
Parameter-Efficient Fine-Tuning: Is There An Optimal Subset of
Parameters to Tune?

Anonymous ACL submission

Abstract

The ever-growing size of pretrained language001
models (PLM) presents a significant challenge002
for efficiently fine-tuning and deploying these003
models for diverse sets of tasks within memory-004
constrained environments. In light of this, re-005
cent research has illuminated the possibility006
of selectively updating only a small subset of007
a model’s parameters during the fine-tuning008
process. Since no new parameters or modules009
are added, these methods retain the inference010
speed of the original model and come at no011
additional computational cost. However, an012
open question pertains to which subset of pa-013
rameters should best be tuned to maximize task014
performance and generalizability. To investi-015
gate, this paper presents comprehensive experi-016
ments covering a large spectrum of subset se-017
lection strategies. We comparatively evaluate018
their impact on model performance as well as019
the resulting model’s capability to generalize020
to different tasks. Surprisingly, we find that021
the gains achieved in performance by elaborate022
selection strategies are, at best, marginal when023
compared to the outcomes obtained by tuning024
a random selection of parameter subsets. Our025
experiments also indicate that selection-based026
tuning impairs generalizability to new tasks.027

1 Introduction028

In recent years, the number of parameters used in029

language models has risen much faster than the030

memory available in GPUs (Lialin et al., 2023).031

Attaining the ability to efficiently fine-tune such032

large models on the available hardware necessitates033

methods that reduce the memory footprint. Addi-034

tionally, a single pretrained model is often adapted035

to a wide range of tasks. The storage requirements036

for such a collection of model versions can be sig-037

nificantly reduced if the difference between these038

models can be represented in a compact way.039

Parameter-efficient fine-tuning techniques040

(PEFT) aim to reduce the number of parameters041

Weight Bias

(a) BitFit

Weight Bias

(b) Random subset

Figure 1: Only a small subset of the parameters (marked
with red circles in this illustration) is used during train-
ing; the others are frozen. The BitFit approach tunes
only the bias weights, while other approaches select a
tuneable subset from all model parameters.

that need to be stored and fine-tuned while 042

maintaining a performance that is comparable to 043

the training of the complete model. One of the 044

most popular classes of these methods is referred to 045

as selective parameter-efficient fine-tuning (Lialin 046

et al., 2023). Here, a subset of the parameters 047

is selected for PEFT, keeping the remaining 048

parameters frozen during training. We illustrate 049

this intuition in Figure 1 for a single weight matrix 050

and bias vector in which most parameters are 051

frozen and only a small subset kept unfrozen for 052

optimization. 053

Since only a few parameters are fine-tuned, the 054

sparse difference between the adapted and the pre- 055

trained model can be stored in a compact way (Za- 056

ken et al., 2022; Guo et al., 2021). The same applies 057

to gradient statistics that are stored for optimiza- 058

tion. Reducing the required memory frees up space 059

for the use of larger batches and therefore speeds 060

up training. However, an open question pertains to 061

which subset of parameters should best be tuned to 062

maximize task performance and generalizability. 063

Contributions. In this paper, we investigate sev- 064

eral theoretical questions that have been raised in 065

the context of selective PEFT methods and the 066

1

lottery ticket hypothesis for pretrained (language)067

models (Gong et al., 2022; Zheng et al., 2022). Our068

aim is to explore if an optimal subset for tuning069

exists and how subset tuning affects generalizabil-070

ity of the model. In more detail, we examine the071

following questions:072

• We comparatively evaluate a broad range of073

approaches for identifying the ideal subset of074

parameters to tune. Our analysis considers075

the size of the subset and the computational076

costs for its identification. For instance, it has077

been shown that an effective subset can be078

obtained through an initial fine-tuning step of079

the complete model (potentially incorporating080

some form of regularization), followed by the081

selection of parameters exhibiting the largest082

magnitude of change (Guo et al., 2021; Xu083

et al., 2021). This, however, still requires a084

costly full fine-tuning step. Hence, the possi-085

bility of identifying a promising subset with-086

out an initial fine-tuning step would be benefi-087

cial (Prasanna et al., 2020; Gong et al., 2022).088

Figure 1 illustrates two such strategies.089

• We analyze how sparse fine-tuning affects the090

generalizability of the resulting network. This091

is motivated by Zaken et al. (2022)’s obser-092

vation that their parameter-efficient method093

"Bitfit" generalizes better: They report that094

the gap between the train and test score is095

substantially smaller compared to a full fine-096

tuning of the model.097

To address these questions, we systematically098

conduct experiments using a large number of sub-099

set sizes and various subset selection strategies.100

We conduct a comprehensive grid search over hy-101

perparameters to identify optimal training parame-102

ters for each selection strategy. We compare these103

hyperparameter-optimized subset selection strate-104

gies to full fine-tuning (including the use of regu-105

larization), as well as an additional (non-selective)106

parameter-efficient fine-tuning technique, which re-107

cently gained a lot of popularity: Low-Rank Adap-108

tion (Hu et al., 2021, LoRA).109

We make a number of observations in our ex-110

periments: First, the differences between different111

subset selection methods are marginal when hy-112

perparameters are properly optimized, and do not113

significantly outperform even a random subset se-114

lection baseline. Second, subset-tuning methods115

tend to modify embedding networks significantly116

more since they are limited to a small number of 117

parameters and hence need to make a more drastic 118

changes. The prior function of the network which 119

can exhibit a certain degree of general language 120

capabilities can be more affected by these local but 121

more drastic changes. 122

2 Background 123

Our work is informed by two lines of research: 124

Selective parameter-efficient fine-tuning and the 125

lottery ticket hypothesis for pretrained language 126

models. In the remainder of this section, we discuss 127

aspects of these two areas that are relevant to the 128

work we present in this paper. 129

2.1 Selective Parameter-Efficient Fine-Tuning 130

Parameter-efficient fine-tuning (PEFT) methods re- 131

duce the number of parameters that are tuned in a 132

model. The benefits of this are twofold: (1) The 133

cost of storage for each task-specific adaption is 134

smaller and (2) the memory used during fine-tun- 135

ing is reduced. For example, Adam(W) (Kingma 136

and Ba, 2017; Loshchilov and Hutter, 2019), a 137

commonly used optimizer for fine-tuning language 138

models, not only stores the current gradient for 139

each parameter, but additionally estimates of two 140

lower-order moments. When using PEFT methods, 141

the weights of the model still need to be kept in 142

memory. Still, since fewer parameters are tuned, 143

a much smaller number of estimates needs to be 144

stored, significantly freeing up space for processing 145

a larger number of samples per batch and hence 146

speeding up training overall. 147

Lialin et al. (2023) arrange a large variety of 148

PEFT methods into a comprehensive taxonomy 149

and identify three major classes: Additive (which 150

includes adapters and soft prompts), Selective, and 151

Reparametrization-based approaches. In selection- 152

based approaches, only a certain subset of the pa- 153

rameters is tuned while other parameters which are 154

not part of the set remain frozen. 155

Heuristically Motivated Subsets 156

Zaken et al. (2022) offer a particularly simple vari- 157

ant: In BitFit, only the bias terms (or in a variation 158

of this approach, only certain bias terms) are tuned. 159

This removes the need to compute and handle pa- 160

rameter masks. Qi et al. (2022) propose LN-tuning 161

(tuning only the LayerNorm modules) and suggest 162

combining this with other methods (such as prefix 163

tuning). 164

2

Empirical Fisher Information165

Sung et al. (2021) attempt to determine the subset166

by a less heuristics-based approach and instead pro-167

pose to use the empirical Fisher information of the168

network parameters to determine each parameter’s169

importance (compare with Kirkpatrick et al., 2017).170

The Fisher information estimates the impact of a171

parameter on the model’s prediction. Since the172

Fisher information matrix is intractable to compute,173

a common approximation is to only use the diago-174

nal and approximate the sample distribution with175

the available N samples x1, ..., xN . The estimated176

Fisher information F̂θ of each parameter can then177

be expressed as:178

F̂θ =
1

N

N∑
i=0

Ey∼pθ(y|xi) (∇θ log pθ(y|xi))2 (1)179

In cases where many classes are available, calcu-180

lating the expected value requires a large number of181

backward passes. Hence, it is common to simplify182

this using the "empirical Fisher" F̃θ which can be183

derived by replacing the expected value with the184

observed label yi of each sample. 1185

F̃θ =
1

N

N∑
i=0

(∇θ log pθ(yi|xi))2 (2)186

To retrieve a fine-tuning mask, the k parameters187

with the respective largest values are selected. All188

other parameters will remain frozen.189

Using a fine-tuning mask trades off simplicity190

for a more theoretically substantiated method for191

determining the subset to be fine-tuned.192

2.2 Lottery Ticket Hypothesis193

A different line of research tests the lottery ticket194

hypothesis (Frankle and Carbin, 2019) for pre-195

trained language models. The lottery ticket hy-196

pothesis states that the performance of a randomly197

initialized dense neural network can be matched198

by only training a certain subnetwork (i.e. only a199

subset of the parameters). Typically, these subsets200

can only be found by training the complete net-201

work and pruning connections iteratively (Frankle202

and Carbin, 2019; Zhou et al., 2020; Chen et al.,203

2021). More recent literature has tried to trans-204

late these findings to pretrained language models205

(Chen et al., 2020; Zheng et al., 2022; Liang et al.,206

1Note that the result is identical to the sum of the squared
gradients of the cross-entropy loss over a given dataset.

2021; Gong et al., 2022). Recent research seems 207

to suggest that it might be feasible to find suitable 208

subnetworks without prior training (and pruning) 209

since the weights are no longer random (Sung et al., 210

2021; Prasanna et al., 2020). 211

While the lottery ticket hypothesis typically in- 212

duces a different perspective, there are important 213

ties between this line of research and parameter- 214

efficient fine-tuning. The ability to find transferable 215

(or general) true (in the sense of perfectly matching 216

performance) "winning lottery tickets" would have 217

considerable implications for parameter-efficient 218

fine-tuning. Vice-versa, well-working methods to 219

select subsets to be fine-tuned might reveal infor- 220

mation about winning lottery tickets in general. 221

3 Subset Selection and Downstream Task 222

Performance 223

In this first series of experiments, we aim to investi- 224

gate the impact of the subset selection strategy and 225

the subset size on the performance of the embed- 226

ding network on a downstream task. Each configu- 227

ration is evaluated with respect to the performance 228

on each of the four downstream tasks. We first 229

describe the used selection strategies and the ex- 230

perimental setup, before discussing the observed 231

impact of these two variables. 232

3.1 Subset Selection Strategies 233

We compare a number of different selection strate- 234

gies. Some of the strategies are task-independent 235

while others rely on the task’s training data to se- 236

lect the parameters to be tuned. As a baseline, we 237

include a random selection of parameters 238

One of the simplest strategies is BitFit (Zaken 239

et al., 2022). Here, all bias terms are selected for 240

tuning while all other parameters remain frozen 241

(see Figure 1). The tuned portion depends on the 242

model’s architecture and is not flexible. The au- 243

thors offer a second variant that uses only some 244

of the bias terms. However, we exclude this sec- 245

ond variant from our analysis since we compare 246

subset selections of similar size. Where not noted 247

differently, we use the resulting portion of active 248

parameters as target portion for the other methods. 249

In Diff pruning (Guo et al., 2021), the model is 250

fine-tuned completely (with some regularization) 251

before pruning away the smallest differences to 252

the pretrained model. The pruned weights are not 253

set to zero but to their original value. We test two 254

variants (using L1 instead of L0-regularization): 255

3

One where we prune without re-training and one256

where we prune with retraining the remaining257

weights (initialized with the pretrained parameters).258

We only prune and re-train a single time to mimic259

the other subset methods as closely as possible (i.e.260

using a pre-computed mask for a single training261

run). The first variant cannot be considered a subset262

tuning method. The second does include a subset263

tuning step, but still requires a costly initial full-264

finetuning step. It might be possible to approximate265

the subset selection by training the model for a266

shorter period, but this is outside the scope of this267

paper.268

Sung et al. (2021) propose choosing a subset269

based on the empirical Fisher information on the270

downstream data F̃θ,downstr.. This is equivalent271

to picking the largest sum of squared gradients272

(largest downstr. sq-grad) of the cross-entropy273

loss.274

Inspired by elastic weight consolidation (Kirk-275

patrick et al., 2017), we decided to additionally276

consider the gradient statistics on a portion of the277

pretraining data F̃θ,pretr. (using 30508 samples of278

wikitext, Merity et al., 2016). While choosing the k279

parameters with the smallest empirical Fisher infor-280

mation would be more in line with their proposal,281

we found that (this binarized version) leads to a se-282

lection of parameters that receive minimal gradient283

flow. For the fine-tuning to have a non-negligible284

effect would require a learning rate that is to high285

for the decoder to remain stable. We hence pick286

the largest values instead (largest pretr. sq-grad),287

expecting the subset to be particularly bad.288

Finally, we propose a combined measure that289

selects parameters with large squared downstream290

gradients and lower squared pretraining gradients.291

This is an attempt to force the selection to consider292

task-specific information not merely the received293

gradient magnitudes. The strategy selects parame-294

ters with the largest values of:295

Gcombined =
F̃θ,downstr.

1 + F̃θ,pretr.

(3)296

3.2 Experimental Setup297

Evaluation datasets. We evaluate all considered298

subset selection strategies (together with full fine-299

tuning baselines) to tune a RoBERTa-base model300

(125M parameters) on four tasks:301

• SST-2 (Socher et al., 2013), a sentiment clas-302

sification task,303

• QNLI (Wang et al., 2018) a question answer- 304

ing natural language inference task, 305

• CoNLL-2003 (Tjong Kim Sang and De Meul- 306

der, 2003), a named entity recognition tasks, 307

• TREC-6 (Hovy et al., 2001; Li and Roth, 308

2002), a question classifcation task. 309

In the case of SST-2 and QNLI which both are 310

part of the General Language Understanding Eval- 311

uation (GLUE) benchmark (Wang et al., 2018), we 312

use the development set in place of the test set (as 313

the test set is not readily available and requires a 314

submission for each set of predictions). 315

Decoder initialization. As each task requires a 316

randomly initialized decoder on top of the PLM, 317

we first execute a decoder-tuning step in which we 318

train the decoder over the frozen PLM (Cui et al., 319

2023). Fine-tuning the decoder first (while initially 320

keeping the embedding network frozen) helps to 321

mitigate the effect of the different selections of 322

learning rates used in the experiments on the de- 323

gree to which the decoder adapts to the embedding 324

network versus vice-versa. The much higher learn- 325

ing rate required by some of the variants can be 326

quite an advantage or disadvantage as a randomly 327

initialized decoder requires significantly more tun- 328

ing. The hyperparameters used to tune the decoders 329

can be found in Table 4 in Appendix A. 330

Like the fine-tuned task-specific decoder, the gra- 331

dient statistics can also be shared across multiple 332

repetitions of the experiment. A different decoder 333

initialization leads to different gradients. Hence, 334

using the same initialization of the decoder across 335

the experiments is required to allow sharing of the 336

gradient statistics. 337

Experimental framework and hyperparameters. 338

All experiments were conducted using the Flair- 339

framework (Akbik et al., 2019), using their de- 340

fault implementations for the embeddings and task- 341

specific decoders. 2 342

Most of the hyperparameters used in fine-tuning 343

the embedding network are set to standard values 344

and are kept consistent over all experiments. There 345

is no indication that these settings favor any of the 346

variants (though this cannot be entirely ruled out). 347

These hyperparameters can be found in Table 2. 348

To ensure a level playing field, an exhaustive 349

grid search was performed over an equally spaced 350

2The configurations, code, and resulting metadata will be
published upon acceptance.

4

Task CoNLL-2003 QNLI SST-2 TREC-6 Avg.

Variant

Full fine-tuning 0.9217 ± 0.0009 0.9290 ± 0.0018 0.9468 ± 0.0013 0.9752 ± 0.0046 0.9432

LoRA (rank 4) 0.9139 ± 0.0018 0.9165 ± 0.0021 0.9406 ± 0.0031 0.9708 ± 0.0041 0.9354

Random subset 0.9087 ± 0.0012 0.9048 ± 0.0029 0.9342 ± 0.0028 0.9720 ± 0.0032 0.9299

Bitfit 0.9080 ± 0.0014 0.9039 ± 0.0018 0.9383 ± 0.0026 0.9592 ± 0.0059 0.9273

Largest pretr. sq-grad 0.9073 ± 0.0016 0.9037 ± 0.0028 0.9378 ± 0.0052 0.9552 ± 0.0061 0.9260

Largest downstr. sq-grad 0.9073 ± 0.0020 0.9075 ± 0.0010 0.9399 ± 0.0031 0.9580 ± 0.0049 0.9282

Combined gradient stats 0.9082 ± 0.0022 0.9100 ± 0.0020 0.9431 ± 0.0033 0.9644 ± 0.0030 0.9314

Pruning with re-training 0.9108 ± 0.0025 0.9059 ± 0.0026 0.9390 ± 0.0044 0.9696 ± 0.0017 0.9313

Pruning w/o re-training 0.9002 ± 0.0011 0.9102 ± 0.0016 0.9376 ± 0.0059 0.9556 ± 0.0022 0.9259

Table 1: Performance of the tested variants using roberta-base and a subset size similar to bitfit (except full fine-
tuning). All scores are averaged over 5 runs (seeds).

Hyperparameter Value

Number of epochs 2 or 4
Batch size 16

Weight decay none
Gradient norm clipping 5.0
Learning rate schedule Linear with warm-up

Warm-up fraction 10%

Table 2: The hyperparameters used in the fine-tuning
experiments. Default values of Flair (Akbik et al., 2019)
for fine-tuning are denoted in italics. For the larger task
(QNLI) 2 epochs were used, in all other tasks 4.

grid (in the case of the learning rate, in logarith-351

mic space). In cases where the limit of the range352

was selected, we considered the experiment to be353

invalid and repeated it with a larger range. This354

ensures that a sufficiently large range is selected355

(assuming the objective is convex with respect to356

the respective hyperparameters).357

3.3 Results358

We present the experimental results, first focusing359

on the different subset selection strategies (Sec-360

tion 3.3.1) and then present an ablation study where361

we vary the size of the subset (Section 3.3.2).362

3.3.1 Selection Strategies363

Table 1 reports the performance on each of the364

four downstream tasks. We make the following365

observations:366

Full fine-tuning best, followed by LoRA. Unsur-367

prisingly, we note that the full fine-tuning base-368

line outperforms all parameter-efficient fine-tuning 369

methods on all of the tasks. It therefore represents 370

the upper bound that selection-based approaches 371

can achieve. Through not a selection-based ap- 372

proach, we also find that LoRA is always among 373

the top two PEFT methods. 374

Different selectors score similarly. We also note 375

that different selection-based strategies score simi- 376

larly, with combined gradient statistics marginally 377

outperforming the other two approaches using gra- 378

dient statistics. On average it outperforms all 379

proper subset tuning methods which do not require 380

any initial full fine-tuning. The method using com- 381

bined gradient statistics consistently outperforms 382

the other two approaches using gradient statistics 383

(though only by a small margin). 384

Surprisingly strong results for random subset. 385

Even the random baseline (using a large enough 386

learning rate), fares surprisingly well. In a single 387

instance, it even outperforms the other PEFT meth- 388

ods. We conclude that the performance differences 389

in these experiments are not drastic and that even a 390

properly tuned random subset scores competitively 391

with more complex approaches. 392

3.3.2 Subset Size 393

It is important to consider the joint impact of 394

the subset size and selection method on the ideal 395

learning rate when trying to optimize performance. 396

Hence, in this ablation, we vary the subset size and 397

assess its impact independently. 398

While the gradient flow throughout the network 399

remains unchanged by the subset, the potential 400

change of the network’s function depends on (1) the 401

5

10 4 10 1

Subset size

10 3

10 1
Le

ar
ni

ng
 ra

te
Randomly selected subset

10 4 10 1

Subset size

Largest downstream sq-grad

Figure 2: Selected learning rate (y-axis) based on the
subset size (x-axis) and two selection strategies: Ran-
dom (left) and largest average squared gradient on the
downstream data (right). A red triangle indicates that
the learning rate at the limit of the range was selected
and might therefore be suboptimal. For more learning
rate selection plots, see Figure 4.

number of parameters that can be affected and402

(2) the gradient these parameters receive. If the403

average gradient is much lower for a given set of404

parameters, a higher learning rate may produce405

better results.406

This is very prominent in the comparison of a407

random subset and a subset selected by large Fisher408

Information (see Figure 2). The latter subset re-409

ceives (on average) a larger gradient magnitude410

and may therefore require a lower learning rate.411

Figure 3 illustrates the impact of the tuned subset412

size on the downstream performance.413

The approaches of using either the combined414

or only the downstream gradient statistics method415

outperform all other selective PEFT methods when416

using very small subset sizes. Pruning without417

retraining underperforms likely due to the large418

amount of information that is lost during the prun-419

ing step. At small subset sizes and compared to420

the other approaches, the random baseline does not421

perform as well. It should be mentioned though,422

that in the case of the smallest subset size (and for423

TREC-6 the second smallest), the highest available424

learning rate of 0.1 was selected. Due to the already425

large range, we did not repeat this experiment with426

even larger learning rates.427

4 Generality & Adaptability of the428

Embedding Network429

We extend our evaluation to investigate how the430

generality of the embedding network is impacted431

by the applied fine-tuning method. To this end,432

we leverage the transformer networks fine-tuned433

with different selection strategies on a primary task434

from the previous experiment and evaluate their435

usefulness for a distinct secondary task.436

0.80

0.85

0.90

Pe
rfo

rm
an

ce

Full fine-tuning

Bi
tfi

t

CoNLL-2003

10 5 10 3 10 1

Subset Size

0.8

0.9

1.0

Pe
rfo

rm
an

ce

Full fine-tuning

Bi
tfi

t

TREC-6

Variant
Random subset
Pruning w/o re-training
Pruning with re-training
Largest downstr. sq-grad
Largest pretr. sq-grad
Combined gradient stats

Figure 3: Performance of different variants across dif-
ferent subset sizes

In total, we report the following measures: 437

1. The test score on the primary task and the 438

generalization gap, 439

2. the performance on a masked-language mod- 440

eling (MLM) task using a tuned two-layer 441

probe, and 442

3. the performance on a set of secondary tasks 443

(after adapting the model). 444

We therefore assess how the embedding net- 445

work’s function changes in terms of its capability 446

to adapt to new tasks. 447

4.1 Notes on Measuring Generality 448

We preface this experiment with the note that the 449

“generality” of a model is no well-defined concept. 450

Zaken et al. (2022) mention the generalization gap 451

(the difference between the test and train perfor- 452

mance). We are, however, not only interested in 453

6

Prim. MLM Gap Sec. Sec. (decoder)

Variant

Full fine-tuning 0.0000 ± 0.0023 -0.0584 ± 0.0172 -0.0402 ± 0.0189 -0.0020 ± 0.0026 0.0421 ± 0.1070

Regularized FT (L1, 0.01) -0.0290 ± 0.0178 -0.0274 ± 0.0087 -0.0025 ± 0.0194 -0.0029 ± 0.0039 0.0423 ± 0.1015

Regularized FT (L1, 0.10) -0.0527 ± 0.0264 -0.0299 ± 0.0180 0.0068 ± 0.0174 -0.0018 ± 0.0029 0.0401 ± 0.0845

Regularized FT (L2, 0.01) -0.0025 ± 0.0034 -0.0431 ± 0.0114 -0.0376 ± 0.0208 -0.0035 ± 0.0036 0.0330 ± 0.1188

Regularized FT (L2, 0.10) -0.0028 ± 0.0028 -0.0293 ± 0.0060 -0.0311 ± 0.0204 -0.0042 ± 0.0041 0.0614 ± 0.1114

LoRA (rank 4) -0.0077 ± 0.0041 -0.0742 ± 0.0109 -0.0225 ± 0.0218 -0.0271 ± 0.1153 0.0014 ± 0.1127

Random subset -0.0133 ± 0.0079 -0.0675 ± 0.0270 -0.0245 ± 0.0200 -0.0054 ± 0.0038 0.0387 ± 0.1290

Bitfit -0.0159 ± 0.0068 -0.1202 ± 0.0392 -0.0066 ± 0.0174 -0.0026 ± 0.0029 -0.0096 ± 0.1583

Largest pretr. sq-grad -0.0172 ± 0.0073 -0.1469 ± 0.0436 -0.0092 ± 0.0212 -0.0051 ± 0.0039 -0.0225 ± 0.1367

Largest downstr. sq-grad -0.0150 ± 0.0061 -0.1162 ± 0.0328 -0.0078 ± 0.0195 -0.0046 ± 0.0040 0.0033 ± 0.1356

Combined gradient stats -0.0118 ± 0.0061 -0.1140 ± 0.0249 -0.0072 ± 0.0187 -0.0039 ± 0.0038 0.0112 ± 0.1382

Pruning with re-training -0.0119 ± 0.0073 -0.0613 ± 0.0195 -0.0238 ± 0.0205 -0.0054 ± 0.0039 0.0543 ± 0.1280

Pruning w/o re-training -0.0173 ± 0.0057 -0.0496 ± 0.0125 -0.0021 ± 0.0193 -0.0014 ± 0.0032 0.0451 ± 0.1162

Table 3: Performance of the tested variants using roberta-base. Primary and secondary score differences compared
to full fine-tuning on the pretrained embedding network. Secondary score of a tuned decoder (compared to a decoder
tuned on the pretrained embedding network). Gap refers to the negative train/test gap (values smaller than zero
indicate the test score is lower than the train score; the higher the better). MLM score difference to the inital MLM
score. All scores are averaged over 5 runs (seeds) and all secondary tasks. Higher values are better (in all of the
columns). We mark the best score (per column) in bold and the second best in italics. See Table 1 for the primary
scores on each of the tasks.

whether a model generalizes well to the test data454

but a broader notion of generality.455

Looking solely at the test score is also not suf-456

ficient as we might not be confident that the test457

set represents our deployment distribution. Addi-458

tionally, the current fine-tuning step might not be459

the last in our transfer learning pipeline. In these460

cases, we want to preserve some general language461

capabilities much like we would like to preserve462

a good performance on some previous task in a463

continuous learning setting (see e.g. Kirkpatrick464

et al., 2017). The primary objective of this work,465

however, is not to attempt to resolve the question466

of how to quantify generality.467

In light of the vague nature of the objective and468

due to the lack of a more suitable evaluation frame-469

work, we opt to report masked-language modeling470

(MLM) and performance on secondary tasks as a471

proxy for generality. Though we are not strictly in472

a continuous learning setting, these measures can473

be conceived of as backward and forward transfer474

(compare with Lopez-Paz and Ranzato, 2022). The475

first measure represents how much of the previous476

function (i.e. the masked-language modeling) was477

preserved, while the second describes how well478

each variant preserved the task-generality (see Lin 479

et al., 2023) while fine-tuning on a specific task (or 480

averaged across the complete set). 481

4.2 Experimental Setup 482

The experimental setup is identical to the first se- 483

ries of experiments (as described in Section 3.2), 484

but extends it by a final step. After fine-tuning the 485

model with one of the approaches, the embedding 486

network is reused with a new task-specific classi- 487

fication head, fine-tuned on a secondary task, and 488

then evaluated on the respective test sets. 489

During MLM probing, the embedding network 490

remains unchanged while a two-layer MLP decoder 491

head is tuned to solve an MLM task (a small por- 492

tion of wikitext, see Table 5 in Appendix A for 493

a detailed list of used hyperparameters). After a 494

few epochs of training, the model is evaluated on 495

the test set. Re-training an MLM head may not 496

seem necessary (as one might want to conserve the 497

original embeddings). We believe, however, that a 498

simple transformation (e.g. a rotation, scaling, etc.) 499

should not be counted as a reduction in the general 500

capabilities: The underlying information content 501

would not have changed, only the representation. 502

7

Hence, we re-train the MLM decoder to correct for503

such transformations.504

To fine-tune the (already tuned) model on the sec-505

ondary tasks, we use the same hyperparameter as506

presented in Table 2. Regardless of the fine-tuning507

strategy that is applied in the primary adaption, we508

first tune the task-specific decoder to adapt to the509

current state of the embedding network (the scores510

of tuning only the decoder are reported separately;511

this is similar to Xu et al., 2021). We then apply a512

full fine-tuning of the model together with the de-513

coder. This ensures a fair evaluation and guarantees514

we are measuring a property of the current state of515

the model, not the ability of the approach to adapt516

the model. The learning rate is selected based on517

a grid search conducted on the pretrained version518

of the model. Thus, for all secondary fine-tuning519

runs, the same learning rates are used.520

4.3 Results521

Table 3 contains a summary of the collected results.522

As mentioned in the previous section, LoRA ex-523

hibits the largest average primary test scores among524

the parameter-efficient fine-tuning techniques. In525

terms of the generalization, it has a mid-range rank.526

As expected, using the largest Fisher informa-527

tion on the pretraining data not only fares worse528

in regard to the primary score but also is one of529

the worst with respect to its generalization capabili-530

ties. Using these statistics combined with the down-531

stream information, however, does slightly improve532

the subsets based on the largest downstream Fisher533

information (largest downstream sq-grad). If the534

embedding network is not tuned a second time (but535

only the task-specific decoder), this approach also536

outperforms BitFit.537

Subset tuning impairs adaptation to new tasks.538

None of the strategies outperform full fine-tuning in539

terms of the embedding network’s ability to adapt540

to new tasks by fine-tuning the complete model or541

only the decoder. Follow-up experiments would542

be required to determine whether the same applies543

when fine-tuning the model with the same strategy544

as in the primary adaptation.545

BitFit with small train/test gap. As observed by546

Zaken et al. (2022), BitFit has a very low train/test547

gap. In our experiments, it has the lowest train/test548

gap among the PEFT methods. Only one of the549

regularized methods has a better gap (here the test550

score is actually higher; the primary score of this551

is very low). Full fine-tuning (as one might expect)552

has the highest overall train/test gap.553

4.4 Similar vs. Dissimilar Secondary Tasks 554

In a follow-up experiment, we assess the impact 555

of the similarity between the primary and sec- 556

ondary task. We first fine-tune a cross-lingual trans- 557

former model (XLM-RoBERTa-base, 279M param- 558

eters, Conneau et al., 2020) on the English version 559

of CoNLL-2003 (a named entity recognition task) 560

and then evaluate its performance after running a 561

secondary fine-tuning on CoNLL-2003 in German 562

(which we assume to be similar as the classes are 563

identical) as well as TREC-6 which is a question 564

classification task and thus differs more from the 565

primary task. 566

Unfortunately, the data is fairly inconsistent. 567

Since we only used two tasks (one for each cat- 568

egory of similar vs. dissimilar), it is not possible to 569

draw any definite conclusions from this. Nonethe- 570

less, we include these results in the appendix. Ta- 571

ble 8 in the appendix contains a detailed report of 572

these results. 573

5 Conclusion 574

In our evaluation of fine-tuning strategies, full 575

fine-tuning consistently outperforms all parameter- 576

efficient fine-tuning (PEFT) methods across vari- 577

ous tasks. LoRA consistently ranks among the top 578

two PEFT methods in our experiments. 579

Examining the utilization of gradient statistics, 580

we observe that the method using combined gra- 581

dient statistics consistently outperforms its coun- 582

terparts, although the performance improvement is 583

marginal. On average, this approach surpasses all 584

proper subset tuning methods that do not necessi- 585

tate initial full fine-tuning. 586

Nevertheless, it is worth noting that the differ- 587

ences in performance across these experiments may 588

not be substantial enough to justify the added com- 589

plexity. Surprisingly, even the random baseline, 590

with a sufficiently high learning rate, demonstrates 591

competitive performance, occasionally outperform- 592

ing other PEFT methods. 593

Given the strong results of the random baseline 594

and the generally similar performance on primary 595

tasks, our results call into question whether there 596

is a clear optimal subset of parameters to tune. Fur- 597

thermore, our generalization experiments indicate 598

that selective PEFT strategies impair rather than 599

increase generalizability to secondary tasks, likely 600

due to PEFT affecting more localized and severe 601

changes to the transformer network. 602

8

Limitations603

The experiments we report on in this paper were604

performed using a single model (roberta-base)605

and on a limited number of tasks. Hence, there is606

no guarantee that these findings transfer to large607

models and more complex transfer-learning scenar-608

ios. Due to the exhaustive learning rate search, we609

set out to conduct and given the resources that were610

available to us, testing the observations on a larger611

set of models and tasks was not possible. Testing612

specific hypotheses on a broader set of models and613

tasks may be part of future work.614

Impact Statement615

Large language models have the potential to re-616

produce multiple forms of stereotypes due to their617

ability to absorb societal biases ingrained in the618

training data. Research into parameter-efficient619

fine-tuning methods is unlikely to change this be-620

havior. Additionally, training of language models621

is computationally demanding and carries a sub-622

stantial environmental burden. This complexity623

further hampers the prospects of reproducing re-624

search findings and conducting subsequent studies625

in an academic setting. Parameter-efficient fine-626

tuning aims to reduce the required computational627

resources and might enable broader use of such628

models.629

The experiments we conducted in the context of630

this paper amount to an estimated number of 150631

GPU days using a mix of GPUs (mostly Nvidia632

Tesla V100S and some Nvidia Ampere A100).633

References634

Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif635
Rasul, Stefan Schweter, and Roland Vollgraf. 2019.636
FLAIR: An Easy-to-Use Framework for State-of-637
the-Art NLP. In Proceedings of the 2019 Confer-638
ence of the North American Chapter of the Associa-639
tion for Computational Linguistics (Demonstrations),640
pages 54–59, Minneapolis, Minnesota. Association641
for Computational Linguistics.642

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia643
Liu, Yang Zhang, Zhangyang Wang, and Michael644
Carbin. 2020. The Lottery Ticket Hypothesis for645
Pre-trained BERT Networks. In Proceedings of the646
34th International Conference on Neural Information647
Processing Systems, NIPS’20, pages 15834–15846,648
Red Hook, NY, USA. Curran Associates Inc.649

Xiaohan Chen, Yu Cheng, Shuohang Wang, Zhe Gan,650
Jingjing Liu, and Zhangyang Wang. 2021. The Elas-651
tic Lottery Ticket Hypothesis.652

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, 653
Vishrav Chaudhary, Guillaume Wenzek, Francisco 654
Guzmán, Edouard Grave, Myle Ott, Luke Zettle- 655
moyer, and Veselin Stoyanov. 2020. Unsupervised 656
Cross-lingual Representation Learning at Scale. 657

Ganqu Cui, Wentao Li, Ning Ding, Longtao Huang, 658
Zhiyuan Liu, and Maosong Sun. 2023. Decoder Tun- 659
ing: Efficient Language Understanding as Decoding. 660

Jonathan Frankle and Michael Carbin. 2019. The Lot- 661
tery Ticket Hypothesis: Finding Sparse, Trainable 662
Neural Networks. arXiv:1803.03635 [cs]. 663

Zhuocheng Gong, Di He, Yelong Shen, Tie-Yan Liu, 664
Weizhu Chen, Dongyan Zhao, Ji-Rong Wen, and Rui 665
Yan. 2022. Finding the Dominant Winning Ticket 666
in Pre-Trained Language Models. In Findings of 667
the Association for Computational Linguistics: ACL 668
2022, pages 1459–1472, Dublin, Ireland. Association 669
for Computational Linguistics. 670

Demi Guo, Alexander M. Rush, and Yoon Kim. 2021. 671
Parameter-Efficient Transfer Learning with Diff Prun- 672
ing. 673

Eduard Hovy, Laurie Gerber, Ulf Hermjakob, Chin- 674
Yew Lin, and Deepak Ravichandran. 2001. Toward 675
Semantics-Based Answer Pinpointing. In Proceed- 676
ings of the First International Conference on Human 677
Language Technology Research. 678

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan 679
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and 680
Weizhu Chen. 2021. LoRA: Low-Rank Adaptation 681
of Large Language Models. 682

Diederik P. Kingma and Jimmy Ba. 2017. Adam: A 683
Method for Stochastic Optimization. 684

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, 685
Joel Veness, Guillaume Desjardins, Andrei A. Rusu, 686
Kieran Milan, John Quan, Tiago Ramalho, Ag- 687
nieszka Grabska-Barwinska, Demis Hassabis, Clau- 688
dia Clopath, Dharshan Kumaran, and Raia Had- 689
sell. 2017. Overcoming catastrophic forgetting 690
in neural networks. Proceedings of the National 691
Academy of Sciences of the United States of America, 692
114(13):3521–3526. 693

Xin Li and Dan Roth. 2002. Learning Question Clas- 694
sifiers. In COLING 2002: The 19th International 695
Conference on Computational Linguistics. 696

Vladislav Lialin, Vijeta Deshpande, and Anna 697
Rumshisky. 2023. Scaling Down to Scale Up: A 698
Guide to Parameter-Efficient Fine-Tuning. 699

Chen Liang, Simiao Zuo, Minshuo Chen, Haoming 700
Jiang, Xiaodong Liu, Pengcheng He, Tuo Zhao, and 701
Weizhu Chen. 2021. Super Tickets in Pre-Trained 702
Language Models: From Model Compression to Im- 703
proving Generalization. 704

9

https://doi.org/10.18653/v1/N19-4010
https://doi.org/10.18653/v1/N19-4010
https://doi.org/10.18653/v1/N19-4010
http://arxiv.org/abs/2103.16547
http://arxiv.org/abs/2103.16547
http://arxiv.org/abs/2103.16547
https://doi.org/10.48550/arXiv.1911.02116
https://doi.org/10.48550/arXiv.1911.02116
https://doi.org/10.48550/arXiv.1911.02116
http://arxiv.org/abs/2212.08408
http://arxiv.org/abs/2212.08408
http://arxiv.org/abs/2212.08408
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1803.03635
https://doi.org/10.18653/v1/2022.findings-acl.115
https://doi.org/10.18653/v1/2022.findings-acl.115
https://doi.org/10.18653/v1/2022.findings-acl.115
https://doi.org/10.48550/arXiv.2012.07463
https://doi.org/10.48550/arXiv.2012.07463
https://doi.org/10.48550/arXiv.2012.07463
https://aclanthology.org/H01-1069
https://aclanthology.org/H01-1069
https://aclanthology.org/H01-1069
https://doi.org/10.48550/arXiv.2106.09685
https://doi.org/10.48550/arXiv.2106.09685
https://doi.org/10.48550/arXiv.2106.09685
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1073/pnas.1611835114
https://aclanthology.org/C02-1150
https://aclanthology.org/C02-1150
https://aclanthology.org/C02-1150
http://arxiv.org/abs/2303.15647
http://arxiv.org/abs/2303.15647
http://arxiv.org/abs/2303.15647
https://doi.org/10.48550/arXiv.2105.12002
https://doi.org/10.48550/arXiv.2105.12002
https://doi.org/10.48550/arXiv.2105.12002
https://doi.org/10.48550/arXiv.2105.12002
https://doi.org/10.48550/arXiv.2105.12002

Yong Lin, Lu Tan, Hangyu Lin, Zeming Zheng, Renjie705
Pi, Jipeng Zhang, Shizhe Diao, Haoxiang Wang, Han706
Zhao, Yuan Yao, and Tong Zhang. 2023. Speciality707
vs Generality: An Empirical Study on Catastrophic708
Forgetting in Fine-tuning Foundation Models.709

David Lopez-Paz and Marc’Aurelio Ranzato. 2022.710
Gradient Episodic Memory for Continual Learning.711

Ilya Loshchilov and Frank Hutter. 2019. Decoupled712
Weight Decay Regularization.713

Stephen Merity, Caiming Xiong, James Bradbury, and714
Richard Socher. 2016. Pointer Sentinel Mixture Mod-715
els.716

Sai Prasanna, Anna Rogers, and Anna Rumshisky. 2020.717
When BERT Plays the Lottery, All Tickets Are Win-718
ning.719

Wang Qi, Yu-Ping Ruan, Yuan Zuo, and Taihao Li. 2022.720
Parameter-Efficient Tuning on Layer Normalization721
for Pre-trained Language Models.722

Richard Socher, Alex Perelygin, Jean Wu, Jason723
Chuang, Christopher D. Manning, Andrew Ng, and724
Christopher Potts. 2013. Recursive Deep Models for725
Semantic Compositionality Over a Sentiment Tree-726
bank. In Proceedings of the 2013 Conference on727
Empirical Methods in Natural Language Processing,728
pages 1631–1642, Seattle, Washington, USA. Asso-729
ciation for Computational Linguistics.730

Yi-Lin Sung, Varun Nair, and Colin Raffel. 2021. Train-731
ing Neural Networks with Fixed Sparse Masks.732

Erik F. Tjong Kim Sang and Fien De Meulder.733
2003. Introduction to the CoNLL-2003 Shared Task:734
Language-Independent Named Entity Recognition.735
In Proceedings of the Seventh Conference on Natu-736
ral Language Learning at HLT-NAACL 2003, pages737
142–147.738

Alex Wang, Amanpreet Singh, Julian Michael, Felix739
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:740
A Multi-Task Benchmark and Analysis Platform for741
Natural Language Understanding. In Proceedings742
of the 2018 EMNLP Workshop BlackboxNLP: An-743
alyzing and Interpreting Neural Networks for NLP,744
pages 353–355, Brussels, Belgium. Association for745
Computational Linguistics.746

Runxin Xu, Fuli Luo, Zhiyuan Zhang, Chuanqi Tan,747
Baobao Chang, Songfang Huang, and Fei Huang.748
2021. Raise a Child in Large Language Model: To-749
wards Effective and Generalizable Fine-tuning. In750
Proceedings of the 2021 Conference on Empirical751
Methods in Natural Language Processing, pages752
9514–9528, Online and Punta Cana, Dominican Re-753
public. Association for Computational Linguistics.754

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg.755
2022. BitFit: Simple Parameter-efficient Fine-tuning756
for Transformer-based Masked Language-models.757

Rui Zheng, Bao Rong, Yuhao Zhou, Di Liang, Sirui 758
Wang, Wei Wu, Tao Gui, Qi Zhang, and Xuanjing 759
Huang. 2022. Robust Lottery Tickets for Pre-trained 760
Language Models. In Proceedings of the 60th Annual 761
Meeting of the Association for Computational Lin- 762
guistics (Volume 1: Long Papers), pages 2211–2224, 763
Dublin, Ireland. Association for Computational Lin- 764
guistics. 765

Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosin- 766
ski. 2020. Deconstructing Lottery Tickets: Zeros, 767
Signs, and the Supermask. arXiv:1905.01067 [cs, 768
stat]. 769

10

http://arxiv.org/abs/2309.06256
http://arxiv.org/abs/2309.06256
http://arxiv.org/abs/2309.06256
http://arxiv.org/abs/2309.06256
http://arxiv.org/abs/2309.06256
https://doi.org/10.48550/arXiv.1706.08840
https://doi.org/10.48550/arXiv.1711.05101
https://doi.org/10.48550/arXiv.1711.05101
https://doi.org/10.48550/arXiv.1711.05101
https://doi.org/10.48550/arXiv.1609.07843
https://doi.org/10.48550/arXiv.1609.07843
https://doi.org/10.48550/arXiv.1609.07843
https://doi.org/10.48550/arXiv.2005.00561
https://doi.org/10.48550/arXiv.2005.00561
https://doi.org/10.48550/arXiv.2005.00561
https://arxiv.org/abs/2211.08682v3
https://arxiv.org/abs/2211.08682v3
https://arxiv.org/abs/2211.08682v3
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
http://arxiv.org/abs/2111.09839
http://arxiv.org/abs/2111.09839
http://arxiv.org/abs/2111.09839
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/2021.emnlp-main.749
https://doi.org/10.18653/v1/2021.emnlp-main.749
https://doi.org/10.18653/v1/2021.emnlp-main.749
https://doi.org/10.48550/arXiv.2106.10199
https://doi.org/10.48550/arXiv.2106.10199
https://doi.org/10.48550/arXiv.2106.10199
https://doi.org/10.18653/v1/2022.acl-long.157
https://doi.org/10.18653/v1/2022.acl-long.157
https://doi.org/10.18653/v1/2022.acl-long.157
http://arxiv.org/abs/1905.01067
http://arxiv.org/abs/1905.01067
http://arxiv.org/abs/1905.01067

A Additional Setup Details770

This section contains the remaining hyperparam-771

eters used to produce the results presented in this772

paper. The code, configurations, and metadata of773

the results will be published upon acceptance.774

Hyperparameter Value

Number of epochs 5
Learning rate 4 × 10−4

Batch size 64
Weight decay none

Gradient norm clipping 5.0
Learning rate schedule Linear with warm-up

Warm-up fraction 10%

Table 4: The hyperparameters used to fine-tune the task-
specific decoders. Default values of Flair (Akbik et al.,
2019) for fine-tuning are denoted in italics.

Hyperparameter Value

Number of epochs 4
Learning rate 2 × 10−3

Batch size 64
Weight decay 0.05

Learning rate schedule Constant

Table 5: The hyperparameters that used to fine-tune the
MLM head.

B Additional Results775

In the following, we present some alternative per-776

spectives on the experiments discussed in this paper.777

The results are derived from the same set of experi-778

ments and are purely a different way of presenting779

them.780

10 3

10 1

Le
ar

ni
ng

 ra
te

Pruning w/o re-training
on trec-6

Pruning w/o re-training
on conll03

10 3

10 1

Le
ar

ni
ng

 ra
te

Pruning with re-training
on trec-6

Pruning with re-training
on conll03

10 3

10 1

Le
ar

ni
ng

 ra
te

Randomly selected subset
on trec-6

Randomly selected subset
on conll03

10 3

10 1

Le
ar

ni
ng

 ra
te

Largest downstream sq-grad
on trec-6

Largest downstream sq-grad
on conll03

10 3

10 1

Le
ar

ni
ng

 ra
te

Largest pretraining sq-grad
on trec-6

Largest pretraining sq-grad
on conll03

10 4 10 1

Subset size

10 3

10 1

Le
ar

ni
ng

 ra
te

Combined gradient stats
on trec-6

10 4 10 1

Subset size

Combined gradient stats
on conll03

Figure 4: Selected learning rates for each subset size.
Each grid intersection represents (at least) one experi-
ment conducted in the parameter search. The best learn-
ing is represented by a marker. Learning rates that are
at the limits of the tested intervals are marked red and
may not be optimal given the used resolution (we used
learning rates which, on a logarithmic scale, are approx-
imately equally spaced: 1× 10−4, 2× 10−4, 5× 10−4,
1× 10−3, and so on).

11

Re
lat

ive
 n

um
be

r o
f p

ar
am

et
er

s

task = CoNLL-2003

variant =
 Random

 subset

task = TREC-6

Re
lat

ive
 n

um
be

r o
f p

ar
am

et
er

s variant =
 Full fine-tuning

10 9 10 5 10 1

Magnitude of change

Re
lat

ive
 n

um
be

r o
f p

ar
am

et
er

s

10 9 10 5 10 1

Magnitude of change

variant =
 Bitfit

1e-06
1e-05
0.0001
0.001
0.01
0.1

Re
lat

ive
 n

um
be

r o
f p

ar
am

et
er

s

task = TREC-6

variant =
 Pruning with re-training

task = CoNLL-2003

Re
lat

ive
 n

um
be

r o
f p

ar
am

et
er

s

variant =
 Largest downstr. sq-grad

Re
lat

ive
 n

um
be

r o
f p

ar
am

et
er

s variant =
 Largest pretr. sq-grad

10 9 10 6 10 3 100

Magnitude of change

Re
lat

ive
 n

um
be

r o
f p

ar
am

et
er

s

10 9 10 6 10 3 100

Magnitude of change

variant =
 Com

bined gradient stats

1e-06
1e-05
0.0001
0.001
0.01
0.1

Figure 5: The relative number of parameters with a certain magnitude of change over the different subset sizes.

12

Primary score Secondary Score Diff. MLM Precision @1

Primary task Variant

CoNLL-2003

Full fine-tuning 0.9217 ± 0.0009 -0.0025 ± 0.0025 0.3756 ± 0.0024

Random subset 0.9087 ± 0.0011 -0.0039 ± 0.0038 0.3754 ± 0.0061

Bitfit 0.9080 ± 0.0013 -0.0023 ± 0.0023 0.3481 ± 0.0033

Largest pretr. sq-grad 0.9073 ± 0.0014 -0.0063 ± 0.0034 0.2965 ± 0.0048

Largest downstr. sq-grad 0.9073 ± 0.0018 -0.0049 ± 0.0042 0.3283 ± 0.0033

Combined gradient stats 0.9082 ± 0.0020 -0.0046 ± 0.0037 0.3316 ± 0.0019

Pruning with re-training 0.9108 ± 0.0023 -0.0070 ± 0.0047 0.3552 ± 0.0063

Pruning w/o re-training 0.9002 ± 0.0010 -0.0015 ± 0.0030 0.3891 ± 0.0028

QNLI

Full fine-tuning 0.9290 ± 0.0016 -0.0020 ± 0.0016 0.4067 ± 0.0016

Random subset 0.9048 ± 0.0026 -0.0056 ± 0.0029 0.3817 ± 0.0031

Bitfit 0.9039 ± 0.0016 -0.0038 ± 0.0029 0.2595 ± 0.0151

Largest pretr. sq-grad 0.9037 ± 0.0026 -0.0027 ± 0.0019 0.3040 ± 0.0125

Largest downstr. sq-grad 0.9075 ± 0.0009 -0.0037 ± 0.0035 0.3461 ± 0.0113

Combined gradient stats 0.9100 ± 0.0018 -0.0028 ± 0.0033 0.3407 ± 0.0103

Pruning with re-training 0.9059 ± 0.0024 -0.0051 ± 0.0036 0.3828 ± 0.0056

Pruning w/o re-training 0.9102 ± 0.0014 -0.0013 ± 0.0032 0.3825 ± 0.0028

SST-2

Full fine-tuning 0.9468 ± 0.0012 -0.0012 ± 0.0020 0.3957 ± 0.0062

Random subset 0.9342 ± 0.0025 -0.0077 ± 0.0038 0.3394 ± 0.0059

Bitfit 0.9383 ± 0.0024 -0.0019 ± 0.0023 0.3393 ± 0.0036

Largest pretr. sq-grad 0.9378 ± 0.0048 -0.0021 ± 0.0023 0.3531 ± 0.0036

Largest downstr. sq-grad 0.9399 ± 0.0028 -0.0017 ± 0.0027 0.3611 ± 0.0029

Combined gradient stats 0.9431 ± 0.0030 -0.0011 ± 0.0025 0.3582 ± 0.0030

Pruning with re-training 0.9390 ± 0.0040 -0.0051 ± 0.0035 0.3854 ± 0.0036

Pruning w/o re-training 0.9376 ± 0.0054 -0.0021 ± 0.0033 0.3950 ± 0.0021

TREC-6

Full fine-tuning 0.9752 ± 0.0042 -0.0022 ± 0.0031 0.3669 ± 0.0073

Random subset 0.9720 ± 0.0029 -0.0022 ± 0.0030 0.4135 ± 0.0033

Bitfit 0.9592 ± 0.0054 -0.0024 ± 0.0036 0.3505 ± 0.0056

Largest pretr. sq-grad 0.9552 ± 0.0056 -0.0091 ± 0.0045 0.2354 ± 0.0112

Largest downstr. sq-grad 0.9580 ± 0.0045 -0.0067 ± 0.0037 0.2781 ± 0.0133

Combined gradient stats 0.9644 ± 0.0027 -0.0048 ± 0.0042 0.2936 ± 0.0099

Pruning with re-training 0.9696 ± 0.0015 -0.0026 ± 0.0025 0.4097 ± 0.0037

Pruning w/o re-training 0.9556 ± 0.0020 -0.0003 ± 0.0024 0.4149 ± 0.0031

Table 6: Performance of the tested variants using roberta-base. Primary and secondary score compared to full
fine-tuning on the pretrained embedding. MLM is the MLM precision @1 score. All scores are averaged over 5
runs (seeds) and all secondary tasks.

13

Primary score MLM score CoNLL-2003 QNLI SST-2 TREC-6

Primary task Variant

CoNLL-2003

Bitfit 0.9080 ± 0.0013 0.3481 ± 0.0033 0.9213 ± 0.0014 0.9269 ± 0.0016 0.9433 ± 0.0026 0.9720 ± 0.0024

Combined gradient stats 0.9082 ± 0.0020 0.3316 ± 0.0019 0.9197 ± 0.0020 0.9239 ± 0.0014 0.9383 ± 0.0021 0.9724 ± 0.0048

Full fine-tuning 0.9217 ± 0.0009 0.3756 ± 0.0024 0.9206 ± 0.0019 0.9255 ± 0.0009 0.9433 ± 0.0039 0.9732 ± 0.0023

Largest downstr. sq-grad 0.9073 ± 0.0018 0.3283 ± 0.0033 0.9204 ± 0.0017 0.9248 ± 0.0014 0.9358 ± 0.0021 0.9720 ± 0.0024

Largest pretr. sq-grad 0.9073 ± 0.0014 0.2965 ± 0.0048 0.9180 ± 0.0017 0.9235 ± 0.0020 0.9381 ± 0.0032 0.9680 ± 0.0047

Pruning w/o re-training 0.9002 ± 0.0010 0.3891 ± 0.0028 0.9218 ± 0.0021 0.9277 ± 0.0013 0.9424 ± 0.0031 0.9748 ± 0.0036

Pruning with re-training 0.9108 ± 0.0023 0.3552 ± 0.0063 0.9186 ± 0.0038 0.9179 ± 0.0013 0.9369 ± 0.0041 0.9712 ± 0.0033

Random subset 0.9087 ± 0.0011 0.3754 ± 0.0061 0.9188 ± 0.0013 0.9233 ± 0.0021 0.9394 ± 0.0040 0.9756 ± 0.0017

QNLI

Bitfit 0.9039 ± 0.0016 0.2595 ± 0.0151 0.9188 ± 0.0022 0.9248 ± 0.0015 0.9406 ± 0.0026 0.9736 ± 0.0033

Combined gradient stats 0.9100 ± 0.0018 0.3407 ± 0.0103 0.9173 ± 0.0016 0.9256 ± 0.0009 0.9420 ± 0.0019 0.9768 ± 0.0036

Full fine-tuning 0.9290 ± 0.0016 0.4067 ± 0.0016 0.9206 ± 0.0013 0.9270 ± 0.0015 0.9450 ± 0.0014 0.9720 ± 0.0020

Largest downstr. sq-grad 0.9075 ± 0.0009 0.3461 ± 0.0113 0.9182 ± 0.0004 0.9257 ± 0.0013 0.9388 ± 0.0021 0.9752 ± 0.0033

Largest pretr. sq-grad 0.9037 ± 0.0026 0.3040 ± 0.0125 0.9184 ± 0.0015 0.9257 ± 0.0010 0.9445 ± 0.0033 0.9732 ± 0.0011

Pruning w/o re-training 0.9102 ± 0.0014 0.3825 ± 0.0028 0.9193 ± 0.0020 0.9263 ± 0.0017 0.9447 ± 0.0030 0.9772 ± 0.0036

Pruning with re-training 0.9059 ± 0.0024 0.3828 ± 0.0056 0.9161 ± 0.0024 0.9240 ± 0.0020 0.9399 ± 0.0055 0.9724 ± 0.0033

Random subset 0.9048 ± 0.0026 0.3817 ± 0.0031 0.9175 ± 0.0015 0.9246 ± 0.0027 0.9385 ± 0.0031 0.9696 ± 0.0030

SST-2

Bitfit 0.9383 ± 0.0024 0.3393 ± 0.0036 0.9199 ± 0.0011 0.9281 ± 0.0018 0.9445 ± 0.0037 0.9728 ± 0.0023

Combined gradient stats 0.9431 ± 0.0030 0.3582 ± 0.0030 0.9196 ± 0.0012 0.9268 ± 0.0009 0.9472 ± 0.0037 0.9748 ± 0.0027

Full fine-tuning 0.9468 ± 0.0012 0.3957 ± 0.0062 0.9205 ± 0.0012 0.9284 ± 0.0011 0.9443 ± 0.0019 0.9748 ± 0.0030

Largest downstr. sq-grad 0.9399 ± 0.0028 0.3611 ± 0.0029 0.9192 ± 0.0017 0.9277 ± 0.0018 0.9450 ± 0.0014 0.9740 ± 0.0051

Largest pretr. sq-grad 0.9378 ± 0.0048 0.3531 ± 0.0036 0.9197 ± 0.0010 0.9278 ± 0.0016 0.9450 ± 0.0024 0.9720 ± 0.0037

Pruning w/o re-training 0.9376 ± 0.0054 0.3950 ± 0.0021 0.9199 ± 0.0020 0.9262 ± 0.0006 0.9461 ± 0.0030 0.9720 ± 0.0057

Pruning with re-training 0.9390 ± 0.0040 0.3854 ± 0.0036 0.9166 ± 0.0007 0.9222 ± 0.0022 0.9420 ± 0.0057 0.9716 ± 0.0036

Random subset 0.9342 ± 0.0025 0.3394 ± 0.0059 0.9142 ± 0.0029 0.9183 ± 0.0034 0.9420 ± 0.0047 0.9676 ± 0.0017

TREC-6

Bitfit 0.9592 ± 0.0054 0.3505 ± 0.0056 0.9192 ± 0.0011 0.9306 ± 0.0004 0.9415 ± 0.0044 0.9720 ± 0.0032

Combined gradient stats 0.9644 ± 0.0027 0.2936 ± 0.0099 0.9161 ± 0.0008 0.9252 ± 0.0031 0.9378 ± 0.0045 0.9744 ± 0.0030

Full fine-tuning 0.9752 ± 0.0042 0.3669 ± 0.0073 0.9197 ± 0.0009 0.9290 ± 0.0024 0.9420 ± 0.0047 0.9732 ± 0.0018

Largest downstr. sq-grad 0.9580 ± 0.0045 0.2781 ± 0.0133 0.9169 ± 0.0014 0.9237 ± 0.0017 0.9365 ± 0.0021 0.9688 ± 0.0058

Largest pretr. sq-grad 0.9552 ± 0.0056 0.2354 ± 0.0112 0.9154 ± 0.0016 0.9205 ± 0.0031 0.9365 ± 0.0033 0.9640 ± 0.0076

Pruning w/o re-training 0.9556 ± 0.0020 0.4149 ± 0.0031 0.9207 ± 0.0023 0.9285 ± 0.0013 0.9486 ± 0.0025 0.9740 ± 0.0024

Pruning with re-training 0.9696 ± 0.0015 0.4097 ± 0.0037 0.9206 ± 0.0015 0.9252 ± 0.0013 0.9427 ± 0.0024 0.9740 ± 0.0032

Random subset 0.9720 ± 0.0029 0.4135 ± 0.0033 0.9200 ± 0.0012 0.9275 ± 0.0023 0.9415 ± 0.0014 0.9748 ± 0.0041

Table 7: Performance of full fine-tuning on a secondary task after a applying each variant on the primary task using
a RoBERTa (base). All scores are averaged over 5 runs (std in parentheses).

14

CoNLL-2003 (English) CoNLL-2003 (German) TREC-6

Sec. (decoder) Sec. (full) Sec. (decoder) Sec. (full)

Subset size Variant

0.000100

Combined gradient stats 0.8874 ± 0.0017 0.7808 ± 0.0058 0.8659 ± 0.0041 0.5048 ± 0.0934 0.9624 ± 0.0054

Largest downstr. sq-grad 0.8849 ± 0.0039 0.7749 ± 0.0025 0.8648 ± 0.0033 0.5252 ± 0.0354 0.9660 ± 0.0065

Largest pretr. sq-grad 0.8665 ± 0.0023 0.7419 ± 0.0056 0.8608 ± 0.0035 0.4928 ± 0.0966 0.9660 ± 0.0051

Pruning w/o re-training 0.8867 ± 0.0016 0.7926 ± 0.0025 0.8717 ± 0.0017 0.4860 ± 0.0462 0.9716 ± 0.0046

Pruning with re-training 0.8618 ± 0.0028 0.4617 ± 0.0134 0.8598 ± 0.0035 0.3048 ± 0.0539 0.9636 ± 0.0048

Random subset 0.8590 ± 0.0026 0.3151 ± 0.0210 0.8504 ± 0.0049 0.2576 ± 0.0095 0.9572 ± 0.0041

0.001000

Combined gradient stats 0.8962 ± 0.0009 0.7868 ± 0.0055 0.8690 ± 0.0025 0.4708 ± 0.0768 0.9700 ± 0.0032

Largest downstr. sq-grad 0.8980 ± 0.0025 0.7883 ± 0.0041 0.8704 ± 0.0033 0.4468 ± 0.0389 0.9700 ± 0.0032

Largest pretr. sq-grad 0.8910 ± 0.0027 0.7655 ± 0.0087 0.8654 ± 0.0029 0.5488 ± 0.0318 0.9640 ± 0.0081

Pruning w/o re-training 0.8891 ± 0.0019 0.7899 ± 0.0019 0.8719 ± 0.0009 0.4972 ± 0.0256 0.9700 ± 0.0051

Pruning with re-training 0.8986 ± 0.0013 0.7410 ± 0.0030 0.8578 ± 0.0047 0.4404 ± 0.0632 0.9680 ± 0.0051

Random subset 0.9000 ± 0.0020 0.7430 ± 0.0106 0.8581 ± 0.0035 0.3924 ± 0.0724 0.9684 ± 0.0057

0.010000

Combined gradient stats 0.9081 ± 0.0019 0.7896 ± 0.0066 0.8682 ± 0.0027 0.4524 ± 0.0713 0.9656 ± 0.0078

Largest downstr. sq-grad 0.9078 ± 0.0018 0.7991 ± 0.0027 0.8683 ± 0.0020 0.4240 ± 0.0770 0.9696 ± 0.0017

Largest pretr. sq-grad 0.9028 ± 0.0012 0.7671 ± 0.0040 0.8636 ± 0.0056 0.5052 ± 0.0278 0.9636 ± 0.0033

Pruning w/o re-training 0.9078 ± 0.0015 0.7987 ± 0.0047 0.8727 ± 0.0034 0.5352 ± 0.0276 0.9680 ± 0.0047

Pruning with re-training 0.9121 ± 0.0019 0.7912 ± 0.0040 0.8668 ± 0.0027 0.5316 ± 0.0415 0.9704 ± 0.0017

Random subset 0.9112 ± 0.0022 0.7927 ± 0.0022 0.8670 ± 0.0038 0.4956 ± 0.0478 0.9636 ± 0.0038

0.100000

Combined gradient stats 0.9135 ± 0.0026 0.7918 ± 0.0052 0.8661 ± 0.0051 0.5112 ± 0.0363 0.9676 ± 0.0043

Largest downstr. sq-grad 0.9139 ± 0.0026 0.7881 ± 0.0037 0.8629 ± 0.0043 0.5420 ± 0.0248 0.9696 ± 0.0048

Largest pretr. sq-grad 0.9117 ± 0.0020 0.7811 ± 0.0049 0.8664 ± 0.0019 0.5196 ± 0.0528 0.9660 ± 0.0062

Pruning w/o re-training 0.9080 ± 0.0017 0.7989 ± 0.0047 0.8720 ± 0.0028 0.5332 ± 0.0301 0.9688 ± 0.0052

Pruning with re-training 0.9123 ± 0.0019 0.7885 ± 0.0057 0.8651 ± 0.0051 0.5536 ± 0.0417 0.9688 ± 0.0066

Random subset 0.9108 ± 0.0017 0.7701 ± 0.0064 0.8638 ± 0.0044 0.4304 ± 0.1021 0.9656 ± 0.0055

Table 8: Score a full fine-tuning on CoNLL-2003 (german), compared to a baseline (full ft on pretrained) of 0.8724
(0.0023), and TREC-6 after fine-tuning using each of the variants on CoNLL03 (english). Each score is shown in
the respective column.

Task CoNLL-2003 QNLI SST-2 TREC-6

Variant

LoRA (rank 1, 0.03%) 0.9059 ± 0.0025 0.9072 ± 0.0026 0.9353 ± 0.0043 0.9636 ± 0.0043

LoRA (rank 2, 0.06%) 0.9114 ± 0.0020 0.9133 ± 0.0022 0.9353 ± 0.0039 0.9652 ± 0.0039

LoRA (rank 3, 0.09%) 0.9129 ± 0.0011 0.9157 ± 0.0026 0.9360 ± 0.0039 0.9692 ± 0.0048

LoRA (rank 4, 0.12%) 0.9139 ± 0.0018 0.9165 ± 0.0021 0.9406 ± 0.0031 0.9708 ± 0.0041

LoRA (rank 16, 0.47%) 0.9173 ± 0.0009 0.9202 ± 0.0014 0.9404 ± 0.0054 0.9712 ± 0.0046

LoRA (rank 64, 1.89%) 0.9185 ± 0.0020 0.9217 ± 0.0009 0.9399 ± 0.0029 0.9744 ± 0.0033

Table 9: Performance of Low-Rank adoption (Hu et al., 2021) across four different tasks (five runs each).

15

Primary score MLM score CoNLL-2003 QNLI SST-2 TREC-6

Primary task

CoNLL-2003 0.9139 ± 0.0016 0.3659 ± 0.0125 0.9173 ± 0.0014 0.9166 ± 0.0017 0.9385 ± 0.0046 0.9708 ± 0.0033

QNLI 0.9165 ± 0.0020 0.3776 ± 0.0112 0.9167 ± 0.0005 0.9260 ± 0.0021 0.9392 ± 0.0035 0.8792 ± 0.1997

SST-2 0.9406 ± 0.0028 0.3737 ± 0.0046 0.9173 ± 0.0009 0.9218 ± 0.0013 0.9420 ± 0.0015 0.8112 ± 0.3484

TREC-6 0.9708 ± 0.0038 0.3659 ± 0.0089 0.9178 ± 0.0009 0.9227 ± 0.0025 0.9411 ± 0.0024 0.9700 ± 0.0014

Table 10: Performance of Low-Rank adoption with a rank of 4 (Hu et al., 2021) after fine-tuning on secondary task
(five runs each).

Primary score Gap MLM score CoNLL-2003 QNLI SST-2 TREC-6

Primary task Reg. Coeff.

CoNLL-2003

l1
0.01 0.9013 ± 0.0007 -0.0337 ± 0.0004 0.4044 ± 0.0016 0.9217 ± 0.0008 0.9278 ± 0.0009 0.9399 ± 0.0039 0.9712 ± 0.0036

0.10 0.8824 ± 0.0013 -0.0165 ± 0.0014 0.3869 ± 0.0026 0.9211 ± 0.0009 0.9275 ± 0.0010 0.9424 ± 0.0025 0.9744 ± 0.0033

1.00 0.8387 ± 0.0015 -0.0101 ± 0.0009 0.4106 ± 0.0007 0.9215 ± 0.0013 0.9267 ± 0.0018 0.9433 ± 0.0059 0.9752 ± 0.0018

l2
0.01 0.9203 ± 0.0010 -0.0704 ± 0.0009 0.3870 ± 0.0053 0.9211 ± 0.0025 0.9229 ± 0.0013 0.9404 ± 0.0018 0.9684 ± 0.0036

0.10 0.9210 ± 0.0025 -0.0654 ± 0.0027 0.4067 ± 0.0035 0.9213 ± 0.0022 0.9248 ± 0.0007 0.9394 ± 0.0029 0.9720 ± 0.0028

1.00 0.9192 ± 0.0016 -0.0595 ± 0.0009 0.4086 ± 0.0058 0.9223 ± 0.0013 0.9237 ± 0.0025 0.9413 ± 0.0053 0.9720 ± 0.0020

QNLI

l1
0.01 0.8701 ± 0.0008 0.0149 ± 0.0009 0.4177 ± 0.0022 0.9197 ± 0.0013 0.9258 ± 0.0010 0.9415 ± 0.0037 0.9756 ± 0.0030

0.10 0.8323 ± 0.0008 0.0198 ± 0.0012 0.4259 ± 0.0016 0.9211 ± 0.0021 0.9267 ± 0.0012 0.9415 ± 0.0045 0.9748 ± 0.0023

1.00 0.6640 ± 0.0005 0.0086 ± 0.0005 0.4434 ± 0.0013 0.9218 ± 0.0018 0.9276 ± 0.0017 0.9436 ± 0.0038 0.9760 ± 0.0042

l2
0.01 0.9270 ± 0.0018 -0.0203 ± 0.0020 0.4146 ± 0.0036 0.9196 ± 0.0014 0.9310 ± 0.0014 0.9385 ± 0.0033 0.9760 ± 0.0037

0.10 0.9242 ± 0.0016 -0.0174 ± 0.0016 0.4210 ± 0.0013 0.9194 ± 0.0012 0.9301 ± 0.0018 0.9344 ± 0.0033 0.9700 ± 0.0058

1.00 0.9132 ± 0.0018 -0.0041 ± 0.0014 0.4247 ± 0.0026 0.9189 ± 0.0018 0.9306 ± 0.0018 0.9443 ± 0.0039 0.9776 ± 0.0026

SST-2

l1
0.01 0.9326 ± 0.0022 -0.0026 ± 0.0023 0.4279 ± 0.0017 0.9206 ± 0.0020 0.9275 ± 0.0018 0.9413 ± 0.0026 0.9752 ± 0.0018

0.10 0.9177 ± 0.0014 -0.0023 ± 0.0013 0.4328 ± 0.0012 0.9194 ± 0.0013 0.9284 ± 0.0013 0.9401 ± 0.0022 0.9772 ± 0.0023

1.00 0.8711 ± 0.0012 0.0170 ± 0.0013 0.4400 ± 0.0015 0.9182 ± 0.0028 0.9277 ± 0.0024 0.9392 ± 0.0034 0.9776 ± 0.0022

l2
0.01 0.9436 ± 0.0020 -0.0386 ± 0.0020 0.4034 ± 0.0019 0.9198 ± 0.0011 0.9256 ± 0.0012 0.9411 ± 0.0032 0.9736 ± 0.0036

0.10 0.9438 ± 0.0021 -0.0255 ± 0.0019 0.4169 ± 0.0027 0.9196 ± 0.0017 0.9269 ± 0.0021 0.9394 ± 0.0030 0.9736 ± 0.0048

1.00 0.9429 ± 0.0012 -0.0118 ± 0.0010 0.4266 ± 0.0016 0.9198 ± 0.0017 0.9257 ± 0.0005 0.9417 ± 0.0017 0.9752 ± 0.0030

TREC-6

l1
0.01 0.9528 ± 0.0021 0.0114 ± 0.0022 0.4203 ± 0.0005 0.9216 ± 0.0024 0.9250 ± 0.0017 0.9378 ± 0.0056 0.9724 ± 0.0046

0.10 0.9296 ± 0.0024 0.0262 ± 0.0035 0.4133 ± 0.0015 0.9201 ± 0.0009 0.9269 ± 0.0021 0.9424 ± 0.0025 0.9764 ± 0.0026

1.00 0.4836 ± 0.0033 0.0568 ± 0.0056 0.4434 ± 0.0017 0.9190 ± 0.0012 0.9288 ± 0.0008 0.9411 ± 0.0015 0.9756 ± 0.0017

l2
0.01 0.9720 ± 0.0061 -0.0209 ± 0.0056 0.4011 ± 0.0058 0.9217 ± 0.0019 0.9265 ± 0.0015 0.9438 ± 0.0038 0.9716 ± 0.0033

0.10 0.9724 ± 0.0030 -0.0159 ± 0.0025 0.4166 ± 0.0023 0.9207 ± 0.0018 0.9268 ± 0.0014 0.9397 ± 0.0017 0.9680 ± 0.0047

1.00 0.9680 ± 0.0050 -0.0086 ± 0.0057 0.4233 ± 0.0035 0.9203 ± 0.0021 0.9263 ± 0.0021 0.9417 ± 0.0041 0.9716 ± 0.0017

Table 11: Effect of regularization on primary and secondary scores.

16

0.960

0.965

0.970

0.975

Te
st

 sc
or

e

TREC-6

0.9325

0.9350

0.9375

0.9400

0.9425

0.9450

Te
st

 sc
or

e

SST-2

0.905

0.910

0.915

0.920

Te
st

 sc
or

e

CoNLL-2003

1 2 3 4 16 64
Rank

0.905

0.910

0.915

0.920

Te
st

 sc
or

e

QNLI

Figure 6: Primary test performance using Low-Rank
adoption (Hu et al., 2021) with varying ranks.

17

	Introduction
	Background
	Selective Parameter-Efficient Fine-Tuning
	Lottery Ticket Hypothesis

	Subset Selection and Downstream Task Performance
	Subset Selection Strategies
	Experimental Setup
	Results
	Selection Strategies
	Subset Size

	Generality & Adaptability of the Embedding Network
	Notes on Measuring Generality
	Experimental Setup
	Results
	Similar vs. Dissimilar Secondary Tasks

	Conclusion
	Additional Setup Details
	Additional Results

