType(TT), SwapNameEnt(SN), SwapSyn-WordNet(SW)

Model
Quora SNLI

SA NW IA AL BT AS SA TT SN SW

ESIM†(Chen et al., 2016) - - - - - 64.00 84.22 78.32 53.76 65.38

DistilBERT†(Sanh et al., 2019) 42.24 56.85 83.10 84.09 83.20 - - - - -

BERT†(Devlin et al., 2018) 48.58 56.96 86.32 85.48 83.42 79.66 94.84 83.56 50.45 76.42

ALBERT†(Lan et al., 2019) 51.08 55.24 81.87 78.94 82.37 45.17 96.37 81.62 57.66 74.93

SyntaxBERT†(Bai et al., 2021) 49.30 56.37 86.43 84.62 84.19 78.63 95.31 86.91 58.26 76.90

CDA-LM‡ 55.93 63.26 87.75 85.08 87.99 81.56 97.35 85.64 60.62 81.23

Model
MNLI-m/mm

AS SA AP TT SN SW

BERT‡(Devlin et al., 2018) 55.32/55.25 52.76/55.69 82.30/82.31 77.08/77.22 51.97/51.84 76.41/77.05

ALBERT†(Lan et al., 2019) 53.09/53.58 50.25/50.20 83.98/83.68 77.98/78.03 56.43/50.03 76.63/77.43

SyntaxBERT†(Bai et al., 2021) 54.92/54.63 53.54/54.73 80.01/79.71 75.46/74.93 57.11/51.95 78.57/79.31

CDA-LM‡ 60.75/59.82 58.33/60.83 83.63/83.59 78.24/78.36 60.77/60.35 82.58/83.21

88.5

89.5

90.5

91.5 Baseline
+Attdot+Attadd
+Attdot+Attmin

+Attdot+Attbil

88.5

89.5

90.5

91.5 Baseline
+Attmin+Attadd
+Attmin+Attbil
+Attadd+Attbil

Figure 6: The influence of different attention integration
methods on the QQP test set. The baseline model is
BERT-base. Attdot indicates Dot Attention, Attadd
indicates Additive Attention, Attmin indicates Minus
Attention and Attbil indicates Bilinear Attention.

A.1.2 Robustness Performance Test855

To examine the performance of CDA-LM and com-856

petition models in terms of their ability to capture857

subtle differences in sentence pairs. We performed858

robustness tests on three widely studied datasets.859

Table 5 lists the accuracy of the 6 models on the860

three data sets. We can observe that SwapAnt leads861

to maximum performance degradation, which in-862

dicates that the model cannot handle the semantic863

contradiction expressed by antonyms (non-explicit864

negations) between sentence pairs. The model per-865

formance on NumWord drops to 63.26% in Quora866

datasets, because it requires the model to capture867

subtle numerical differences for correct language868

reasoning. Meanwhile, ESIM performed worst.869

The results reflect that the pre-trained mechanism870

benefits from abundant external resources and pro-871

vides better generalization ability than the denovo872

training model. The performance of the improved 873

pre-trained model SyntaxBERT is better than that 874

of the original Bert model, which reflects that suf- 875

ficient pre-trained corpus and appropriate exter- 876

nal knowledge fusion strategy are helpful to im- 877

prove the generalization performance of the model. 878

On TwitterType and AddPunc, the performance of 879

CDA-LM is lower than that of AlBERT but still 880

better than that of Bert, which may be related to the 881

pre-trained corpus and training mechanism. In the 882

other 8 conversions, CDA-LM can show attention 883

to subtle differences and obtain better performance. 884

A.2 Model Parameter Analysis 885

Our model is based on the fusion of four different 886

kinds of attention, meanwhile, attention modules 887

are often used to explore the interpretability of 888

the model (Clark et al., 2019; Hao et al., 2020; 889

Lin et al., 2019), in order to prove the impact of 890

the increase of parameter quantity on the model 891

effect, and the impact of multiple fusion of a single 892

attention and the effect of multiple fusion models 893

of different attention, as shown in Table 6, we have 894

conducted experiments on four separate attention 895

on the QQP datasets, and for these four separate 896

attention, 4 times the number of attention are used 897

to participate in the calculation to achieve the same 898

level of parameter quantity as our CDA-LM. The 899

experimental results show that: 900

⋄ The effect of a single kind of attention model 901

is basically the same as that of a model with a 902
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single kind of attention expanded by four times,903

which means that the increase of the number of904

parameters of the model caused by a simple four-905

fold increase in the number of single attention906

does not have a significant improvement on the907

performance of the model.908

⋄ Our CDA-LM compared to the model with a909

single kind of attention expanded by four times910

have a significant improvement of the result, This911

shows that the effective fusion of different attach-912

ments does have complementary advantages in913

semantic extraction.914

Table 6: Results of model parameter experiment.

Model Dev Test

CDA-LM 92.6 92.0
Dot attention × 1 90.4 89.1
Dot attention × 4 91.2 89.5
Additive attention × 1 90.7 88.9
Additive attention × 4 91.8 89.3
Minus attention × 1 91.9 89.9
Minus attention × 4 90.1 90.2
Bilinear attention × 1 89.6 88.8
Bilinear attention × 4 90.3 89.2

A.3 Case Study915

In order to intuitively understand how CDA-LM916

works, we use the three cases in Table 7 for quali-917

tative analysis. First, although S1 and S2 are liter-918

ally similar in the first example, they express two919

completely different semantics due to the subtle920

difference the phrases bring to "eat fruit" and "eat921

early". The non-pre-trained language model ESIM922

is difficult to capture the semantic conflict caused923

by the different words in case 1, so ESIM gives924

wrong prediction results. The pre-trained language925

model BERT can identify semantic differences in926

case 1 and give correct predictions with the help of927

strong contextual representation capabilities. It is928

worth noting that the similarity of Bert’s predicted929

sentence pairs is 46.32%, while that of CDA-LM is930

only 1.87%. Second, in case 2, "from 70 to 60" and931

"from 60 to 50" in sentence pairs express different932

semantics, but they are mainly caused by numerical933

differences. Although BERT identified the correct934

label in case 1 by a small margin, in case 2 it was935

unable to capture numerically induced differences936

and gave wrong predictions because it requires the937

model to capture subtle numerical differences for938

correct language reasoning. Finally, our model939

made correct predictions in all of the above cases. 940

Since CDA-LM models sentence pairs from mul- 941

tiple perspectives, it can pay attention to the small 942

differences in sentence pairs, and adaptively aggre- 943

gate multi-source information in the aggregation 944

module to better identify the semantics within sen- 945

tence pairs’ differences. At the same time, we can 946

observe that ESIM performs the worst, and the 947

results reflect that the pre-trained mechanism bene- 948

fits from abundant external resources and provides 949

better generalization ability than the denovo train- 950

ing model. And our BERT-based improved model 951

CDA-LM outperforms the original BERT model, 952

reflecting that a reasonable structure improvement 953

and an effective aggregation strategy can further 954

improve the model’s generalization performance. 955

A.4 Implementation Details of Our 956

Experiments 957

Implementation Details CDA-LM is based on 958

BERT-base and BERT-large. We set the num- 959

ber of both self-attention layers and heads as 960

12, and the dimension of embedding vectors as 961

768. The total number of trainable parameters 962

of both the original BERTbase and our proposed 963

model is the same 110M For distinct targets, be- 964

sides, our hyper-parameters are different. We use 965

AdamW(Loshchilov and Hutter, 2017) in the BERT 966

and set the learning rate in {1e−5, 2e−5, 3e−5, 967

8e−6}. As for the learning rate decay, we use a 968

warmup(He et al., 2016) of 0.1 and L2 weight de- 969

cay of 0.01. Furthermore, we set the epoch to 5 and 970

the batch size is selected in {16, 32, 64}. We also 971

set dropout at 0.1-0.3. To prevent gradient explo- 972

sion, we set gradient clipping in {7.5, 10.0, 15.0}. 973

All the experiments are conducted by Tesla V100 974

and PyTorch platform. In addition, to ensure that 975

the experimental results are statistically significant, 976

we conduct each experiment five times and report 977

the average results. 978

A.5 Datasets Statistics 979

The statistics of all 10 datasets are shown in Table 980

8. 981

A.5.1 GLUE Datasets 982

We experimented with 6 datasets of the GLUE1 983

datasets (Wang et al., 2018): MRPC, QQP, STS-B, 984

MNLI-m/mm, QNLI, and RTE, The following is a 985

detailed introduction to these datasets. 986

1https://huggingface.co/datasets/glue
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Case ESIM BERT CDA-LM

S1: Can eat only fruit for dinner lead to weight loss? similarity:92.76% similarity:46.32% similarity:1.87%

S2: Does ate dinner earlier in the evening help with weight loss? label:1 label:0 label:0

S1: How do girls lose weight from 70 to 60 ? similarity:99.51% similarity:72.66% similarity:12.06%

S2: How should I lose weight from 60 to 50 ? label:1 label:1 label:0

S1: What skills do I need to learn to be a successful hardware engineer? similarity:99.99% similarity:99.26% similarity:18.63%

S2: What should I do to become a successful software engineer? label:1 label:1 label:0

Table 7: The example sentence pairs of our cases. Red and Blue are different phrases in sentence pair.

◦ MRPC is a dataset that automatically extracts987

sentence pairs from online news sources and988

manually annotates whether the sentences in sen-989

tence pairs are semantically equivalent. The task990

is to determine whether there are two categories991

of interpretation: interpretation or not interpreta-992

tion.993

◦ QQP comes from the famous community Q&A994

website quora. Its goal is to predict which of the995

provided question pairs contains two questions996

with the same meaning.997

◦ STS-B is a collection of sentence pairs extracted998

from news headlines, video titles, image titles,999

and natural language inference data. Each pair is1000

annotated by humans, and its similarity score is1001

0-5. The task is to predict these similarity scores,1002

which is essentially a regression problem, but it1003

can still be classified into five text classification1004

tasks of sentence pairs.1005

◦ MNLI-m/mm is a crowd-sourced collection1006

of sentence pairs annotated with textual entail-1007

ment information. Given the promise statement1008

and hypothesis statement, the task is to predict1009

whether the premise statement contains assump-1010

tions (entailment), conflicts with assumptions1011

(contradiction), or neither (neutral).1012

◦ QNLI is a question and answer data set com-1013

posed of a question paragraph pair, in which the1014

paragraph is from Wikipedia, and a sentence in1015

the paragraph contains the answer to the question.1016

The task is to judge whether the question and1017

sentence (sentence, a sentence in a Wikipedia1018

paragraph) contain, contain and do not contain,1019

and classify them.1020

◦ RTE is a series of datasets from the annual text1021

implication challenge. These data samples are1022

constructed from news and Wikipedia. All these1023

data are converted into two categories. For the1024

data of three categories, neutral and contradiction1025

are converted into not implication in order to1026

Datasets #Train #Dev #Test #Class

MRPC 3669 409 1380 2
QQP 363871 1501 390965 2
MNLI-m/mm 392703 9816/9833 9797/9848 3
QNLI 104744 40432 5464 2
RTE 2491 5462 3001 2
STS-B 5749 1500 1379 2
SNLI 549367 9842 9824 3
SICK 4439 495 4906 3
Scitail 23596 1304 2126 2
TwitterURL 42200 3000 9324 2

Table 8: The statistics of all 10 datasets.

maintain consistency. 1027

A.5.2 Other Datasets 1028

We also experimented with 4 other popular datasets: 1029

SNLI2, Scitail3, SICK4 and TwitterURL5. The fol- 1030

lowing is an introduction to these 4 datasets. 1031

◦ SNLI(Bowman et al., 2015) is a dataset used 1032

for classification (or natural language inference). 1033

The task is to determine whether two sequences 1034

entail, contradict or are mutually neutral. 1035

◦ Scitail(Khot et al., 2018) is an entailment dataset 1036

created from multiple-choice science exams and 1037

web sentences. Each question and the correct 1038

answer choice are converted into an assertive 1039

statement to form the hypothesis. 1040

◦ SICK(Marelli et al., 2014) is a dataset for se- 1041

mantic textual similarity estimation. The task is 1042

to assign a similarity score to each sentence pair. 1043

◦ TwitterURL(Lan et al., 2017) is a collection 1044

of sentence-level paraphrases from Twitter by 1045

linking tweets through shared URLs. Its goal is 1046

to discriminate between duplicates and not. 1047

2https://nlp.stanford.edu/projects/snli/
3https://allenai.org/data/scitail
4http://marcobaroni.org/composes/sick.html
5https://github.com/lanwuwei/Twitter-URL-Corpus
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A.6 Baselines1048

To evaluate the effectiveness of our proposed CDA-1049

LM in SSM, we mainly introduce BERT (Devlin1050

et al., 2018), SemBERT (Zhang et al., 2020), Syn-1051

taxBERT(Liu et al., 2020), UERBERT (Xia et al.,1052

2021) and multiple PLMs (Radford et al., 2018;1053

Devlin et al., 2018) for comparison. Moreover,1054

we also selected several competitive no pre-trained1055

models as baselines, such as ESIM (Chen et al.,1056

2016), Transformer (Vaswani et al., 2017), etc1057

(Hochreiter and Schmidhuber, 1997; Wang et al.,1058

2017; Tay et al., 2017). Besides, We also compared1059

with Large Language Models, such as GPT3, and1060

the LLaMa family.1061

• BIMPM is proposed in (Wang et al., 2017) pro-1062

poses a Bilateral Multi-Perspective Matching1063

(Bilateral Multi-Perspective Matching, BiMPM)1064

model for sentence matching.1065

• CAFE (Tay et al., 2017) introduces a new ar-1066

chitecture where alignment pairs are compared,1067

compressed, and then propagated to upper layers1068

for enhanced representation learning. And then1069

it adopts factorization layers for efficient and ex-1070

pressive compression of alignment vectors into1071

scalar features, which are then used to augment1072

the base word representations.1073

• ESIM (Chen et al., 2016) is a model that com-1074

bines BiLSTM and attention proving that the1075

sequential inference model based on chained1076

LSSM can outperform previous complex struc-1077

tures. It further achieved new SOTA perfor-1078

mances.1079

• CSRAN (Tay et al., 2018) is a deep architecture,1080

involving stacked recurrent encoders. CSRAN1081

incorporates two novel components to take ad-1082

vantage of the stacked architecture. It first intro-1083

duces a new bidirectional alignment mechanism1084

that learns affinity weights by fusing sequence1085

pairs across stacked hierarchies. And then it1086

leverages a multi-level attention refinement com-1087

ponent between stacked recurrent layers.1088

• Transformer (Vaswani et al., 2017) uses the1089

attention mechanism to reduce the distance be-1090

tween any two positions in the sequence to a1091

constant. It is not a sequential structure similar1092

to RNN, so it has better parallelism.1093

• ELMO (Peters et al., 2018) adopts a typical two-1094

stage process. The first stage is pre-training using1095

a language model; The second stage is to extract1096

the word embedding of each layer of the network1097

corresponding to the word from the pre-training1098

network and add it to the downstream task as a 1099

new feature. It can solve the problem of poly- 1100

semy of the previous language model because 1101

the generated word vector is changed according 1102

to the change of the specific use context. 1103

• GPT (Radford et al., 2018) is a semi-supervised 1104

learning method that uses a large amount of unla- 1105

beled data to let the model learn "common sense" 1106

to alleviate the problem of insufficient labeled in- 1107

formation. The specific method is to pre-train the 1108

model Pretrain with unlabeled data before train- 1109

ing Fine-tune for labeled data, and ensure that 1110

the two kinds of training have the same network 1111

structure. 1112

• BERT (Devlin et al., 2018) Given that our model 1113

implements based on BERT, we naturally com- 1114

pare it with vanilla BERT without prior knowl- 1115

edge. We adopt the configuration of Google’s 1116

BERT-base in our experiments. 1117

• UERBERT (Xia et al., 2021) conducted lots 1118

of experiments to analyze which kind of exter- 1119

nal knowledge BERT has already known, and 1120

directly injected the synonym knowledge into 1121

BERT without fine-tuning. 1122

• SemBERT(Zhang et al., 2020) incorporates con- 1123

textual semantics from pre-trained semantic role 1124

labeling and is capable of explicitly absorbing 1125

contextual semantics over a BERT backbone. 1126

SemBERT keeps the convenient usability of its 1127

BERT precursor in a light fine-tuning way with- 1128

out substantial task-specific modifications. 1129

• Syntax-BERT (Liu et al., 2020) is a framework 1130

that integrates the syntax trees into transformer- 1131

based models. Unlike us, it explicitly injected 1132

syntactic knowledge into checkpoints of models. 1133

• MT-DNN(Liu et al., 2019a) not only leverages 1134

large amounts of cross-task data but also benefits 1135

from a regularization effect that leads to more 1136

general representations to help adapt to new tasks 1137

and domains. MT-DNN extends the model by 1138

incorporating a pre-trained bidirectional trans- 1139

former language model. 1140

• GPT3 (Brown et al., 2020) As the successor of 1141

GPT-2, GPT-3 has become the largest language 1142

model, further expanding the parameter space 1143

(175 billion vs. 1.5 billion) and data size (45 TB 1144

vs. 40 GB). The model requires no fine-tuning 1145

to formulate downstream tasks and has excellent 1146

performance in zero-shot and few-shot settings. 1147

Based on the multi-task generalization capabili- 1148

ties of GPT-2, GPT-3 has achieved good results 1149

15



on many new tasks, including mathematical ad-1150

dition, news article generation, vocabulary inter-1151

pretation, and code writing. As the number of1152

parameters increases, the model becomes more1153

powerful.1154

• LLaMa(Touvron et al., 2023) trained on a new1155

mix of publicly available data. LLaMa is a collec-1156

tion of pretrained and fine-tuned large language1157

models (LLMs) ranging in scale from 7 billion to1158

70 billion parameters. Testing conducted to date1159

has been in English and has not and could not1160

cover all scenarios. Therefore, before deploying1161

any applications of LLaMa, developers should1162

perform safety testing and tuning tailored to their1163

specific applications of the model to facilitate the1164

safe deployment of LLaMa.1165
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