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Abstract

Modern face recognition systems use deep convolution neural networks to extract1

latent embeddings from face images. Since basic arithmetic operations on embed-2

dings are needed to make comparisons, generic encryption schemes cannot be used.3

This leaves facial embedding unprotected and susceptible to privacy attacks that4

reconstruction facial identity. We propose a search algorithm on the latent vector5

space of StyleGAN [7] to find a matching face. Our process yields latent vectors6

that generate face images that are high-resolution, realistic, and reconstruct relevant7

attributes of the original face. Further, we demonstrate that our process is capable8

of fooling FaceNet [11], a state-of-the-art face recognition system.9

1 Introduction10
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Figure 1: Reconstructing a target face
with pre-generated initialization and sim-
ulated annealing on an example from the
FFHQ data set. The path shows the pro-
gression of the search algorithm in the
hyper-spherical embedding space as it
finds a close match. For the purposes of
visualization, we project the embeddings
to a 3D spherical representation.

Biometric authentication systems (i.e. face recognition)11

are extensively used for security. Such systems generate12

a template from a biometric data sample and compare it13

against a master template to provide authentication. These14

templates are often generated by incomprehensible black-15

box models, previously thought to be impossible to mean-16

ingfully deconstruct [5]. Nevertheless, recent works have17

succeeded in performing privacy attacks which extract soft18

biometric attributes or even full reconstructions from face19

embeddings [4, 14, 2, 3, 8].20

Reconstruction of face embeddings poses a major secu-21

rity risk from privacy attacks. Malicious attackers may22

access a database of embeddings and estimate a user’s23

facial image or extract soft biometric attributes. The use of24

cryptographic methods to encrypt face embedding has not25

found much traction in the biometrics and pattern recogni-26

tion community [2]. Generic encryption schemes such as27

one-way hashes are inherently incapable of supporting ba-28

sic arithmetic operations in the encrypted domain, which29

is necessary for template matching [10]. Homomorphic30

encryption methods allow basic arithmetic operations over31

encrypted data, enabling encryption of face embeddings [2].32

Previous works have demonstrated successful privacy attacks that fool face recognition systems33

with facial image reconstructions [4, 3]. However, the reconstructions are generally low-quality and34

would not convince a real human. Moreover, these methods would not work on homomorphically35

encrypted data. We propose a method which creates reconstruction face images that not only fool36

face recognition systems, but are also life-like and highly detailed. Our method does not require37

gradient information or white box access, which are unavailable for homomorphically encrypted data.38
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Figure 2: For 10 target images from the FFHQ data set, we display the reconstructed faces achieved
by each of the four parameter settings: a) no pre-generation and greedy, b) pre-generation and greedy,
c) no pre-generation and simulated annealing, d) pre-generation and simulated annealing.

1.1 Related work39

The problem of recreating a face from its face embedding has drawn interest from the community.40

Direct synthesis Zhmoginov et. al. [14] invert the FaceNet embedding of a face image using a41

guiding image to create a reconstruction capturing important identity features of the original face.42

Cole et al. [3] propose an autoencoder structure to map the features to a frontal, neutral-expression43

image of the subject. Yang et al. [13] train a second neural network for the model inversion task.44

These approaches require white-box access to the face recognition model to produce better quality45

results. Working in the black-box setting assumption, Mai et al. [9] propose a de-convolutional46

network framework to reconstruct face images without knowledge of the face recognition network.47

Template Reconstruction with GANs Generative adversarial networks (GANs) have shown stun-48

ning results in generating convincing images [6]. StyleGAN [7], a style-based GAN, is able to49

generate high quality, artificial face images which are almost impossible to tell apart from real images.50

Recently Abdal et al. [1] demonstrated that it is possible to accurately embed arbitrary images onto51

the StyleGAN latent space. This suggests for any face embedding, it should be possible to find a52

StyleGAN latent vector whose corresponding face image has a nearly identical embedding. Li et al.53

[8] were the first to attempt this by iteratively improvement on a latent vector guess by adding random54

noise and greedily improving the guess based on the FaceNet embedding distance to the target. More55

recently, Duong et al. [4] propose a GAN-based system to reconstruct faces using metric learning56

methods. These methods reconstruct faces to fool some face recognition system, but the generated57

face images are generally low-quality and would not fool a human.58

FaceNet FaceNet [11] is one of the most popular face recognition systems, using a deep CNN59

to map images onto a embedding space where squared L2 distances directly correspond to face60

similarity. For two embeddings E1, E2, this face distance metric is defined as61

D(E1, E2) = ‖E1 − E2‖22
with a classification threshold of 0.6, commonly set for implementations of FaceNet. Since output62

embeddings are normalized to magnitude 1, the embeddings are constrained to a d-dimensional63

hypersphere. Figure 1 shows a representation of the hyperspherical FaceNet embedding space as our64

reconstructed face image’s identity iteratively approaches a target.65

2 Methods66

We propose the use of greedy random optimization within the latent space of StyleGAN to generated67

an image whose FaceNet embedding closely matches a target embedding, measured by the FaceNet68
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distance metric. Starting with the zero vector, we repeatedly generate a new guess by adding small69

random noise and running the resulting vectors through the generator and FaceNet. We set a new70

guess to our current ‘best’ vector if it improves upon the previous ‘best’. By decreasing the standard71

deviation of the input noise, we converge on a solution. We assess guesses via the FaceNet distance72

metric by comparing them to the target embedding.73

Algorithm 1 Face Reconstruction
1: Paremeters: γ ∈ [0, 1], standard deviation de-

cay rate
2: Options: pregen ∈ {T, F} , anneal ∈ {T, F}
3: Initialization:

4: xbest =

{
~0 , if pregen = F
Closest(E) , if pregen = T

5: for t← 1, n do

6: T =

{
1 , if anneal = F
1− (t+ 1)/n , if anneal = T

7: x← xbest +N (0, γt)

8: d = D(f(G(x)), E)−D(f(G(xbest)), E)

9: if dE < 0 or e−d/T < random(0) then
10: xbest ← x

11: end if
12: end for
13: return xbest

We also aim to improve upon greedy random74

optimization by optimizing using simulated75

annealing [12] to find an even closer match.76

Simulated annealing will, with a probability77

depending on the difference between the loss78

of the current vector and new guess, accept79

a guess that is worse than the current vector80

in order to encourage exploration and ‘hill81

climbing’ over local minima. In Algorithm 182

we display the pseudocode for both of these83

optimization methods, where we denote Style-84

GAN as G and FaceNet as f .85

To improve optimization speed, at each itera-86

tion we sample a batch of multiple faces and87

choose the best face as the guess based on the88

FaceNet distance metric.89

In order seed the search algorithm with an ini-90

tial guess, we pre-generate a set of 160, 00091

standard normal latent vectors. We run92

each vector through StyleGAN followed by93

FaceNet to produce a face embedding for each94

latent vector, and store both the latent and95

embedding vectors. Then, given a face embed-96

ding E, we can directly identify the latent vector x whose face embedding most closely matches the97

target face embedding E. Rather than initializing the search algorithm with the zero vector, we can98

initialize with the best identified latent vector from the pre-generated set.99

Since initial stages of the search involve a long and expensive search over randomly-generated latent100

vectors, we can significantly speed up this initial search by pre-generating pairs of latent vectors101

and the corresponding FaceNet embeddings created by generating an image, aligning, normalizing,102

then running the result through FaceNet. Using these generated pairs, it is very fast to determine the103

closest embedding vector to a target embedding, and find the corresponding latent vector used to104

generate it. Then the rest of the search proceeds from there.105

3 Experiments106

We use images from the Flickr-Faces-HQ (FFHQ) data set [7]. FFHQ provides ≈ 70K high-quality107

face images of real people at 1024×1024 resolution with variation in age, ethnicity, image background,108

and accessories (e.g. eye-wear). These images come from Flickr, and are made publicly available109

under the Creative Commons BY-NC-SA 4.0 license by NVIDIA Corporation. We use a subset of 20110

target images for our reconstruction algorithm, chosen at random. For each algorithm setting, we run111

optimization for 200 iterations with a batch size of 8. At each step, the noise standard deviation is112

multiplied by a factor of 0.98. We run all experiments on a Tesla P4 GPU on AWS. Reconstructing a113

face image from a template takes around 5 minutes.114

3.1 Results115

We run reconstruction on a set of 20 target images from the FFHQ data set under each of the four116

parameter settings. In Figure 2, we display ten of the target images, along with the reconstructed faces117

produced for each parameter setting. We see a significant visual improvement from the reconstructions118

produced using, simulated annealing, especially with the help of our pre-generated set, and in many119
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of the faces the reconstructed face appears to closely match the target facial identity. Notably, the120

reconstructions are generally able to identify facial features such as hair color, eye color, and eye-wear.121

anneal pregen L2 Distance Cosine Distance Avg. # Updates
7 7 0.653 ± 0.110 0.213 ± 0.037 19.9
7 3 0.694 ± 0.132 0.231 ± 0.051 7.2
3 7 0.512 ± 0.077 0.165 ± 0.025 25.7
3 3 0.485 ± 0.081 0.156 ± 0.027 23.3

Table 1: Reconstruction quality for 20 faces from the FFHQ data set. We report mean and standard
deviation (mean ± std) for L2 distance and cosine distance with each parameter setting. We also
report the number of times the candidate xbest was improved upon by a new guess, which we expect
to indicate the level of exploration done during optimization.

Target

Ours

Zhmoginov et al.Li et al.

Theirs

Figure 3: Visual comparison between our method
and two previous facial reconstruction methods, Li
et al. [8] and Zhmoginov et al. [14]. We note that
in Zhmoginov et al., the authors assume white-box
access to the facial embedding network and use a
guiding image of a generic face for reconstruction.

Table 3.1 displays the average L2 and cosine122

distance between the target face and the recon-123

structed face for each parameter setting, over the124

20 target faces. Annealing and pre-generation125

offer an improvement by each metric, but suf-126

fers in the case of greedy optimization. Note127

that when using simulated annealing, the aver-128

age L2 distance falls below the 0.6 threshold,129

fooling FaceNet. This can be explained by the130

last column of the table, which shows that in131

the greedy and pre-generated case, the optimiza-132

tion stopped after very few updates, likely sug-133

gesting that the procedure got ‘stuck’ at a local134

minimum near the pre-generated face.135

3.2 Comparison136

Next, we qualitatively compare our face recon-137

structions to results achieved in Li et al. [8] and138

Zhmoginov et al. [14]. In Figure 3, we display139

the target images, along with our reconstructions140

and those of the previous methods. Our reconstruction is more life-like in each case. Compared to141

Li et al., our synthesized images are higher resolution and appear to more closely preserve identity.142

While our images are clearer than those from Zhmoginov et al., their method picks up more fine-143

grained details of the target face. However, we note that in Zhmoginov et al., the authors assume144

white-box access to the facial embedding network and use a guiding image of a generic face for145

reconstruction, whereas we use a black-box method.146

4 Conclusion/Future Work147

We presented a method to reconstruct a person’s facial identity using a face embedding generated by148

a facial recognition system. Our method produces reconstructed facial images which not only fool149

face recognition systems, but are also convincingly real to humans. The results of this work suggest150

the need for further review and study of facial embedding encryption systems. The code used for this151

project will be made available at https://github.com/evendrow/face-reconstruction.152
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Checklist188

1. For all authors...189

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s190

contributions and scope? [Yes] As we suggest, our method is able to produce life-191

like reconstructions of a target. See Figure 2 for a visualization and Figure 3 for a192

comparison to previous works.193

(b) Did you describe the limitations of your work? [Yes] We describe the limitations of194

our experiments, specifically that we only apply our method to a small subset of the195

FFHQ data set.196

(c) Did you discuss any potential negative societal impacts of your work? [Yes] Yes, We197

describe how our method and similar ones can be used by attacks to obtain personal198

identity information from users of biometric authentication systems.199

(d) Have you read the ethics review guidelines and ensured that your paper conforms to200

them? [Yes]201

2. If you are including theoretical results...202

(a) Did you state the full set of assumptions of all theoretical results? [N/A]203

(b) Did you include complete proofs of all theoretical results? [N/A]204
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3. If you ran experiments...205

(a) Did you include the code, data, and instructions needed to reproduce the main experi-206

mental results (either in the supplemental material or as a URL)? [Yes] A URL to the207

accompanying github repository is included.208

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they209

were chosen)? [Yes] Experimental details are provided in Section 3.210

(c) Did you report error bars (e.g., with respect to the random seed after running exper-211

iments multiple times)? [Yes] Table 3.1 provides standard error for face embedding212

distance.213

(d) Did you include the total amount of compute and the type of resources used (e.g., type214

of GPUs, internal cluster, or cloud provider)? [Yes] Information is provided in the215

Experiments section.216

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...217

(a) If your work uses existing assets, did you cite the creators? [Yes] We cite StyleGAN,218

FaceNet, and FFHQ.219

(b) Did you mention the license of the assets? [Yes] We state the license for FFHQ 3.220

(c) Did you include any new assets either in the supplemenmaterial or as a URL? [Yes] A221

URL to the accompanying github repository is provided222

(d) Did you discuss whether and how consent was obtained from people whose data you’re223

using/curating? [Yes] We state that the images we use are publicly available in 3.224

(e) Did you discuss whether the data you are using/curating contains personally identifiable225

information or offensive content? [Yes] Yes, we mention in 3 that these images come226

from real people.227

5. If you used crowdsourcing or conducted research with human subjects...228

(a) Did you include the full text of instructions given to participants and screenshots, if229

applicable? [N/A]230

(b) Did you describe any potential participant risks, with links to Institutional Review231

Board (IRB) approvals, if applicable? [N/A]232

(c) Did you include the estimated hourly wage paid to participants and the total amount233

spent on participant compensation? [N/A]234
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