
Under review as a conference paper at ICLR 2023

RETHINKING POSITIVE SAMPLING FOR CONTRASTIVE
LEARNING WITH KERNEL

Anonymous authors
Paper under double-blind review

ABSTRACT

Data augmentation is a crucial component in unsupervised contrastive learning
(CL). It determines how positive samples are defined and, ultimately, the quality
of the representation. Even if efforts have been made to find efficient augmenta-
tions for ImageNet, CL underperforms compared to supervised methods and it is
still an open problem in other applications, such as medical imaging, or in datasets
with easy-to-learn but irrelevant imaging features. In this work, we propose a new
way to define positive samples using kernel theory along with a novel loss called
decoupled uniformity. We propose to integrate prior information, learnt from gen-
erative models viewed as feature extractor, or given as auxiliary attributes, into
contrastive learning, to make it less dependent on data augmentation. We draw
a connection between contrastive learning and the conditional mean embedding
theory to derive tight bounds on the downstream classification loss. In an un-
supervised setting, we empirically demonstrate that CL benefits from generative
models, such as VAE and GAN, to less rely on data augmentations. We validate
our framework on vision and medical datasets including CIFAR10, CIFAR100,
STL10, ImageNet100, CheXpert and a brain MRI dataset. In the weakly super-
vised setting, we demonstrate that our formulation provides state-of-the-art re-
sults.

1 INTRODUCTION

Figure 1: Illustration of the proposed method. Each point is an original image x̄. Two points are
connected if they can be transformed into the same augmented image using a distribution of aug-
mentations A. Colors represent semantic (unknown) classes and light disks represent the support
of augmentations for each sample x̄, A(·|x̄). From an incomplete augmentation graph (1) where
intra-class samples are not connected (e.g. augmentations are insufficient or not adapted), we recon-
nect them using a kernel defined on prior information (either learnt with generative model, viewed
as feature extractor, or given as auxiliary attributes). The extended augmentation graph (3) is the
union between the (incomplete) augmentation graph (1) and the kernel graph (2). In (2), the gray
disk indicates the set of points x̄′ that are close to the anchor (blue star) in the kernel space.

Contrastive Learning (CL)(44; 3; 4; 7; 10) is a paradigm designed for representation learning which
has been applied to unsupervised (10; 13), weakly supervised(55; 20) and supervised problems
(37). It gained popularity during the last years by achieving impressive results in the unsupervised
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setting on standard vision datasets (e.g. ImageNet) where it almost matched the performance of its
supervised counterpart (10; 29).

The objective in CL is to increase the similarity in the representation space between positive sam-
ples (semantically close), while decreasing the similarity between negative samples (semantically
distinct). Despite its simple formulation, it requires the definition of a similarity function (that can
be seen as an energy term (42)),and of a rule to decide whether a sample should be considered posi-
tive or negative. Similarity functions, such as the Euclidean scalar product (e.g. InfoNCE(44)), take
as input the latent representations of an encoder f ∈ F , such as a CNN (11) or a Transformer (9)
for vision datasets.

In supervised learning (37), positives are simply images belonging to the same class while negatives
are images belonging to different classes. In unsupervised learning (10), since labels are unknown,
positives are usually defined as transformed versions (views) of the same original image (a.k.a. the
anchor) and negatives are the transformed versions of all other images. As a result, the augmenta-
tion distribution A used to sample both positives and negatives is crucial (10) and it conditions the
quality of the learnt representation. The most-used augmentations for visual representations involve
aggressive crop and color distortion. Cropping induces representations with high occlusion invari-
ance (46) while color distortion may avoids the encoder f to take a shortcut (10) while aligning
positive sample representations and fall into the simplicity bias (51).

Nevertheless, learning a representation that mainly relies on augmentations comes at a cost: both
crop and color distortion induce strong biases in the final representation (46). Specifically, dom-
inant objects inside images can prevent the model from learning features of smaller objects (12)
(which is not apparent in object-centric datasets such as ImageNet) and few, irrelevant and easy-to-
learn features, that are shared among views, are sufficient to collapse the representation (12) (a.k.a
feature suppression). Finding the right augmentations in other visual domains, such as medical
imaging, remains an open challenge (20) since we need to find transformations that preserve seman-
tic anatomical structures (e.g. discriminative between pathological and healthy) while removing
unwanted noise. If the augmentations are too weak or inadequate to remove irrelevant signal w.r.t. a
discrimination task, then how can we define positive samples?

In our work, we propose to integrate prior information, learnt from generative models or given as
auxiliary attributes, into contrastive learning, to make it less dependent on data augmentation. Using
the theoretical understanding of CL through the augmentation graph, we make the connection with
kernel theory and introduce a novel loss with theoretical guarantees on downstream performance.
Prior information is integrated into the proposed contrastive loss using a kernel. In the unsupervised
setting, we leverage pre-trained generative models, such as GAN (24) and VAE (38), to learn a
prior representation of the data. We provide a solution to the feature suppression issue in CL (12)
and also demonstrate SOTA results with weaker augmentations on visual benchmarks. In visual
domain where data augmentations are not adapted to the downstream task (e.g. medical imaging),
we show that we can improve CL, alleviating the need to find efficient augmentations. In the weakly
supervised setting, we use instead auxiliary/prior information, such as image attributes (e.g. birds
color or size) and we show better performance than previous conditional formulations based on these
attributes (55).

In summary, we make the following contributions:

1. We propose a new framework for contrastive learning allowing the integration of prior informa-
tion, learnt from generative models or given as auxiliary attributes, into the positive sampling.

2. We derive theoretical bounds on the downstream classification risk that rely on weaker assump-
tions for data augmentations than previous works on CL.

3. We empirically show that our framework can benefit from the latest advances of generative
models to learn a better representation while relying on less augmentations.

4. We show that we achieve SOTA results in the unsupervised and weakly supervised setting.

2 RELATED WORKS

In a weakly supervised setting, recent studies (20; 55) have shown that positive samples can be de-
fined conditionally to an auxiliary attribute in order to improve the final representation, in particular
for medical imaging (20). From an information bottleneck perspective, these approaches essentially
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compress the representation to be predictive of the auxiliary attributes. This might harm the perfor-
mance of the model when these attributes are too noisy to accurately approximate the true semantic
labels for a given downstream task.

In an unsupervised setting, recent approaches (22; 65; 66; 43) used the encoder f , learnt during
optimization, to extend the positive sampling procedure to other views of different instances (i.e.
distinct from the anchor) that are close to the anchor in the latent space. In order to avoid rep-
resentation collapse, multiple instances of the same sample (2), a support set (22), a momentum
encoder (43) or another small network (65) can be used to select the positive samples. In clustering
approaches (43; 8), distinct instances with close semantics are attracted in the latent space using pro-
totypes. These prototypes can be estimated through K-means (43) or Sinkhorn-Knopp algorithm (8).
All these methods rely on the past representation of a network to improve the current one. They re-
quire strong augmentations and they essentially assume that the closest points in the representation
space belong to the same latent class in order to better select the positives. This inductive bias is still
poorly understood from a theoretical point of view (50) and may depend on the visual domain. For
medical imaging, ImageNet self-supervised pre-training was beneficial for all subsequent tasks (2).

Our work also relates to generative models for learning representations. VAEs (38) learn the data
distribution by mapping each input to a Gaussian distribution that we can easily sample from to
reconstruct the original image. GANs (24), instead, sample directly from a Gaussian distribution
to generate images that are classified by a discriminator in a min-max game. The discriminator
representation can then be used (48) as feature extractor. Other models (ALI (21), BiGAN (18)
and BigBiGAN(19)) learn simultaneously a generator and an encoder that can be used directly for
representation learning (63). All these models do not require particular augmentations to model the
data distribution but they perform generally poorer than recent discriminative approaches (64; 11)
for representation learning. A first connection between generative models and contrastive learning
has emerged very recently (36). In (36), authors study the feasibility of learning effective visual
representations using only generated samples, and not real ones, with a contrastive loss. Their
empirical analysis is complementary to our work. Here, we leverage the representation capacity of
the generative models, rather than their generative power, to learn prior representation of the data.

3 CONSTRASTIVE LEARNING WITH DECOUPLED UNIFORMITY

Problem setup. The general problem in contrastive learning is to learn a data representation using
an encoder f ∈ F : X → Sd−1 that is pre-trained with a set of n original samples (x̄i)i∈[1..n] ∈
X̄ , sampled from the data distribution p(x̄)1 These samples are transformed to generate positive
samples (i.e., semantically similar to x̄) in X , space of augmented images, using a distribution of
augmentations A(·|x̄). Concretely, for each x̄i, we can sample views of x̄i using x ∼ A(·|x̄i)
(e.g., by applying color jittering, flip or crop with a given probability). For consistency, we assume
A(x̄) = p(x̄) so that the distributions A(·|x̄) and p(x̄) induce a marginal distribution p(x) over
X . Given an anchor x̄i, all views x ∼ A(·|x̄j) from different samples x̄j ̸=i are considered as
negatives. Once pre-trained, the encoder f is fixed and its representation f(X̄ ) is evaluated through
linear evaluation on a classification task using a labeled dataset D = {(x̄i, yi)} ∈ X̄ × Y where
Y = [1..K], with K the number of classes.
Linear evaluation. To evaluate the representation of f on a classification task, we train a linear
classifier g(x̄) = Wf(x̄) (f is fixed) that minimizes the multi-class classification error.

Objective. The popular InfoNCE loss (45; 44), often used in CL, imposes 1) alignment between pos-

itives and 2) uniformity between the views (x i.i.d.∼ A(·|x̄)) of all instances x̄ (57)– two properties that
correlate well with downstream performance. However, by imposing uniformity between all views,
we essentially try to both attract (alignment) and repel (uniformity) positive samples and therefore
we cannot achieve a perfect alignment and uniformity, as noted in (57). Moreover, InfoNCE has
been originally designed for only two views (i.e., one couple of positive) and its extension to multi-
ple views is not straightforward (40). Previous works have proposed a solution to either the first (54)
or second (60) issue. Here, we propose a modified version of the uniformity loss, presented in (57),
that solves both issues since it: i) decouples positives from negatives, similarly to (60) and ii) is

1With an abuse of notation, we define it as p(x̄) instead than pX̄ to simplify the presentation, as it is common
in the literature
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generalizable to multi-views as in (54). We introduce the Decoupled Uniformity loss as:

Ld
unif (f) = logEp(x̄)p(x̄′)e

−||µx̄−µx̄′ ||2 (1)

where µx̄ = EA(x|x̄)f(x) is called a centroid of the views of x̄. This loss essentially repels distinct
centroids µx̄ through an average pairwise Gaussian potential. Interestingly, it implicitly optimizes
alignment between positives through the maximization of ||µx̄||2, so we do not need to explicitly
add an alignment term. It can be shown (see Appendix B), that minimizing this loss brings to a
representation space where the sum of similarities between views of the same sample is greater than
the sum of similarities between views of different samples.

We will study its main properties hereafter and we will see that, contrary to other contrastive losses,
prior information can be added during the estimation step of these centroids using a kernel. First,
we define a measure of the risk on a downstream task.

Supervised risk. While previous analysis (58; 1) generally used the mean cross-entropy loss (as it
has closer analytic form with InfoNCE), we use a supervised loss closer to decoupled uniformity
with the same guarantees as the mean cross-entropy loss (see Appendix C.1). Notably, the geometry
of the representation space at optimum is the same as cross-entropy and SupCon (37) and we can
theoretically achieve perfect linear classification.
Definition 3.1. (Downstream supervised loss) For a given downstream task D = X̄ × Y , we define
the classification loss as: Lsup(f) = logEy,y′∼p(y)p(y′)e

−||µy−µy′ ||2 , where µy = Ep(x̄|y)µx̄.

This loss depends on centroids µx̄ rather than f(x̄). Empirically, it has been shown (23) that per-
forming feature averaging gives better performance on the downstream task.

3.1 GEOMETRICAL ANALYSIS OF DECOUPLED UNIFORMITY

Definition 3.2. (Finite-samples estimator) For n samples (x̄i)i∈[1..n]
i.i.d.∼ p(x̄), the (biased) empir-

ical estimator of Ld
unif (f) is: L̂d

unif (f) = log 1
n(n−1)

∑
i ̸=j e

−||µx̄i
−µx̄j

||2 . It converges in law to

Ld
unif (f) with rate O

(
n−1/2

)
. Proof in Appendix E.1

Theorem 1. (Optimality of Decoupled Uniformity) Given n points (x̄i)i∈[1..n] such that n ≤ d+1,
any optimal encoder f∗ minimizing L̂d

unif achieves a representation s.t.:
1. (Perfect uniformity) All centroids (µx̄i

)i∈[1..n] make a regular simplex on the hyper-sphere Sd−1

2.(Perfect alignment) f∗ is perfectly aligned, i.e ∀x, x′ ∼ A(·|x̄i), f
∗(x) = f∗(x′) for all i ∈ [1..n].

Proof in Appendix E.2.

Theorem 1 gives a complete geometrical characterization when the batch size n set during training is
not too large compared to the representation space dimension d. By removing the coupling between
positives and negatives, we see that Decoupled Uniformity can realize both perfect alignment and
uniformity, contrary to InfoNCE (57).

Most recent theories about CL (58; 28) make the hypothesis that samples from the same seman-
tic class have overlapping augmented views to provide guarantees on the downstream task when
optimizing InfoNCE (10) or Spectral Contrastive loss (28). This assumption, known as intra-class
connectivity hypothesis, is very strong and only relies on the augmentation distributionA. In partic-
ular, augmentations should not be “too weak”, so that all intra-class samples are connected among
them, and at the same time not “too strong”, to prevent connections between inter-class samples and
thus preserve the semantic information. Here, we prove that we can relax this hypothesis if we can
provide a kernel (viewed as a similarity function between original samples x̄) that is “good enough”
to relate intra-class samples not connected by the augmentations (see Fig. 1). In practice, we show
that generative models (viewed as feature extractor) or auxiliary information can define such kernel.
We first recall the definition of the augmentation graph (58), and intra-class connectivity hypothesis
before presenting our main theorems. For simplicity, we assume that the set of images X̄ is finite
(similarly to (58; 28)). Our bounds and theoretical guarantees will never depend on the cardinality
|X̄ |.

2By Jensen’s inequality ||µx̄|| ≤ EA(x|x̄)||f(x)|| = 1 with equality iff f is constant on suppA(·|x̄).
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INTRA-CLASS CONNECTIVITY HYPOTHESIS.
Definition 3.3. (Augmentation graph (28; 58)) Given a set of original images X̄ , we define the
augmentation graph GA(V,E) for an augmentation distribution A through 1) a set of vertices V =
X̄ and 2) a set of edges E such that (x̄, x̄′) = e ∈ E if the two original images x̄, x̄′ can be
transformed into the same augmented image through A, i.e suppA(·|x̄) ∩ suppA(·|x̄′) ̸= ∅.

Previous analysis in CL make the hypothesis that there exists an optimal (accessible) augmentation
module A∗ that fulfills:
Assumption 1. (Intra-class connectivity (58)) For a given downstream classification task D = X̄ ×
Y ∀y ∈ Y , the augmentation subgraph, Gy ⊂ GA∗ containing images only from class y, is
connected.

Under this hypothesis, Decoupled Uniformity loss can also tightly bound the downstream supervised
risk but for a bigger class of encoders than prior work (not restricted to L-smooth functions (58)).
Definition 3.4. (Weak-aligned encoder) An encoder f ∈ F is ϵ′-weak (ϵ′ ≥ 0) aligned on A if:

||f(x)− f(x′)|| ≤ ϵ′ ∀x̄ ∈ X̄ ,∀x, x′ i.i.d.∼ A(·|x̄)
Theorem 2. (Guarantees with A∗) Given an optimal augmentation module A∗, for any ϵ-weak
aligned encoder f ∈ F we obtain: Ld

unif (f) ≤ Lsup(f) ≤ 8Dϵ + Ld
unif (f) where D is the

maximum diameter of all intra-class graphs Gy (y ∈ Y). Proof in Appendix E.5.

Contrary to previous work (58), this theorem does not require L-smoothness of f ∈ F (strong as-
sumption) and provides tighter lower bound. In practice, the diameter D can be controlled by a small
constant in some cases (e.g., 4 in (58)) but it remains specific to the dataset at hand. Furthermore,
we observe (see Appendix A.1) that f realizes alignment with small error ϵ during optimization of
Ld
unif (f) for augmentations close to the sweet spot A∗ (54) on CIFAR-10 and CIFAR-100.

In the next section, we study the case when A∗ is not accessible or very hard to find.

3.2 RECONNECT THE DISCONNECTED: EXTENDING THE AUGMENTATION GRAPH WITH
KERNEL

Having access to optimal augmentations is a strong assumption and, for many real-world applica-
tions (e.g medical imaging (20)), it may not be accessible. If we have only weak augmentations
(e.g., suppA(·|x̄) ⊊ suppA∗(·|x̄) for any x̄), then some intra-class points might not be connected
and we would need to reconnect them to ensure good downstream accuracy (see Theorem 7 in Ap-
pendix C.2). Augmentations are intuitive and they have been hand-crafted for decades by using
human perception (e.g., a rotated chair remains a chair and a gray-scale dog is still a dog). However,
we may know other prior information about objects that are difficult to transfer through invariance
to augmentations (e.g., chairs should have 4 legs). This prior information can be either given as
image attributes (e.g., age or sex of a person, color of a bird, etc.) or, in an unsupervised setting,
directly learnt through a generative model (e.g., GAN or VAE). Now, we ask: how can we integrate
this information inside a contrastive framework to reconnect intra-class images that are actually dis-
connected in GA? We rely on conditional mean embedding theory and use a kernel defined on the
prior representation/information. This allows us to estimate a better configuration of the centroids
in the representation space, with respect to the downstream task, and, ultimately, provide theoretical
guarantees on the classification risk.

ϵ-KERNEL GRAPH.
Definition 3.5. (RKHS on X̄ ) We define the RKHS (HX̄ ,KX̄ ) on X̄ associated with a kernel KX̄ .

Example. If we work with large natural images, assuming that we know a prior z(x̄) about our
images (e.g., given by a generative model), we can compute KX̄ using z through KX̄ (x̄, x̄′) =

K̃(z(x̄), z(x̄′)) where K̃ is a standard kernel (e.g., Gaussian or Cosine).

To link kernel theory with the previous augmentation graph, we need to define a kernel graph that
connects images with high similarity in the kernel space.
Definition 3.6. (ϵ-Kernel graph) Let ϵ > 0. We define the ϵ-kernel graph Gϵ

KX̄
(V,EK) for the

kernel KX̄ on X̄ through 1) a set of vertices V = X̄ and 2) a set of edges EKX̄ such that e ∈ EKX̄

between x̄, x̄′ ∈ X̄ iff max(KX̄ (x̄, x̄),KX̄ (x̄′, x̄′))−KX̄ (x̄, x̄′) ≤ ϵ.
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The condition max(KX̄ (x̄, x̄),KX̄ (x̄′, x̄′)) −KX̄ (x̄, x̄′) ≤ ϵ implies that dKX̄ (x̄, x̄
′) ≤ 2ϵ where

dKX̄ (x̄, x̄
′) = KX̄ (x̄, x̄)+KX̄ (x̄′, x̄′)−2KX̄ (x̄, x̄′) is the kernel distance. For kernels with constant

norm (e.g., the standard Gaussian, Cosine or Laplacian kernel), it is in fact an equivalence. Intu-
itively, it means that we connect two original points in the kernel graph if they have small distance
in the kernel space. We give now our main assumption to derive a better estimator of the centroid
µx̄ in the insufficient augmentation regime.
Assumption 2. (Extended intra-class connectivity) For a given task D = X̄ × Y , the extended
graph G̃ = GA ∪ Gϵ

KX̄
= (V,E ∪ EKX̄ ) (union between augmentation graph and ϵ-kernel graph)

is class-connected for all y ∈ Y .

This assumption is notably weaker than Assumption 1 w.r.t augmentation distribution A. Here, we
do not need to find the optimal distribution of augmentations A∗, as long as we have a kernel KX̄
such that disconnected points in the augmentation graph are connected in the ϵ-kernel graph. If K
is not well adapted to the data-set (i.e it gives very low values for intra-class points), then ϵ needs to
be large to re-connect these points and, as shown in Appendix A.2, the classification error will be
high. In practice, this means that we need to tune the hyper-parameter of the kernel (e.g., σ for a
RBF kernel) so that all intra-class points are reconnected with a small ϵ.

CONDITIONAL MEAN EMBEDDING.

Decoupled Uniformity loss includes no kernel in its raw form. It only depends on centroids µx̄ =
EA(x|x̄)f(x). Here, we show that another consistent estimator of these centroids can be defined,
using the previous kernel KX̄ . To show it, we fix an encoder f ∈ F and require the following
technical assumption in order to apply conditional mean embedding theory (52; 39).
Assumption 3. (Expressivity of KX̄ ) The (unique) RKHS (Hf ,Kf ) defined on X with kernel
Kf = ⟨f(·), f(·)⟩Rd fulfills ∀g ∈ Hf ,EA(x|·)g(x) ∈ HX̄

Theorem 3. (Centroid estimation) Let (xi, x̄i)i∈[1..n]
iid∼ A(x, x̄). Assuming 3, a consistent estima-

tor of the centroid is:

∀x̄ ∈ X̄ , µ̂x̄ =

n∑
i=1

αi(x̄)f(xi) (2)

where αi(x̄) =
∑n

j=1[(Kn + nλIn)
−1]ijKX̄ (x̄j , x̄) and Kn = [KX̄ (x̄i, x̄j)]i,j∈[1..n]. It converges

to µx̄ with the ℓ2 norm at a rate O(n−1/4) for λ = O(n−1/2). Proof in Appendix E.6.

Intuition. This theorem says that we can use representations of images close to an anchor x̄, accord-
ing to our prior information, to accurately estimate µx̄. Consequently, if the prior is “good enough”
to connect intra-class images disconnected in the augmentation graph (i.e. fulfills Assumption 2),
then this estimator allows us to tightly control the classification risk. From this theorem, we naturally
derive the empirical Kernel Decoupled Uniformity loss using the previous estimator.

Definition 3.7. (Empirical Kernel Decoupled Uniformity Loss) Let (xi, x̄i)i∈[1..n]
iid∼ A(x, x̄). Let

µ̂x̄j
=

∑n
i=1 αi,jf(xi) with αi,j = ((Kn+λnIn)

−1Kn)ij , λ = O(n−1/2) a regularization constant
and Kn = [KX̄ (x̄i, x̄j)]i,j∈[1..n]. We define the empirical kernel decoupled uniformity loss as:

L̂d
unif (f)

def
= log

1

n(n− 1)

n∑
i,j=1

exp(−||µ̂x̄i
− µ̂x̄j

||2) (3)

Extension to multi-views. If we have V views (x(v)
i )v∈[1..V ] for each x̄i, we can easily extend the

previous estimator with µ̂x̄i =
1
V

∑V
v=1 µ̂

(v)
x̄j

where µ̂
(v)
x̄j

=
∑n

i=1 αi,jf(x
(v)
i ).

The computational cost added is roughly O(n3) (to compute the inverse matrix of size n × n)
but it remains negligible compared to the back-propagation time using classical stochastic gradient
descent. Importantly, the gradients associated to αi,j are not computed.

A TIGHT BOUND ON THE CLASSIFICATION LOSS WITH WEAKER ASSUMPTIONS.

We show here that L̂d
unif (f) can tightly bound the supervised classification risk for well-aligned

encoders f ∈ F .
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Theorem 4. We assume 2 and 3 hold for a reproducible kernel KX̄ and augmentation distribution
A. Let (xi, x̄i)i∈[1..n]

iid∼ A(x, x̄). For any ϵ′-weak aligned encoder f ∈ F :

L̂d
unif (f)−O

(
n−1/4

)
≤ Lsup(f) ≤ L̂d

unif (f) + 4D(2ϵ′ + βn(KX̄ )ϵ) +O
(
n−1/4

)
(4)

where βn(KX̄ ) = (λmin(Kn)√
n

+
√
nλ)−1 = O(1) for λ = O(n−1/2), Kn =

(KX̄ (x̄i, x̄j))i,j∈[1..n]and D is the maximal diameter of all sub-graphs G̃y ⊂ G̃ where y ∈ Y .
We noted λmin(Kn) > 0 the minimal eigenvalue of Kn. Proof in Appendix E.7.

Interpretation. Theorem 4 gives tight bounds on the classification loss Lsup(f) with weaker as-
sumptions than current work (1; 58; 28). We don’t require perfect alignment for f ∈ F or L-
smoothness and we don’t have class collision term (even if the extended augmentation graph may
contain edges between inter-class samples), contrarily to (1). Also, the estimation error doesn’t
depend on the number of views (which is low in practice))–as it was always the case in previous
formulations (58; 1; 28) – but rather on the batch size n and the eigenvalues of the kernel ma-
trix (controlling the variance of the centroid estimator (27)) . Contrarily to CCLK (55), we don’t
condition our representation to weak attributes but rather we provide better estimation of the con-
ditional mean embedding conditionally to the original image. Eventually, our loss remains in an
unconditional contrastive framework driven by the augmentations A and the prior KX̄ on input
images. Theorem 2 becomes a special case ϵ = 0 and A = A∗ (i.e the augmentation graph is class-
connected, a stronger assumption than 2). In Appendix A.2, we provide empirical evidence that
better kernel quality (measured by k-NN accuracy in kernel graph) improves downstream accuracy,
as theoretically expected by the theorem. It also provides a new way to select a priori a good kernel.

4 EXPERIMENTS

Here, we study several problems where Kernel Decoupled Uniformity outperforms current con-
trastive SOTA models. In unsupervised learning, we show that we can leverage generative models
representation to outperform current self-supervised models when the augmentations are insufficient
to remove irrelevant signals from images. In weakly supervised, we demonstrate the superiority of
our unconditional formulation when noisy auxiliary attributes are available. Implementation details
are presented in Appendix D. We systematically use 2 views for fairness in our main experiments.

Model 0 bits 5 bits 10 bits 20 bits

SimCLR (10) 79.4 68.74 13.67 10.07
BYOL (26) 80.14 19.98 10.33 10.00

β-VAE (β = 1) 41.37 43.32 42.94 43.1
β-VAE (β = 2) 42.28 43.89 43.11 42.19
β-VAE (β = 4) 42.5 42.5 42.5 39.87

Decoupled Unif (ours) 82.43 53.45 10.08 9.64
KV AE Decoupled Unif (ours) 82.74±0.18 68.75±0.24 68.42±0.51 68.58±0.17

Table 1: Linear evaluation accuracy (%) on RandBits-CIFAR10 with ResNet18 for 200 epochs. For
VAE, we use a ResNet18 backbone. Once trained, we use its representation to define the kernel
KV AE in kernel decoupled uniformity loss.

Evading feature suppression with VAE. Previous investigations (12) have shown that a few easy-
to-learn irrelevant features not removed by augmentations can prevent the model from learning all
semantic features inside images. We propose here a first solution to this issue.
RandBits dataset (12). We build a RandBits dataset based on CIFAR-10. For each image, we add
a random integer sampled in [0, 2k − 1] where k is a controllable number of bits. To make it
easy to learn, we take its binary representation and repeat it to define k channels that are added
to the original RGB channels. Importantly, these channels will not be altered by augmentations,
so they will be shared across views. We train a ResNet18 on this dataset with standard SimCLR
augmentations (10) and varying k. For kernel decoupled uniformity, we use a β-VAE representation
(ResNet18 backbone, β = 1, also trained on RandBits) to define KV AE(x̄, x̄

′) = K(µ(x̄), µ(x̄′))

7
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where µ(·) is the mean Gaussian distribution of x̄ in the VAE latent space and K is a standard RBF
kernel.

Table 1 shows the linear evaluation accuracy computed on a fixed encoder trained with various con-
trastive (SimCLR, Decoupled Uniformity and Kernel Decoupled Uniformity) and non-contrastive
(BYOL and β-VAE) methods. As noted previously (12), β-VAE is the only method insensitive to
the number of added bits, but its representation quality remains low compared to other discrimina-
tive approaches. All contrastive approaches fail for k ≥ 10 bits. This can be explained by noticing
that, as the number of bits k increases, the number of edges between intra-class images in the aug-
mentation graph GA decreases. For k bits, on average N/2k images share the same random bits
(N = 50000 is the dataset size). So only these images can be connected in GA. For k = 20 bits,
< 1 image share the same bits which means that they are almost all disconnected, and it explains
why standard contrastive approaches fail. Same trend is observed for non-contrastive approaches
(e.g. BYOL) with a degradation in performance even faster than SimCLR. Interestingly, encour-
aging a disentangled representation by imposing higher β > 1 in β-VAE does not help. Only our
KV AE Decoupled Uniformity loss obtains good scores, regardless of the number of bits.

BigBiGAN as prior. We show that very recent advances in gen-
erative modeling improve representations of contrastive models in
Table 2 with our approach. Due to our limited computational re-
sources, we study ImageNet100 (54) (100-class subset of ImageNet
used in the literature (54; 15; 57)) and we leverage BigBiGAN repre-
sentation (19) as prior. In particular, we use BigBiGAN pre-trained
on ImageNet to define a kernel KGAN (x̄, x̄′) = K(z(x̄), z(x̄′))
(with K an RBF kernel and z(·) BigBiGAN’s encoder). We demon-
strate SOTA representation with this prior compared to all other con-
trastive and non-contrastive approaches. We use ResNet50 trained
for 400 epochs. Please note that in our implementation, we do not
use data augmentation for testing (i.e. during linear evaluation).

Model ImageNet100

SimCLR (10) 66.52
BYOL (26) 72.26
CMC∗ (54) 73.58
DCL∗ (15) 74.6

AlignUnif∗ (57) 74.6
IFM (49) 71.88

BigBiGAN (19) 72.0
Decoupled Unif 72.24

KGAN Decoupled Unif 76.58
Supervised 82.1±0.59

Table 2: Linear evaluation ac-
curacy (%) on ImageNet100.
∗Results from papers

Model CIFAR-10 CIFAR-100 STL-10

All w/o Color w/o Color
and Crop All w/o Color w/o Color

and Crop All w/o Color w/o Color
and Crop

SimCLR (10) 81.75 62.56 34.07 53.02 38.27 15.28 79.02 59.01 39.56
BYOL (26) 81.97 64.86 45.88 53.65 35.61 22.48 79.61 65.36 11.28

MoCo v3 (14) 86.51 67.71 42.12 58.83 36.95 22.11 83.02 64.25 38.38
VAE∗ (38) 41.37 41.37 41.37 14.34 14.34 14.34 42.17 42.17 42.17

DCGAN∗ (48) 66.71 66.71 66.71 26.17 26.17 26.17 70.06 70.06 70.06
Decoupled Unif 85.82 60.45 39.18 58.89 34.16 14.58 79.89 54.53 36.81

KV AE Decoupled Unif 85.84 72.92 50.52 58.19 45.59 28.24 79.10 61.39 45.64
KGAN Decoupled Unif 85.85 77.16 69.19 58.42 50.07 35.98 79.97 71.44 68.11

Table 3: When augmentation overlap hypothesis is not fulfilled, generative models can provide a
good kernel to connect intra-class points not connected by augmentations. ∗ For VAE and DCGAN,
no augmentations were used during training. Bold: best result; underlined: second best. All models
have been trained for 400 epochs.

Towards weaker augmentations. Color distortion (including color jittering and gray-scale) and
crop are the two most important augmentations for SimCLR and other contrastive models to ensure
a good representation on ImageNet (10). Whether they are best suited for other datasets (e.g medical
imaging (20) or multi-objects images (12)) is still an open question. Here, we ask: can generative
models remove the need for such strong augmentations? We use standard benchmarking datasets
(CIFAR-10, CIFAR-100 and STL-10) and we study the case where augmentations are too weak
to connect all intra-class points. We compare to the baseline where all augmentations are used.
We use a trained VAE to define KV AE as before and a trained DCGAN (48) KGAN (x̄, x̄′)

def
=

K(z(x̄), z(x̄′)) where z(·) denotes the discriminator output of the penultimate layer.

In Table 3, we observe that our contrastive framework with DCGAN representation as prior is able to
approach the performance of self-supervised models by applying only crop augmentations and flip.
Additionally, when removing almost all augmentations (crop and color distortion), we approach the
performance of the prior representations of the generative models. This is expected by our theory
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since we have an augmentation graph that is almost disjoint for all points and thus we only rely
on the prior to reconnect them. This experiment shows that our method is less sensitive than all
other SOTA self-supervised methods to the choice of the “optimal” augmentations, which could be
relevant in applications where they are not known a priori, or hard to find.

Model CUB ImageNet100 UT-Zappos

SimCLR 17.48 65.30 84.08
BYOL 16.82 72.20 85.48

CosKernel CCLK (55) 15.61 74.34 83.23
RBFKernel CCLK (55) 30.49 77.24 84.65

CosKernel Decoupled Unif 27.77 78.8 85.56
RBFKernel Decoupled Unif 32.87 76.34 84.78

Table 4: If images attributes are accessible (e.g
birds color or size for CUB200), they can be
leveraged as prior in our framework to improve
the representation.

Weakly supervised learning on natural im-
ages. In Table 4, we suppose that we have
access to image attributes that correlate with the
true semantic labels (e.g birds color/size for birds
classification). We use three datasets: CUB-
200-2011 (59), ImageNet100 (54) and UTZap-
pos (62), following (55). CUB-200-2011 con-
tains 11788 images of 200 bird species with
312 binary attributes available (encoding size,
color, etc.). UTZappos contains 50025 images
of shoes from several brands sub-categorized into
21 groups that we use as downstream classifica-
tion labels. It comes with seven attributes. Finally, for ImageNet100 we follow (55) and use the
pre-trained CLIP (47) model (trained on pairs (text, image)) to extract 512-d features considered
as prior information. We compare our method with SOTA Siamese models (SimCLR and BYOL)
and with CCLK, a conditional contrastive model that defines positive samples only according to the
conditioning attributes. The proposed method outperforms all other models on the three datasets.

Filling the gap for medical imaging. Data augmentations on natural images have been handcrafted
over decades. However, we argue they are not adapted in other visual domain such as medical
imaging (20). We study 1) bipolar disorder detection (BD), a challenging binary classification task,
on brain MRI dataset BIOBD (32) and 2) chest radiography interpretation, a 5-class classification
task on CheXpert (35). BIOBD contains 356 healthy controls (HC) and 306 patients with BD. We
use BHB (20) as a large pre-training dataset containing 10k 3D images of healthy subjects. For
CheXpert, we use Gloria (34) representation, a multi-modal approach trained with (medical report,
image) pairs to extract 2048-d features as weak annotations. We show that our approach improve
contrastive model in both unsupervised (BD) and weakly supervised (CheXpert) setting for medical
imaging.

Model Atelectasis Cardiomegaly Consolidation Edema Pleural Effusion
SimCLR (10) 82.42 77.62 90.52 89.08 86.83
BYOL (26) 83.04 81.54 90.98 90.18 85.99

MoCo-CXR (53) 75.8 73.7 77.1 86.7 85.0

GLoRIA (34) 86.70 86.39 90.41 90.58 91.82
CCLK (55) 86.31 83.67 92.45 91.59 91.23

KGloRIA Decoupled Unif (ours) 86.92 85.88 93.03 92.39 91.93
Supervised (6) 81.6 79.7 90.5 86.8 89.9

Table 5: AUC scores(%) under linear evaluation for discriminat-
ing 5 pathologies on CheXpert. ResNet18 backbone is trained
for 400 epochs (batch size N = 1024) without labels on official
CheXpert training set and results are reported on validation set.

Model BD vs HC

SimCLR (10) 60.46±1.23

BYOL (26) 58.81±0.91

MoCo v2 (29) 59.27±1.50

Model Genesis (67) 59.94±0.81

VAE 52.86±1.24

KV AE Decoupled Unif (ours) 62.19±1.58

Supervised 67.42±0.31

Table 6: BD detection. Linear
evaluation AUC scores(%)
using a 5-fold leave-site-out
CV scheme.

5 CONCLUSION

In this work, we have showed that we can integrate prior information into CL to improve the final
representation. In particular, we draw connections between kernel theory and CL to build our the-
oretical framework. We demonstrate tight bounds on downstream classification performance with
weaker assumptions than previous works. Empirically, we show that generative models provide a
good prior when augmentations are too weak or insufficient to remove easy-to-learn noisy features.
We also show applications in medical imaging in both unsupervised and weakly supervised setting
where our method outperforms all other models. Thanks to our theoretical framework, we hope
that CL will benefit from the future progress in generative modelling and it will widen its field of
application to challenging tasks, such as computer aided-diagnosis.
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A MORE EMPIRICAL EVIDENCE

In this section, we provide additional empirical evidence to confirm several claims and arguments
developed in the paper.

A.1 DECOUPLED UNIFORMITY OPTIMIZES ALIGNMENT

Figure 2: Alignment metric Lalign computed on the validation set during optimization of Decoupled
Uniformity loss with various batch sizes n and a fixed latent space dimension d = 128. We use 100
positive samples per image to compute Lalign.

We empirically show here that Decoupled Uniformity optimizes alignment, even in the regime when
the batch size n > d + 1, where d is the representation space dimension. We use CIFAR-10 and
CIFAR-100 datasets and we optimize Decoupled Uniformity (without kernel) with all SimCLR
augmentations with d = 128 and we vary the batch size n. We report the alignment metric defined
in (57) as Lalign = EA(x|x̄)A(x′|x̄)p(x̄)||f(x)− f(x′)||2.

A.2 MEASURING KERNEL QUALITY AND EMPIRICAL VERIFICATION OF OUR THEORY

Figure 3: Empirical verification of our the-
ory. The optimal ϵ∗ to add 100 edges be-
tween intra-class images in ϵ-Kernel graph is
inversely correlated with the downstream ac-
curacy, as suggested by Theorem 4. We use
k = 20 bits and an RBF kernel.

Figure 4: How we can select a priori a good
kernel? Downstream accuracy on RandBits
CIFAR-10 is highly correlated with kernel
quality measured as fraction of 10 nearest
neighbors of the same CIFAR-10 class (from
test set) in the kernel graph.

We provide empirical evidence confirming our theory (Theorem 4 in particular) along with a new
way to quantify kernel quality with respect to a downstream task for a kernel K. We perform
experiments on RandBits dataset (based on CIFAR-10) with k = 20 random bits (almost all points
are disconnected in the augmentation graph) and SimCLR augmentations. For a given kernel Kσ

defined by Kσ(x̄, x̄
′) = RBFσ(µ(x̄), µ(x̄

′))-where µ(·) is the mean Gaussian distribution of x̄ in
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VAE latent space trained on RandBits- we train Kernel Decoupled Uniformity with Kσ on RandBits.
In Fig. 3, we vary σ and we report downstream accuracy (measured by linear evaluation) along with
the optimal ϵ∗ to add 100 intra-class edges in the ϵ-Kernel graph obtained with Kσ . The lower ϵ∗, the
better the downstream accuracy, which is expected since the upper bound of supervised risk becomes
tighter in Theorem 4. It gives a first empirical confirmation that ϵ tightly bounds the supervised risk
on downstream task.

A new way to quantify kernel quality. Based on the concept of kernel graph, we measure the
quality of a given kernel K using the nearest-neighbors of each image (a vertex in kernel graph).
More precisely, K induces a distance dK (dK(a, b) = K(a, a) + K(b, b) − 2K(a, b)) that can
be used to define nearest-neighbors in its kernel graph. We compute the fraction of these nearest
neighbors that belong to the same class. In Fig. 4, we plot the downstream accuracy vs kernel
quality using 10-nearest neighbors for various kernel K. They are obtained by using latent space
of a VAE trained for an increasing number of epochs (2, 50, 100, 150 and 1000) and by setting
K(x̄, x̄′) = RBFσ(µ(x̄), µ(x̄

′)) as before (with σ = 50 fixed). It shows that this new measure of
kernel quality is highly correlated with final downstream accuracy. Therefore, it can be used as a
tool to compare a priori (without training) different kernels. One limitation of this metric is that it
requires access to labels on the downstream task. Future work would consist in finding unsupervised
properties of the kernel graph that correlates well with downstream accuracy (e.g. sparsity, clustering
coefficient, etc.).

A.3 MULTI-VIEW CONTRASTIVE LEARNING WITH DECOUPLED UNIFORMITY

When the intra-class connectivity hypothesis is full-filled, we showed that Decoupled Uniformity
loss can tightly bound the classification risk for well-aligned encoders (see Theorem 2). Under
that hypothesis, we consider the standard empirical estimator of µx̄ ≈

∑V
v=1 f(x

(v)) for V views.
Using all SimCLR augmentations, we empirically verify that increasing V allows for: 1) a better
estimate of µx̄ which implies a faster convergence and 2) better SOTA results on both small-scale
(CIFAR10, CIFAR100, STL10) and large-scale (ImageNet100) vision datasets. We always use batch
size n = 256 for all approaches with ResNet18 backbone for CIFAR10, CIFAR100 and STL10 and
ResNet50 for ImageNet100. We report the results in Table 7.

Model CIFAR-10 CIFAR-100 ImageNet100 STL10
e = 200 e = 400 e = 200 e = 400 e = 200 e = 400 e = 200 e = 400

SimCLR(10) 79.4 81.75 48.89 53.02 65.30 66.52 76.99 79.02
BYOL(26) 80.14 81.97 51.57 53.65 72.20 72.26 77.62 79.61

Decoupled Unif (2 views) 82.43 85.82 54.01 58.89 71.98 72.24 78.12 79.89
Decoupled Unif (4 views) 84.99 85.34 57.23 59.07 72.08 75.00 78.25 80.47
Decoupled Unif (8 views) 86.50 85.80 59.63 59.74 74.70 75.00 79.82 80.30

Table 7: A better approximation of centroids µx̄ (i.e. increasing number of views) when augmen-
tation overlap hypothesis is (nearly) full-filled implies faster convergence. All models are pre-
trained with batch size n = 256. We use ResNet18 backbone for CIFAR10, CIFAR100, STL10
and ResNet50 for ImageNet100. We report linear evaluation accuracy (%) for a given number of
epochs e.

A.4 INFLUENCE OF TEMPERATURE AND BATCH SIZE FOR DECOUPLED UNIFORMITY

InfoNCE is known to be sensitive to batch size and temperature to provide SOTA results. In our
theoretical framework, we assumed that f(x) ∈ Sd−1 but we can easily extend it to f(x) ∈

√
tSd−1

where t > 0 is a hyper-parameter. It corresponds to write Ld
unif (f) = Ep(x̄)p(x̄′)e

−t||µx̄−µx̄′ ||2 . We
show here that Decoupled Uniformity does not require very large batch size (as it is the case for
SimCLR) and produce good representations for t ∈ [1, 5].
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Datasets t = 0.1 t = 0.5 t = 1 t = 2 t = 5 t = 10

CIFAR10 73.91 83.01 84.72 85.82 83.05 74.82
CIFAR100 39.16 51.33 55.91 58.89 56.70 48.29

Table 8: Linear evaluation accuracy (%) after training for 400 epochs with batch size n = 256 and
varying temperature in Decoupled Uniformity loss with SimCLR augmentations. t = 2 gives overall
the best results, similarly to the uniformity loss in (57)

Datasets Loss n = 128 n = 512 n = 1024 n = 2048

CIFAR10 SimCLR 78.89 79.40 80.02 80.06
Decoupled Unif 82.67 82.12 82.74 82.33

CIFAR100 SimCLR 49.53 53.46 54.45 55.32
Decoupled Unif 54.61 54.12 55.56 55.20

Table 9: Linear evaluation accuracy (%) after training for 200 epochs with a batch size n, ResNet18
backbone and latent dimension d = 128. Decoupled Uniformity is less sensitive to batch size than
SimCLR thanks to its decoupling between positives and negatives, similarly to (60).

A.5 IMPORTANCE OF REGULARIZATION TERM IN CENTROIDS ESTIMATION

Kernel Decoupled Uniformity introduces an additional hyper-parameter λ for centroid estimation,
which should be such that λ = O

(
1√
n

)
where n is the batch size to full-fill the hypothesis of

Theorem 4. We have cross-validated this hyper-parameter λ on RandBits CIFAR-10 with k = 10
bits and we show in Table 10 that λ = 0.01√

n
yields the best results. We have fixed this value for all

our experiments in this study.

√
256× λ σ = 30 σ = 50

0.001 10.25 60.75
0.01 67.21 68.42
0.1 59.09 58.13
1 50.49 60.75

Table 10: Importance of λ in centroids estimation with Kernel Decoupled Uniformity. We report
linear evaluation accuracy after training on RandBits-CIFAR10 (10 bits) with ResNet18 for 200
epochs using RBFKernel(σ) and batch size n = 256.

A.6 KERNEL CHOICE ON RANDBITS EXPERIMENT

In our experiments on RandBits, we used RBF Kernel in Decoupled Uniformity but other kernels
can be considered. Here, we have compared our approach with a cosine kernel on Randbits with
k = 10 and k = 20 bits. There is no hyper-parameter to tune with cosine. From Table 11, we see
that cosine gives comparable results for k = 10 bits with RBF but it is not appropriate for k = 20
bits.

Kernel 10 bits 20 bits

RBFKernel(σ = 1) 66.25±0.17 9.91±0.13

RBFKernel(σ = 30) 67.21±0.29 66.46±0.19

RBFKernel(σ = 50) 68.42±0.51 68.58±0.17

CosineKernel 66.56±0.45 9.68±0.18

Table 11: Linear evaluation after training on RandBits-CIFAR10 with ResNet18 for 200 epochs.
RBF and Cosine kernels are evaluated.
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A.7 LARGER PRE-TRAINED GENERATIVE MODEL INDUCES BETTER PRIOR

We argue that using larger datasets (e.g., ImageNet 1K) for pre-training larger generative models
will improve the prior on smaller-scale datasets and improve even more the final representations
with our method. We have tested this hypothesis on CIFAR-10 and BigBiGAN as prior, compared
to DCGAN and the other approaches without prior.

Model epochs CIFAR-10

SimCLR (10) 400 81.75
BYOL (26) 400 81.97

MoCov3 (14) 400 86.51
Decoupled Unif 200 82.43
Decoupled Unif 400 85.82

KDCGAN Decoupled Unif 400 85.85
KBigBiGAN Decoupled Unif 200 84.93 (+2.5)
KBigBiGAN Decoupled Unif 400 86.86 (+1.04)

Table 12: We evaluate Kernel Decoupled Uniformity with BigBiGAN pre-trained on ImageNet as
prior knowledge. We compare this approach with a shallow DCGAN pre-trained on CIFAR-10
as prior. We train ResNet18 on CIFAR10 and we report linear evaluation accuracy. Pre-trained
generative models on larger datasets improve the final representation.

B GEOMETRICAL CONSIDERATIONS ABOUT DECOUPLED UNIFORMITY

B.1 ASYMPTOTICAL OPTIMALITY

The assumption n ≤ d + 1 is crucial to have the existence of a regular simplex on the hypersphere
Sd−1. In practice, this condition is not always full-filled (e.g SimCLR (10) with d = 128 and
n = 4096). Characterizing the optimal solution of Ld

unif for any n > d+ 1 is still an open problem
(5) but theoretical guarantees can be obtained in the limit case n→∞.
Theorem 5. (Asymptotical Optimality) When the number of samples is infinite n → ∞, then for
any perfectly aligned encoder f ∈ F that minimizes Ld

unif , the centroids µx̄ for x̄ ∼ p(x̄) are
uniformly distributed on the hypersphere Sd−1. Proof in Appendix E.2.

Empirically, we observe that minimizers f of L̂d
unif remain well-aligned when n > d + 1 on real-

world vision datasets (see Appendix A.1). Decoupled uniformity thus optimizes two properties
that are nicely correlated with downstream classification performance (57)–that is alignment and
uniformity between centroids. However, as noted in (58; 50), optimizing these two properties is
necessary but not sufficient to guarantee a good classification accuracy. In fact, the accuracy can be
arbitrarily bad even for perfectly aligned and uniform encoders (50).

B.2 A METRIC LEARNING POINT-OF-VIEW

In this section, we provide a geometrical understanding of Decoupled Uniformity loss from a metric
learning point of view. In particular, we consider the Log-Sum-Exp (LSE) operator often used in
CL as an approximation of the maximum.

We consider the finite-samples case with n original samples (x̄i)i∈[1..n]
iid∼ p(x̄) and V views

(x
(v)
i )v∈[1..V ]

iid∼ A(·|x̄i) for each sample x̄i. We make an abuse of notations and set µi =
1
V

∑V
v=1 f(x

(v)
i ). Then we have:

L̂d
unif = log

1

n(n− 1)

∑
i ̸=j

exp
(
−||µi − µj ||2

)
= log

1

n(n− 1)

∑
i ̸=j

exp
(
−s+i − s+j + 2s−ij

) (5)
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where s+i = ||µi||2 = 1
V 2

∑
v,v′ s(x

(v)
i , x

(v′)
i ), s−ij = 1

V 2

∑
v,v′ s(x

(v)
i , x

(v′)
j ) and s(·, ·) =

⟨f(·), f(·)⟩2 is viewed as a similarity measure.

From a metric learning point-of-view, we shall see that minimizing Eq. 5 is (almost) equivalent to
looking for an encoder f such that the sum of similarities of all views from the same anchor (s+i and
s+j ) are higher than the sum of similarities between views from different instances (s−ij):

s+i + s+j > 2s−ij + ϵ ∀i ̸= j (6)
where ϵ is a margin that we suppose ”very big” (see hereafter). Indeed, this inequality is equivalent
to −ϵ > 2s−ij − s+i − s+j for all i ̸= j, which can be written as :

argmin
f

max(−ϵ, {2s−ij − s+i − s+j }i,j∈[1..n],j ̸=i)

This can be transformed into an optimization problem using the LSE (log-sum-exp) approximation
of the max operator:

argmin
f

log

exp(−ϵ) +
∑
i ̸=j

exp (−s+i − s+j + 2s−ij)


Thus, if we use an infinite margin (limϵ→∞) we retrieve exactly our optimization problem with
Decoupled Uniformity in Eq.5 (up to an additional constant depending on n).

C ADDITIONAL GENERAL GUARANTEES ON DOWNSTREAM CLASSIFICATION

C.1 OPTIMAL CONFIGURATION OF SUPERVISED LOSS

In order to derive guarantees on a downstream classification task D when optimizing our unsuper-
vised decoupled uniformity loss, we define a supervised loss that measures the risk on a downstream
supervised task. We prove in the next section that the minimizers of this loss have the same geometry
as the ones minimizing cross-entropy and SupCon (37): a regular simplex on the hyper-sphere (25).
More formally, we have:
Lemma 6. Let a downstream task D with C classes. We assume that C ≤ d + 1 (i.e., a big
enough representation space), that all classes are balanced and the realizability of an encoder f∗ =

argminf∈F Lsup(f) with Lsup(f) = logEy,y′∼p(y)p(y′)e
−||µy−µy′ ||2 , and µy = Ep(x̄|y)µx̄. Then

the optimal centroids (µ∗
y)y∈Y associated to f∗ make a regular simplex on the hypersphere Sd−1

and they are perfectly linearly separable, i.e min(wy)y∈Y∈Rd E(x̄,y)∼D1(wy · µ∗
y < 0) = 0. Proof in

the next section.

This property notably implies that we can realize 100% accuracy at optima with linear evaluation
(taking the linear classifier g(x̄) = W ∗f∗(x̄) with W ∗ = (µ∗

y)y∈Y ∈ RC×d).

C.2 GENERAL GUARANTEES OF DECOUPLED UNIFORMITY

In its most general formulation, we tightly bound the previous supervised loss by Decoupled Uni-
formity loss Ld

unif depending on a variance term of the centroids µx̄ conditionally to the labels:
Theorem 7. (Guarantees for a given downstream task) For any f ∈ F and augmentation A we
have:

Ld
unif (f) ≤ Lsup(f) ≤ 2

d∑
j=1

Var(µj
x̄|y)+Ld

unif (f) ≤ 4Ep(x̄|y)p(x̄′|y)||µx̄−µx̄′ ||+Ld
unif (f) (7)

where Var(µj
x̄|y) = Ep(x̄|y)(µ

j
x̄ − Ep(x̄′|y)µ

j
x̄′)2, y = argmaxy′∈Y Var(µj

x̄|y′) and µj
x̄ is the j-th

component of µx̄ = EA(x|x̄)f(x). Proof in the next section.

Intuitively, it means that we will achieve good accuracy if all centroids (µx̄)x̄∈X̄ for samples x̄ ∈ X̄
in the same class are not too far. This theorem is very general since we do not require the intra-class
connectivity assumption on A; so any A ⊂ A∗ can be used.
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D EXPERIMENTAL DETAILS

Code will be released upon acceptance of the manuscript. We provide a detailed pseudo-code of our
algorithm as well as all experimental details to reproduce the experiments run in the manuscript.

D.1 PSEUDO-CODE

Algorithm 1 Pseudo-code of the algorithm

Require: Batch of images (x̄1, ..., x̄n) ∈ X̄ , augmentation distribution A, temperature t, hyper-
parameter λ for centroid estimation
Kn ← (K(x̄i, x̄j))i,j∈[1..n] ▷ Compute the kernel matrix
α← (Kn + nλIn)

−1Kn ▷ Compute weights for centroid estimation
x
(1)
i , ..., x

(V )
i

iid∼ A(·|x̄i) ▷ Sample V views per image
F ← ( 1

V

∑V
v=1 f(x

(v)
i ))i∈[1..n] ▷ Compute the averaged image representations

µ̂← αF ▷ Centroid estimation
L̂d
unif ← log 1

n(n−1)

∑
i ̸=j exp(−t||µ̂i − µ̂j ||2) ▷ Kernel Decoupled Uniformity loss

return L̂d
unif

D.2 IMPLEMENTATION IN PYTORCH

We provide a PyTorch implementation of previous pseudo-code in Algorithm 2. It is generalizable
to an arbitrary number of views and kernel.

Algorithm 2 Implementation in PyTorch

1 # loader: generator of images
2 # n: batch size
3 # n_views: number of views
4 # d: latent space dimension
5 # f: encoder (with projection head)
6 # x: Tensor of shape [n, *]
7 # aug: augmentation module generating views
8 # K: kernel defined on image space
9 # lamb: hyper-parameter to estimate centroids

10 for x in loader:
11 alphas = (K(x, x) + n*lamb*torch.eye(n)).inverse() @ K(x, x)
12 x = aug(x, n_views) # shape=[n*n_views, *]
13 z = f(x).view([n, n_views, d]) # shape=[n, n_views, d]
14 mu = alphas.detach() @ z.mean(dim=1) # shape=[n, d]
15 loss = L(mu)
16 loss.backward()
17

18 def L(mu, t=2):
19 return torch.pdist(mu, p=2).pow(2).mul(-t).exp().mean().log()
20

D.3 DATASETS

CIFAR (41) We use the original training/test split with 50000 and 10000 images respectively of
size 32× 32.

STL-10 (16) In unsupervised pre-training, we use all labelled+unlabelled images (105000 images)
for training and the remaining 8000 for test with size 96× 96. During linear evaluation, we only use
the 5000 training labelled images for learning the weights.
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CUB200-2011 (56) This dataset is composed of 200 fine-grained bird species with 5994 training
images and 5794 test images rescaled to 224× 224.

UTZappos (62) This dataset is composed of images of shoes from zappos.com. In order to be
comparable with the literature on weakly supervised learning, we follow (55) and split it into 35017
training images and 15008 test images resized at 32× 32.

ImageNet100 (17; 54) It is a subset of ImageNet containing 100 random classes and introduced
in (54). It contains 126689 training images and 5000 testing images rescaled to 224×224. It notably
allows a reasonable computational time since we runt all our experiments on a single server node
with 4 V100 GPU.

BHB (20) This dataset is composed of 10420 3D brain MRI images of size 121× 145× 121 with
1.5mm3 spatial resolution. Only healthy subjects are included.

BIOBD (32) It is also a brain MRI dataset including 662 3D anatomical images and used for
downstream classification. Each 3D volume has size 121 × 145 × 121. It contains 306 patients
with bipolar disorder vs 356 healthy controls and we aim at discriminating patients vs controls. It is
particularly suited to investigate biomarkers discovery inside the brain (31).

CheXpert (35) This dataset is composed of 224 316 chest radiogaphs of 65240 patients. Each
radiograph comes with 14 medical obervations. We use the official training set for our experi-
ments, following (34; 35) and we test the models on the hold-out official validation split containing
radiographs from 200 patients. For linear evaluation on this dataset, we train 5 linear probes to dis-
criminate 5 pathologies (as binary classification) using only the radiographs with ”certain” labels.

D.4 CONTRASTIVE MODELS

Architecture. For all small-scale vision datasets (CIFAR-10 (41), CIFAR-100 (41), STL-10 (16),
CUB200-2011 (56) and UT-Zappos (62)) and CheXpert, we used official ResNet18 (30) backbone
where we replaced the first 7 × 7 convolutional kernel by a smaller 3 × 3 kernel and we removed
the first max-pooling layer for CIFAR-10, CIFAR-100 and UTZappos. For ImageNet100, we used
ResNet50 (30) for stronger baselines as it is common in the literature. For medical images on
brain MRI datasets (BHB (20) and BIOBD(32), we used DenseNet121 (33) as our default backbone
encoder, following previous literature on these datasets (20). We use the official

Following (10), we use the representation space after the last average pooling layer with 2048 dimen-
sions to perform linear evaluation and use a 2-layers MLP projection head with batch normalization
between each layer for a final latent space with 128 dimensions.

Kernel choice. In all experiments with Kernel Decoupled Uniformity, we used an RBF kernel and
we cross-validated the hyperparameter σ within {0.1, 1, 10, 30, 50, 100}.

Batch size. We always use a default batch size 256 for all experiments on vision datasets and 64
for brain MRI datasets (considering the computational cost with 3D images and since it had little
impact on the performance (20)).

Optimization. We use SGD optimizer on small-scale vision datasets (CIFAR-10, CIFAR-100,
STL-10, CUB200-2011, UT-Zappos) with a base learning rate 0.3 × batch size/256 and a cosine
scheduler. For ImageNet100, we use a LARS (61) optimizer with learning rate 0.02 ×

√
batch size

and cosine scheduler. In Kernel Decoupled Uniformity loss, we set λ = 0.01√
batch size

and t = 2. For
SimCLR, we set the temperature to τ = 0.07 for all datasets following (60). Unless mentioned
otherwise, we use 2 views for Decoupled Uniformity (both with and without kernel) and the com-
putational cost remains comparable with standard contrastive models.

Training epochs. By default, we train the models for 200 epochs, unless mentioned otherwise for
all vision data-sets excepted CUB200-2011 and UTZappos where we train them for 1000 epochs,
following (55) and ImageNet100 where we train them for 400 epochs. For medical brain MRI
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dataset, we perform pre-training for 50 epochs, as in (20). As for CheXpert, we train all models for
400 epochs.

Augmentations. We follow (10) to define our full set of data augmentations for vision datasets in-
cluding: RandomResizedCrop (uniform scale between 0.08 to 1), RandomHorizontalFlip and color
distorsion (including color jittering and gray-scale). For medical brain MRI dataset, we use cutout
covering 25% of the image in each direction (1/43 of the entire volume), following (20). For CheX-
pert, we follow (2) and we use RandomResizedCrop (uniform scale between 0.08 to 1), RandomHor-
izontalFlip, RandomRotation (up to 45 degrees) however we do not apply color jittering as we work
with gray-scale images.

D.4.1 GENERATIVE MODELS AND GLORIA

Architecture. For VAE, we use ResNet18 backbone with a completely symmetric decoder using
nearest-neighbor interpolation for up-sampling. For DCGAN, we follow the architecture described
in (48). We keep the original dimension for CIFAR-10 and CIFAR-100 datasets and we resize
the images to 64 × 64 for STL-10. For BigBiGAN (19), we use the ResNet50 pre-trained encoder
available at https://tfhub.dev/deepmind/bigbigan-resnet50/1 with BN+CReLU
features.

Training. For VAE, we use PyTorch-lightning pre-trained model for STL-10 3 and we optimize
VAE for CIFAR-10 and CIFAR-100 for 400 epochs using an initial learning rate 10−4 and SGD
optimizer with a cosine scheduler. For RandBits experiments, the VAE is trained with the same setup
as for CIFAR-10/100 on RandBits-CIFAR10. For DCGAN, we optimize it using Adam optimizer
(following (48)) and base learning rate 2 × 10−4. Importantly, all generative models are trained
without data augmentation, providing a fair comparison with other methods.

GloRIA(34) GloRIA can encode both image and text through 2 different encoders. It is pre-
trained on the official training set of CheXpert, as in our experiments. We use only GloRIA image’s
encoder (a ResNet18 in practice4) to obtain weak labels on CheXpert and we leverage this weak
labels with Kernel Decoupled Uniformity loss. In practice, we use an RBF kernel as in our previous
experiments.

D.4.2 LINEAR EVALUATION

For all experiments, we perform linear evaluation by encoding the original training set (without
augmentation) and by training a logistic regression on these features. We cross-validate an ℓ2 penalty
term between {0, 1e − 2, 1e − 3, 1e − 4, 1e − 5} for training this linear probe for 300 epochs with
an initial learning rate 0.1 decayed by 0.1 at each plateau.

E PROOFS

E.1 ESTIMATION ERROR WITH EMPIRICAL DECOUPLED UNIFORMITY

Property 1. L̂d
unif (f) fulfills |L̂d

unif (f)− Ld
unif (f)| ≤ O

(
1√
n

)
with a convergence in law.

PROOF. For any x ∈ X , since f(x) ∈ Sd−1, then ||µx̄|| = ||EA(x|x̄)f(x)|| ≤ EA(x|x̄)||f(x)|| = 1.

As a result, e−||µx̄−µx̄′ ||2 ∈ I
def
= [e−4, 1] for any x̄, x̄′ ∈ X̄ . Since log is k-Lipschitz on I then:

|L̂d
unif (f)− Ld

unif (f)| ≤ k

∣∣∣∣∣∣ 1

n(n− 1)

∑
i̸=j

e−||µx̄i
−µx̄j

||2 − Ep(x̄)p(x̄′)e
−||µx̄−µx̄′ ||2

∣∣∣∣∣∣
3https://github.com/PyTorchLightning/pytorch-lightning
4The official model is available here:https://github.com/marshuang80/gloria
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For a fixed x̄ ∈ X̄ , let gn(x̄) = 1
n

∑n
i=1 e

−||µx̄−µx̄i
||2 and g(x̄) = Ep(x̄′)e

−||µx̄−µx̄′ ||2 . Since

(Zi)i∈[1..n] =
(
e−||µx̄−µX̄i

||2 − g(x̄)
)
i∈[1..n]

are iid with bounded support in [−2, 2] and zero

mean then by Berry–Esseen theorem we have |gn(x̄) − g(x̄)| ≤ O( 1√
n
). Similarly, (Z ′

i)i∈[1..n] =(
gn(X̄i)− Ep(x̄)gn(x̄)

)
are iid, bounded in [−2, 2] and with zero mean. So | 1n

∑n
i=1 gn(x̄i) −

Ep(x̄)gn(x̄)| ≤ O( 1√
n
) by Berry–Esseen theorem. Then we have:

|L̂d
unif (f)− Ld

unif (f)| ≤ k| n

(n− 1)n

n∑
i=1

gn(x̄i)− Ep(x̄)g(x̄)|

≤ 2k| 1
n

n∑
i=1

gn(x̄i)− Ep(x̄)gn(x̄) + Ep(x̄)gn(x̄)− Ep(x̄)g(x̄)|

≤ O(
1√
n
) +O(

1√
n
) ≤ O(

1√
n
)

E.2 OPTIMALITY OF DECOUPLED UNIFORMITY

Theorem 1. (Optimality of Decoupled Uniformity) Given n points (x̄i)i∈[1..n] such that n ≤ d+1,
the optimal decoupled uniformity loss is reached when:

1. (Perfect uniformity) All centroids (µi)i∈[1..n] = (µx̄i
)i∈[1..n] make a regular simplex on

the hyper-sphere Sd−1

2. (Perfect alignment) f is perfectly aligned, i.e ∀x, x′ iid∼ A(·|x̄i), f(x) = f(x′)

PROOF. We will use Jensen’s inequality and basic algebra to show these 2 properties. By triangular
inequality, we have ||µi|| = ||Ex∼A(.|x̄i)f(x)|| ≤ E||f(x)|| = 1 since we assume f(x) ∈ Sd. So all
(µi) are bounded by 1.

Let µ = (µi)i∈[1..n]. We have:

Γ(µ) :=

n∑
i,j=1

||µi − µj ||2 =
∑
i,j

||µi||2 + ||µj ||2 − 2µi · µj

≤
∑
i,j

(2− 2µi · µj)

= 2n2 − 2||
∑
i

µi||2 ≤ 2n2

with equality if and only if
∑n

i=1 µi = 0 and ∀i ∈ [1..n], ||µi|| = 1. By strict convexity of u→ e−u,
we have: ∑

i ̸=j

exp(−||µi − µj ||2) ≥ n(n− 1) exp

(
− Γ(µ)

n(n− 1)

)

≥ n(n− 1) exp

(
− 2n

n− 1

)
with equality if and only if all pairwise distance ||µi − µj || are equal (equality case in Jensen’s
inequality for strict convex function),

∑n
i=1 µi = 0 and ||µi|| = 1. So all centroids must form a

regular n− 1-simplex inscribed on the hypersphere Sd−1 centered at 0.

Finally, since ||µi|| = 1 then we have equality in the Jensen’s inequality ||µi|| = ||EA(x|x̄i)f(x)|| ≤
EA(x|x̄i)||f(x)|| = 1. Since || · || is strictly convex on the hyper-sphere, then f must be constant on
suppA(·|x̄i), for all x̄i so f must be perfectly aligned.
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Theorem 5. (Asymptotical Optimality) When the number of samples is infinite n → ∞, then for
any perfectly aligned encoder f ∈ F that minimizes Ld

unif , the centroids µx̄ for x̄ ∼ p(x̄) are
uniformly distributed on the hypersphere Sd−1.

PROOF. Let f ∈ F perfectly aligned. Then all centroids µx̄ = f(x̄) lie on the hypersphere Sd−1

and we are optimizing:

argmin
f

Ld
unif (f) = argmin

f
E
x̄,x̄′iid∼ p(x̄)

e−||f(x̄)−f(x̄′)||2

So a direct application of Proposition 1. in (57) shows that the uniform distribution on Sd−1 is the
unique solution to this problem and that all centroids are uniformly distributed on the hyper-sphere.

E.3 OPTIMALITY OF SUPERVISED LOSS

Lemma 6. Let a downstream task D with C classes. We assume that C ≤ d + 1 (i.e., a big
enough representation space), that all classes are balanced and the realizability of an encoder f∗ =

argminf∈F Lsup(f) with Lsup(f) = logEy,y′∼p(y)p(y′)e
−||µy−µy′ ||2 , and µy = Ep(x̄|y)µx̄. Then

the optimal centroids (µ∗
y)y∈Y associated to f∗ make a regular simplex on the hypersphere Sd−1

and they are perfectly linearly separable, i.e min(wy)y∈Y∈Rd E(x̄,y)∼D1(wy · µ∗
y < 0) = 0.

PROOF. This proof is very similar to the one in Theorem 1. We first notice that all ”labelled”
centroids µy = Ep(x̄|y)µx̄ are bounded by 1 (||µy|| ≤ Ep(x̄|y)EA(x|x̄)||f(x)|| = 1 by Jensen’s
inequality applied twice). Then, since all classes are balanced, we can re-write the supervised loss
as:

Lsup(f) = log
1

C2

C∑
y,y′=1

e−||µy−µy′ ||2

We have:

ΓY(µ) :=

C∑
y,y′=1

||µy − µy′ ||2 =
∑
y,y′

||µy||2 + ||µy′ ||2 − 2µy · µy′

≤
∑
y,y′

(2− 2µy · µy′)

= 2C2 − 2||
∑
y

µy||2 ≤ 2C2

with equality if and only if
∑C

y=1 µy = 0 and ∀y ∈ [1..C], ||µy|| = 1. By strict convexity of
u→ e−u, we have: ∑

y ̸=y′

exp(−||µy − µy′ ||2) ≥ C(C − 1) exp

(
− ΓY(µ)

C(C − 1)

)

≥ C(C − 1) exp

(
− 2C

C − 1

)
with equality if and only if all pairwise distance ||µy − µy′ || are equal (equality case in Jensen’s
inequality for strict convex function),

∑C
y=1 µy = 0 and ||µy|| = 1. So all centroids must form

a regular C − 1-simplex inscribed on the hypersphere Sd−1 centered at 0. Furthermore, since
||µy|| = 1 then we have equality in the Jensen’s inequality ||µy|| = ||Ep(x̄|y)A(x|x̄)f(x)|| ≤
Ep(x̄|y)A(x|x̄)||f(x)|| = 1 so f must by perfectly aligned for all samples belonging to the same
class: ∀x̄, x̄′ ∼ p(·|y), f(x̄) = f(x̄′).
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E.4 GENERALIZATION BOUNDS FOR DECOUPLED UNIFORMITY

Theorem 7. (Guarantees for a given downstream task) For any f ∈ F and augmentation distribution
A, we have:

Ld
unif (f) ≤ L

sup
unif (f) ≤ 2

d∑
j=1

Var(µj
x̄|y)+Ld

unif (f) ≤ 4Ep(x̄|y)p(x̄′|y)||µx̄−µx̄′ ||+Ld
unif (f) (8)

where Var(µj
x̄|y) = Ep(x̄|y)(µ

j
x̄−Ep(x̄′|y)µ

j
x̄′)2 and µj

x̄ is the j-th component of µx̄ = EA(x|x̄)f(x).

PROOF.

Lower bound. To derive the lower bound, we apply Jensen’s inequality to convex function u →
e−u:

expLd
unif (f) = Ep(x̄)p(x̄′)e

−||µx̄−µx̄′ ||2

= Ep(x̄|y)p(x̄′|y)p(y)p(y′)e
−||µx̄−µx̄′ ||2

≤ Ep(y)p(y′) exp
(
−Ep(x̄|y)p(x̄′|y′)||µx̄ − µx̄′ ||2

)
Then, by Jensen’s inequality applied to ||.||2:

Ep(x̄|y)p(x̄′|y′)||µx̄ − µx̄′ ||2 (1)
= Ep(x̄|y)||µx̄||2 + Ep(x̄′|y′)||µx̄′ ||2 − 2µy · µy′

≥ ||Ep(x̄|y)µx̄||2 + ||Ep(x̄′|y′)µx̄′ ||2 − 2µy · µy′

(1)
= ||µy − µy′ ||2

(1) follows according to the previous lemma. So we can conclude:
expLd

unif (f) ≤ Ep(y)p(y′) exp(−||µy − µy′ ||2) = expLsup
unif

Upper bound. For this bound, we will use the following equality (by definition of variance):
||Ep(x̄|y)µx̄||2 = ||Ep(x̄|y)µx̄||2 − Ep(x̄|y)||µx̄||2 + Ep(x̄|y)||µx̄||2

= −
d∑

j=1

Var(µj
x̄|y) + Ep(x̄|y)||µx̄||2

So we start by expending:
||µy − µy′ ||2 = ||Ep(x̄′|y′)µx̄′ ||2 + ||Ep(x̄|y)µx̄||2 − 2Ep(x̄|y)p(x̄′|y′)µx̄ · µx̄′

= Ep(x̄|y)||µx̄||2 + Ep(x̄′|y′)||µx̄′ ||2 −

 d∑
j=1

Var(µj
x̄|y) + Var(µj

x̄′ |y)

− 2Ep(x̄|y)p(x̄′|y′)µx̄ · µx̄′

= Ep(x̄|y)p(x̄′|y′)||µx̄ − µx̄′ ||2 − 2

 d∑
j=1

Var(µj
x̄|y)


So by applying again Jensen’s inequality:

expLsup
unif = Ep(y)p(y′) exp(−||µy − µy′ ||2) ≤ Ep(y)p(y′) exp

−Ep(x̄|y)p(x̄′|y′)||µx̄ − µx̄′ ||2 + 2

 d∑
j=1

Var(µj
x̄|y)


≤ exp 2

 d∑
j=1

Var(µj
x̄|ym)

Ep(y)p(y′) exp
(
−Ep(x̄|y)p(x̄′|y′)||µx̄ − µx̄′ ||2

)

= exp 2

 d∑
j=1

Var(µj
x̄|ym)

 expLd
unif
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We set ym = argmaxi,y∈[1..d]×Y Var(µj
x̄|y) We conclude here by taking the log on the previous

inequality.

Variance upper bound. Starting from the definition of conditional variance:
d∑

j=1

Var(µj
x̄|ym) = Ep(x̄|ym)||µx̄||2 − ||Ep(x̄|ym)µx̄||2

= Ep(x̄|ym)

(
(||µx̄|| − ||Ep(x̄|ym)µx̄||)(||µx̄||+ ||Ep(x̄|ym)µx̄||)

)
(1)

≤ Ep(x̄|ym)||µx̄ − Ep(x̄′|ym)µx̄′ ||(||µx̄||+ ||Ep(x̄|ym)µx̄||)
(2)

≤ 2Ep(x̄|ym)||µx̄ − Ep(x̄′|ym)µx̄′ ||
(3)

≤ 2Ep(x̄|ym)p(x̄′|ym)||µx̄ − µx̄′ ||

(1) Follows from standard inequality ||a − b|| ≥ |||a|| − ||b||| (from Cauchy-Schwarz). (2) follows
from boundness of ||µx̄|| ≤ 1 and Jensen’s inequality. (3) is again Jensen’s inequality.

E.5 GENERALIZATION BOUND UNDER INTRA-CLASS CONNECTIVITY ASSUMPTION

Theorem 2. Assuming 1, then for any ϵ-weak aligned encoder f ∈ F :

Ld
unif (f) ≤ L

sup
unif (f) ≤ 8Dϵ+ Ld

unif (f) (9)

Where D is the maximum diameter of all intra-class graphs Gy (y ∈ Y).

PROOF. Let y ∈ Y and x̄, x̄′ ∼ p(x̄|y)p(x̄′|y). By Assumption 1, it exists a path of length p ≤ D
connecting (x̄, x̄′) in Gy . So it exists (x̄i)i∈[1..p+1] ∈ X̄ and (xi)i∈[1..p]∈X s.t ∀i ∈ [1..p], xi ∼
A(xi|x̄i) ∩ A(xi|x̄i+1), x̄1 = x̄ and x̄p+1 = x̄′. Then:

||µx̄ − µx̄′ || = ||µx̄1 − µx̄p ||

= ||
p∑

i=1

µx̄i+1 − µx̄i ||

≤
p∑

i=1

||µx̄i+1
− µx̄i

||

=

p∑
i=1

||µx̄i+1
− f(xi) + f(xi)− µx̄i

||

≤
p∑

i=1

||µx̄i+1 − f(xi)||+ ||f(xi)− µx̄i ||

(1)

≤
p∑

i=1

Ep(x|x̄i+1)||f(x)− f(xi)||+ Ep(x|x̄i)||f(xi)− f(x)||

(2)

≤
p∑

i=1

(ϵ+ ϵ) = 2ϵp ≤ 2ϵD

(1) follows from Jensen’s inequality and by definition of µx̄. (2) follows because f is ϵ-weak aligned
and xi ∼ A(xi|x̄i) ∩ A(xi|x̄i+1).

So we have ||µx̄ − µx̄′ || ≤ 2ϵD and we can conclude by Theorem 7 (right inequality).

E.6 CONDITIONAL MEAN EMBEDDING ESTIMATION

Let f ∈ F fixed.
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Theorem 3. (Conditional Mean Embedding estimation) We assume that ∀g ∈ HX ,Ep(x|·)g(x) ∈
HX̄ . Let {(x1, x̄1), ..., (xn, x̄n)} iid samples from p(x|x̄)p(x̄). Let Φn = [ϕ(x̄1), ..., ϕ(x̄n)] and
Ψf = [f(x1), ..., f(xn)]

T . An estimator of the conditional mean embedding is:

∀x̄ ∈ X̄ , µ̂x̄ =

n∑
i=1

αi(x̄)f(xi) (10)

where αi(x̄) =
∑n

j=1[(Φ
T
nΦn + λnIn)

−1]ij⟨ϕ(x̄j), ϕ(x̄)⟩HX̄
. It converges to µx̄ with the ℓ2 norm

at a rate O(n−1/4) for λ = O( 1√
n
).

PROOF. Let mx̄ = Ep(x|x̄)⟨f(x), f(·)⟩ ∈ HX be the conditional mean embedding operator. Ac-
cording to Theorem 6 in (52) and the assumption ∀g ∈ HX ,Ep(x|·)g(x) ∈ HX̄ , this estimator can
be approximated by:

m̂x̄ =

n∑
i=1

αi(x̄)⟨f(xi), f(·)⟩

with αi defined previously in the theorem. This estimator converges with RKHS norm to mx̄ at rate
O( 1√

nλ
+ λ). So we need to link mx̄, m̂x̄ with µx̄, µ̂x̄. We have:

⟨mx̄, m̂x̄⟩HX =

〈
Ep(x|x̄)⟨f(x), f(·)⟩Rd ,

n∑
i=1

αi(x̄)⟨f(xi), f(·)⟩Rd

〉
HX

=

n∑
i=1

αi(x̄)
〈
⟨Ep(x|x̄)f(x), f(·)⟩Rd , ⟨f(xi), f(·)⟩Rd

〉
HX

(1)
=

n∑
i=1

αi(x̄)⟨Ep(x|x̄)f(x), f(xi)⟩Rd

= ⟨µx̄, µ̂x̄⟩Rd

(1) holds by the reproducing property of kernel KX inHX . We can similarly obtain:

||mx̄||2HX
=

〈
Ep(x|x̄)⟨f(x), f(·)⟩Rd ,Ep(x|x̄)⟨f(x), f(·)⟩Rd

〉
HX

(1)
= ⟨Ep(x|x̄)f(x),Ep(x|x̄)f(x)⟩Rd

= ||Ep(x|x̄)f(x)||2 = ||µx̄||2

Again, (1) by reproducing property of KX . And finally:

||m̂x̄||2HX
=

〈
n∑

i=1

αi(x̄)⟨f(xi), f(·)⟩Rd ,

n∑
i=1

αi(x̄)⟨f(xi), f(·)⟩Rd

〉
HX

=
∑
i,j

αi(x̄)αj(x̄)⟨f(xi), f(xj)⟩Rd

= ||µ̂x̄||2Rd

By pooling these 3 equalities, we have:

||mx̄ − m̂x̄||2HX
= ||mx̄||2 + ||m̂x̄||2 − 2⟨mx̄, m̂x̄⟩
= ||µx̄||2 + ||µ̂x̄||2 − 2⟨µx̄, µ̂x̄⟩
= ||µx̄ − µ̂x̄||2Rd

We can conclude since ||mx̄ − m̂x̄|| ≤ O(λ+ (nλ)−1/2).
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E.7 GENERALIZATION BOUND UNDER EXTENDED INTRA-CLASS CONNECTIVITY
HYPOTHESIS

Theorem. Assuming 3 and 2 holds for a reproducible kernel KX̄ and augmentation distribution A.
Let f ∈ F ϵ′-aligned. Let (x̄i)i∈[1..n] be n samples iid drawn from p(x̄). We have:

Ld
unif (f) ≤ L

sup
unif (f) ≤ L

d
unif (f) + 4D(2ϵ′ + βn(KX̄ )ϵ) +O(n−1/4) (11)

where βn(KX̄ ) = (λmin(Kn)√
n

+
√
nλ)−1 = O(1) for λ = O( 1√

n
), Kn = (KX̄ (x̄i, x̄j))i,j∈[1..n]and

D is the maximal diameter for all G̃y , y ∈ Y . We noted λmin(Kn) is the minimal eigenvalue of
Kn.

PROOF. Let y ∈ Y and x̄, x̄′ ∼ p(x̄|y)p(x̄′|y). By Assumption 2, it exists a path of length
p ≤ D connecting x̄, x̄′ in G̃. So it exists (ūi)i∈[1..p+1] ∈ X̄ and (ui)i∈I ∈ X s.t ∀i ∈ I, ui ∼
A(ui|ūi) ∩ A(ui|ūi+1) and ∀j ∈ J,max(K(ūj , ūj),K(ūj+1, ūj+1)) − K(ūj , ūj+1) ≤ ϵ with
(I, J) a partition of [1..p]. Furthermore, ū1 = x̄ and ūp+1 = x̄′. As a result, we have:

||µx̄ − µx̄′ || = ||µū1
− µūp

||

= ||
p∑

i=1

µūi+1
− µūi

||

≤
p∑

i=1

||µūi+1
− µūi

||

=
∑
i∈I

||µūi+1 − µūi ||+
∑
j∈J

||µūj+1 − µūj ||

Edges in E. As in proof of Theorem 2, we use the ϵ′-alignment of f to derive a bound:∑
i∈I

||µūi+1
− µūi

|| =
∑
i∈I

||µūi+1
− f(ui) + f(ui)− µūi

||

≤
∑
i∈I

||µūi+1 − f(ui)||+ ||f(ui)− µūi ||

(1)

≤
∑
i∈I

Ep(u|ūi+1)||f(u)− f(ui)||+ Ep(u|ūi)||f(ui)− f(u)||

(2)

≤
∑
i∈I

(ϵ′ + ϵ′) = 2ϵ′|I|

(1) holds by Jensen’s inequality and (2) because f is ϵ′-aligned.

Edges in EK For this bound, we will use Theorem 3 to approximate µū and then derive a
bound from the property of Gϵ

K . Let (xk)k∈[1.n] ∼ p(xk|x̄k) n samples iid. By Theorem
3, we know that, for all j ∈ J , µ̂ūj

converges to µūj
with ℓ2 norm at rate O(n−1/4) where

µ̂ūj
=

∑n
k,l=1 αk,lKX̄ (x̄l, ūj)f(xk) and αk,l = [(Kn + nλIn)

−1]k,l. As a result, for any j ∈ J ,
we have:

||µūj+1 − µūj || = ||µūj+1 − µ̂ūj+1 + µ̂ūj+1 − µ̂ūj + µ̂ūj − µūj ||

≤ ||µūj+1
− µ̂ūj+1

||+ ||µ̂ūj+1
− µ̂ūj

||+ ||µ̂ūj
− µūj

||
(1)

≤ O

(
1

n1/4

)
+ ||µ̂ūj+1

− µ̂ūj
||

Where (1) holds by Theorem 3. Then we will need the following lemma to conclude:
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Lemma. For any a, b, c ∈ X̄ ,max(K(a, a),K(b, b)) − K(a, b) ≥ |K(a, c) − K(b, c)| for any
reproducible kernel K.

PROOF. Let a, b, c ∈ X̄ . We consider the distance d(x, y) = K(x, x) +K(y, y)− 2K(x, y) (it is a
distance since K is a reproducible kernel so it can be expressed as K(·, ·) = ⟨ϕ(·), ϕ(·)⟩). We will
distinguish two cases.

Case 1. We assume K(a, c) ≥ K(b, c). We have the following triangular inequality:

d(a, b) + d(a, c) ≥ d(b, c)

=⇒ K(a, b) +K(b, b)− 2K(a, b) +K(a, a) +K(c, c)− 2K(a, c) ≥ K(b, b) +K(c, c)− 2K(b, c)

=⇒ K(a, a)−K(a, b) ≥ K(a, c)−K(b, c) ≥ 0

So max(K(a, a),K(b, b))−K(a, b) ≥ |K(a, c)−K(b, c)|.

Case 2. We assume K(b, c) ≥ K(a, c). We apply symmetrically the triangular inequality:

d(a, b) + d(b, c) ≥ d(a, c)

=⇒ K(b, b)−K(a, b) ≥ K(b, c)−K(a, c) ≥ 0

So max(K(a, a),K(b, b))−K(a, b) ≥ |K(a, c)−K(b, c)|, concluding the proof.

Then, by definition of µ̂ūj
:

||µ̂ūj+1 − µ̂ūj || = ||
n∑

k,l=1

αk,lK(x̄l, ūj+1)f(xk)−
n∑

k,l=1

αk,lK(x̄l, ūj)f(xk)||

= ||AC||

Where A = (
∑n

k=1 αkjf(xk)
i)i,j ∈ Rd×n (f(·)i is the i-th component of f(·)) and C =

(K(x̄l, ūj+1)−K(x̄l, ūj))l ∈ Rn×1. So, using the property of spectral ℓ2 norm we have:

||µ̂ūj+1 − µ̂ūj || = ||AC|| ≤ ||A||2||C||2

Using the previous lemma and because (ūj , ūj+1) ∈ EK , we have: ||C||22 =
∑n

i=1(K(x̄i, ūj+1)−
K(x̄i, ūj))

2 ≤
∑n

i=1(max(K(ūj+1, ūj+1),K(ūj , ūj))−K(ūj , ūj+1))
2 ≤ nϵ2 . To conclude, we

will prove that ||A||2 ≤ ||α||2 where α = (αij)i,j∈[1..n]2 . For any v ∈ Rn, we have:

||Av||2 = ||
n∑

k,j=1

αk,jvjf(xk)||2
(1)

≤

 n∑
k,j=1

αk,jvj

2

= ||αv||2
(2)

≤ ||α||22||v||2

Where (1) holds with Cauchy-Schwarz inequality and because f(·) ∈ Sd−1 and (2) holds by defini-
tion of spectral ℓ2 norm. So we have ∀v ∈ Rd, ||Av|| ≤ ||α||2||v||, showing that ||A||2 ≤ ||α||2.

So we can conclude that:∑
j∈J

||µūj+1
− µūj

|| ≤
∑
j∈J

(√
n||(Kn + λnIn)

−1||2ϵ+O(n−1/4)
)
= |J |||(Kn + nλIn)

−1||2
√
nϵ+O(n−1/4)

We set βn(Kn) =
√
n||(Kn + λnIn)

−1||2. In order to see that βn(Kn) = (λmin(Kn)√
n

+
√
nλ)−1

with λmin(Kn) > 0 the minimum eigenvalue of Kn, we apply the spectral theorem on the sym-
metric definite-positive kernel matrix Kn. Let 0 < λ1 ≤ λ2 ≤ ... ≤ λn the eigenvalues of Kn.
According to the spectral theorem, it exists U an unitary matrix such that Kn = UDUT with
D = diag(λ1, ..., λn). So, by definition of spectral norm:

||(Kn + nλIn)
−1||22 = λmax

(
U(D + nλIn)

−1UTU(D + λnIn)
−1UT

)
= λmax(UD̃UT )

= (λ1 + nλ)−2
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where D̃ = diag( 1
(λ1+nλ)2 , ...,

1
(λn+nλ)2 ). So we can conclude that βn(Kn) = ( λ1√

n
+
√
nλ)−1 =

O(1) for λ = O( 1√
n
).

Finally, by pooling inequalities for edges over E and EK , we have:

||µx̄ − µx̄′ || ≤ 2ϵ′|I|+ |J |βn(Kn)ϵ+O(n−1/4) ≤ D(2ϵ′ + βn(Kn)ϵ) +O(n−1/4)

We can conclude by plugging this inequality in Theorem 7.
Theorem 4. We assume 2 and 3 hold for a reproducible kernel KX̄ and augmentation distribu-
tion A. Let (xi, x̄i)i∈[1..n] ∼ A(xi, x̄i) iid samples. Let µ̂x̄j

=
∑n

i=1 αi,jf(xi) with αi,j =

((Kn + λIn)
−1Kn)ij and Kn = [KX̄ (x̄i, x̄j)]i,j∈[1..n]. Then the empirical decoupled uniformity

loss L̂d
unif

def
= log 1

n(n−1)

∑n
i,j=1 exp(−||µ̂x̄i

− µ̂x̄j
||2) verifies, for any ϵ′-weak aligned encoder

f ∈ F :

L̂d
unif −O

(
1

n1/4

)
≤ Lsup

unif (f) ≤ L̂
d
unif + 4D(2ϵ′ + βn(KX̄ )ϵ) +O

(
1

n1/4

)
(12)

PROOF. We just need to prove that, for any f ∈ F , |Ld
unif (f) − L̂d

unif (f)| ≤ O(n−1/4) and we
can conclude through the previous theorem. We have:

|Ld
unif (f)− L̂d

unif (f)| =

∣∣∣∣∣∣log 1

n(n− 1)

n∑
i,j=1

exp(−||µ̂x̄i − µ̂x̄j ||2)− Ep(x̄)p(x̄′)e
−||µx̄−µx̄′ ||2

∣∣∣∣∣∣
≤

∣∣∣∣∣∣log 1

n(n− 1)

n∑
i,j=1

exp(−||µ̂x̄i
− µ̂x̄j

||2)− log
1

n(n− 1)
e−||µx̄i

−µx̄j
||2

∣∣∣∣∣∣
+

∣∣∣∣log 1

n(n− 1)
e−||µx̄i

−µx̄j
||2 − Ep(x̄)p(x̄′)e

−||µx̄−µx̄′ ||2
∣∣∣∣

The second term in last inequality is bounded by O( 1√
n
) according to property 1. As for the first

term, we use the fact that log is k-Lipschitz continuous on [e−4, 1] and exp is k′-Lipschitz continu-
ous on [−4, 0] so:∣∣∣∣∣∣log 1

n(n− 1)

n∑
i,j=1

e−||µ̂x̄i
−µ̂x̄j

||2 − log
1

n(n− 1)
e−||µx̄i

−µx̄j
||2

∣∣∣∣∣∣ ≤ k

n(n− 1)

∣∣∣∣∣∣
n∑

i,j=1

e−||µ̂x̄i
−µ̂x̄j

||2 − e−||µx̄i
−µx̄j

||2

∣∣∣∣∣∣
≤ kk′

n(n− 1)

∣∣∣∣∣∣
n∑

i,j=1

||µ̂x̄i
− µ̂x̄j

||2 − ||µx̄i
− µx̄j

||2
∣∣∣∣∣∣

Finally, we conclude using the boundness of µ̂x̄ and µx̄ by a constant C:

||µ̂x̄i − µ̂x̄j ||2 − ||µx̄i − µx̄j ||2 = (||µ̂x̄i − µ̂x̄j ||+ ||µx̄i − µx̄j ||)(||µ̂x̄i − µ̂x̄j || − ||µx̄i − µx̄j ||)
≤ 4C(||µ̂x̄i

− µ̂x̄j
|| − ||µx̄i

− µx̄j
||)

≤ 4C||µ̂x̄i − µ̂x̄j − (µx̄i − µx̄j )||
≤ 4C(||µ̂x̄i

− µx̄i
||+ ||µ̂x̄j

− µx̄j
||)

= O

(
1

n−1/4

)
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