Parameter-Efficient Fine-Tuning: Is There An Optimal Subset of
Parameters to Tune?

Anonymous ACL submission

Abstract

The ever-growing size of pretrained language
models (PLM) presents a significant challenge
for efficiently fine-tuning and deploying these
models for diverse sets of tasks within memory-
constrained environments. In light of this, re-
cent research has illuminated the possibility
of selectively updating only a small subset of
a model’s parameters during the fine-tuning
process. Since no new parameters or modules
are added, these methods retain the inference
speed of the original model and come at no
additional computational cost. However, an
open question pertains to which subset of pa-
rameters should best be tuned to maximize task
performance and generalizability. To investi-
gate, this paper presents comprehensive experi-
ments covering a large spectrum of subset se-
lection strategies. We comparatively evaluate
their impact on model performance as well as
the resulting model’s capability to generalize
to different tasks. Surprisingly, we find that
the gains achieved in performance by elaborate
selection strategies are, at best, marginal when
compared to the outcomes obtained by tuning
a random selection of parameter subsets. Our
experiments also indicate that selection-based
tuning impairs generalizability to new tasks.

1 Introduction

In recent years, the number of parameters used in
language models has risen much faster than the
memory available in GPUs (Lialin et al., 2023).
Attaining the ability to efficiently fine-tune such
large models on the available hardware necessitates
methods that reduce the memory footprint. Addi-
tionally, a single pretrained model is often adapted
to a wide range of tasks. The storage requirements
for such a collection of model versions can be sig-
nificantly reduced if the difference between these
models can be represented in a compact way.
Parameter-efficient fine-tuning techniques
(PEFT) aim to reduce the number of parameters

Weight Bias Weight Bias

FXRXRFERREFE O XX K FRRROX X [F]
ERFEFEERERR @ FERERORRX R |F
FHRFEXFFEEEE |© FREERERERE |
EREFEERERE O FRRERXORO R |%
EXRFFEFEFRERR O FEFERERERR |®
EFRFEFERERX |O© FORERXRXXO |
¥EREFFERERE O FEFEROFXFR |¥
¥RFEEERRX O CEXEE L EXEIINE
¥RREFERERX O FRREOXXOF R |[¥

[©] *

BEREERERERRR ROBRXERERERE

(a) BitFit (b) Random subset

Figure 1: Only a small subset of the parameters (marked
with red circles in this illustration) is used during train-
ing; the others are frozen. The BitFit approach tunes
only the bias weights, while other approaches select a
tuneable subset from all model parameters.

that need to be stored and fine-tuned while
maintaining a performance that is comparable to
the training of the complete model. One of the
most popular classes of these methods is referred to
as selective parameter-efficient fine-tuning (Lialin
et al., 2023). Here, a subset of the parameters
is selected for PEFT, keeping the remaining
parameters frozen during training. We illustrate
this intuition in Figure 1 for a single weight matrix
and bias vector in which most parameters are
frozen and only a small subset kept unfrozen for
optimization.

Since only a few parameters are fine-tuned, the
sparse difference between the adapted and the pre-
trained model can be stored in a compact way (Za-
ken et al., 2022; Guo et al., 2021). The same applies
to gradient statistics that are stored for optimiza-
tion. Reducing the required memory frees up space
for the use of larger batches and therefore speeds
up training. However, an open question pertains to
which subset of parameters should best be tuned to
maximize task performance and generalizability.

Contributions. In this paper, we investigate sev-
eral theoretical questions that have been raised in
the context of selective PEFT methods and the

lottery ticket hypothesis for pretrained (language)
models (Gong et al., 2022; Zheng et al., 2022). Our
aim is to explore if an optimal subset for tuning
exists and how subset tuning affects generalizabil-
ity of the model. In more detail, we examine the
following questions:

* We comparatively evaluate a broad range of
approaches for identifying the ideal subset of
parameters to tune. Our analysis considers
the size of the subset and the computational
costs for its identification. For instance, it has
been shown that an effective subset can be
obtained through an initial fine-tuning step of
the complete model (potentially incorporating
some form of regularization), followed by the
selection of parameters exhibiting the largest
magnitude of change (Guo et al., 2021; Xu
et al., 2021). This, however, still requires a
costly full fine-tuning step. Hence, the possi-
bility of identifying a promising subset with-
out an initial fine-tuning step would be benefi-
cial (Prasanna et al., 2020; Gong et al., 2022).
Figure 1 illustrates two such strategies.

* We analyze how sparse fine-tuning affects the
generalizability of the resulting network. This
is motivated by Zaken et al. (2022)’s obser-
vation that their parameter-efficient method
"Bitfit" generalizes better: They report that
the gap between the train and test score is
substantially smaller compared to a full fine-
tuning of the model.

To address these questions, we systematically
conduct experiments using a large number of sub-
set sizes and various subset selection strategies.
We conduct a comprehensive grid search over hy-
perparameters to identify optimal training parame-
ters for each selection strategy. We compare these
hyperparameter-optimized subset selection strate-
gies to full fine-tuning (including the use of regu-
larization), as well as an additional (non-selective)
parameter-efficient fine-tuning technique, which re-
cently gained a lot of popularity: Low-Rank Adap-
tion (Hu et al., 2021, LoRA).

We make a number of observations in our ex-
periments: First, the differences between different
subset selection methods are marginal when hy-
perparameters are properly optimized, and do not
significantly outperform even a random subset se-
lection baseline. Second, subset-tuning methods
tend to modify embedding networks significantly

more since they are limited to a small number of
parameters and hence need to make a more drastic
changes. The prior function of the network which
can exhibit a certain degree of general language
capabilities can be more affected by these local but
more drastic changes.

2 Background

Our work is informed by two lines of research:
Selective parameter-efficient fine-tuning and the
lottery ticket hypothesis for pretrained language
models. In the remainder of this section, we discuss
aspects of these two areas that are relevant to the
work we present in this paper.

2.1 Selective Parameter-Efficient Fine-Tuning

Parameter-efficient fine-tuning (PEFT) methods re-
duce the number of parameters that are tuned in a
model. The benefits of this are twofold: (1) The
cost of storage for each task-specific adaption is
smaller and (2) the memory used during fine-tun-
ing is reduced. For example, Adam(W) (Kingma
and Ba, 2017; Loshchilov and Hutter, 2019), a
commonly used optimizer for fine-tuning language
models, not only stores the current gradient for
each parameter, but additionally estimates of two
lower-order moments. When using PEFT methods,
the weights of the model still need to be kept in
memory. Still, since fewer parameters are tuned,
a much smaller number of estimates needs to be
stored, significantly freeing up space for processing
a larger number of samples per batch and hence
speeding up training overall.

Lialin et al. (2023) arrange a large variety of
PEFT methods into a comprehensive taxonomy
and identify three major classes: Additive (which
includes adapters and soft prompts), Selective, and
Reparametrization-based approaches. In selection-
based approaches, only a certain subset of the pa-
rameters is tuned while other parameters which are
not part of the set remain frozen.

Heuristically Motivated Subsets

Zaken et al. (2022) offer a particularly simple vari-
ant: In BitFit, only the bias terms (or in a variation
of this approach, only certain bias terms) are tuned.
This removes the need to compute and handle pa-
rameter masks. Qi et al. (2022) propose LN-tuning
(tuning only the LayerNorm modules) and suggest
combining this with other methods (such as prefix
tuning).

Empirical Fisher Information

Sung et al. (2021) attempt to determine the subset
by a less heuristics-based approach and instead pro-
pose to use the empirical Fisher information of the
network parameters to determine each parameter’s
importance (compare with Kirkpatrick et al., 2017).
The Fisher information estimates the impact of a
parameter on the model’s prediction. Since the
Fisher information matrix is intractable to compute,
a common approximation is to only use the diago-
nal and approximate the sample distribution with
the available N samples x1, ..., xy. The estimated
Fisher information F} of each parameter can then
be expressed as:

N

1

NZ y~po(y|zi) v910gp9(y’xi))2 (D
=0

In cases where many classes are available, calcu-
lating the expected value requires a large number of
backward passes. Hence, it is common to simplify
this using the "empirical Fisher" F, which can be
derived by replacing the expected value with the
observed label ; of each sample. !

N

1
N Z (Vo log po(yilzi))?)

=0

Fy =

To retrieve a fine-tuning mask, the k£ parameters
with the respective largest values are selected. All
other parameters will remain frozen.

Using a fine-tuning mask trades off simplicity
for a more theoretically substantiated method for
determining the subset to be fine-tuned.

2.2 Lottery Ticket Hypothesis

A different line of research tests the lottery ticket
hypothesis (Frankle and Carbin, 2019) for pre-
trained language models. The lottery ticket hy-
pothesis states that the performance of a randomly
initialized dense neural network can be matched
by only training a certain subnetwork (i.e. only a
subset of the parameters). Typically, these subsets
can only be found by training the complete net-
work and pruning connections iteratively (Frankle
and Carbin, 2019; Zhou et al., 2020; Chen et al.,
2021). More recent literature has tried to trans-
late these findings to pretrained language models
(Chen et al., 2020; Zheng et al., 2022; Liang et al.,

Note that the result is identical to the sum of the squared
gradients of the cross-entropy loss over a given dataset.

2021; Gong et al., 2022). Recent research seems
to suggest that it might be feasible to find suitable
subnetworks without prior training (and pruning)
since the weights are no longer random (Sung et al.,
2021; Prasanna et al., 2020).

While the lottery ticket hypothesis typically in-
duces a different perspective, there are important
ties between this line of research and parameter-
efficient fine-tuning. The ability to find transferable
(or general) true (in the sense of perfectly matching
performance) "winning lottery tickets" would have
considerable implications for parameter-efficient
fine-tuning. Vice-versa, well-working methods to
select subsets to be fine-tuned might reveal infor-
mation about winning lottery tickets in general.

3 Subset Selection and Downstream Task
Performance

In this first series of experiments, we aim to investi-
gate the impact of the subset selection strategy and
the subset size on the performance of the embed-
ding network on a downstream task. Each configu-
ration is evaluated with respect to the performance
on each of the four downstream tasks. We first
describe the used selection strategies and the ex-
perimental setup, before discussing the observed
impact of these two variables.

3.1 Subset Selection Strategies

We compare a number of different selection strate-
gies. Some of the strategies are task-independent
while others rely on the task’s training data to se-
lect the parameters to be tuned. As a baseline, we
include a random selection of parameters

One of the simplest strategies is BitFit (Zaken
et al., 2022). Here, all bias terms are selected for
tuning while all other parameters remain frozen
(see Figure 1). The tuned portion depends on the
model’s architecture and is not flexible. The au-
thors offer a second variant that uses only some
of the bias terms. However, we exclude this sec-
ond variant from our analysis since we compare
subset selections of similar size. Where not noted
differently, we use the resulting portion of active
parameters as target portion for the other methods.

In Diff pruning (Guo et al., 2021), the model is
fine-tuned completely (with some regularization)
before pruning away the smallest differences to
the pretrained model. The pruned weights are not
set to zero but to their original value. We test two
variants (using L1 instead of LO-regularization):

One where we prune without re-training and one
where we prune with retraining the remaining
weights (initialized with the pretrained parameters).
We only prune and re-train a single time to mimic
the other subset methods as closely as possible (i.e.
using a pre-computed mask for a single training
run). The first variant cannot be considered a subset
tuning method. The second does include a subset
tuning step, but still requires a costly initial full-
finetuning step. It might be possible to approximate
the subset selection by training the model for a
shorter period, but this is outside the scope of this
paper.

Sung et al. (2021) propose choosing a subset
based on the empirical Fisher information on the
downstream data ngdownst,ﬂ,. This is equivalent
to picking the largest sum of squared gradients
(largest downstr. sq-grad) of the cross-entropy
loss.

Inspired by elastic weight consolidation (Kirk-
patrick et al., 2017), we decided to additionally
consider the gradient statistics on a portion of the
pretraining data F@p,«et,«. (using 30508 samples of
wikitext, Merity et al., 2016). While choosing the k&
parameters with the smallest empirical Fisher infor-
mation would be more in line with their proposal,
we found that (this binarized version) leads to a se-
lection of parameters that receive minimal gradient
flow. For the fine-tuning to have a non-negligible
effect would require a learning rate that is to high
for the decoder to remain stable. We hence pick
the largest values instead (largest pretr. sq-grad),
expecting the subset to be particularly bad.

Finally, we propose a combined measure that
selects parameters with large squared downstream
gradients and lower squared pretraining gradients.
This is an attempt to force the selection to consider
task-specific information not merely the received
gradient magnitudes. The strategy selects parame-
ters with the largest values of:

F@,downstr.

= (3)
1+ Fe,pretr.

Gcombined =

3.2 Experimental Setup

Evaluation datasets. We evaluate all considered
subset selection strategies (together with full fine-
tuning baselines) to tune a RoBERTa-base model
(125M parameters) on four tasks:

e SST-2 (Socher et al., 2013), a sentiment clas-
sification task,

* QNLI (Wang et al., 2018) a question answer-
ing natural language inference task,

* CoNLL-2003 (Tjong Kim Sang and De Meul-
der, 2003), a named entity recognition tasks,

* TREC-6 (Hovy et al., 2001; Li and Roth,
2002), a question classifcation task.

In the case of SST-2 and QNLI which both are

part of the General Language Understanding Eval-
uation (GLUE) benchmark (Wang et al., 2018), we
use the development set in place of the test set (as
the test set is not readily available and requires a
submission for each set of predictions).
Decoder initialization. As each task requires a
randomly initialized decoder on top of the PLM,
we first execute a decoder-tuning step in which we
train the decoder over the frozen PLM (Cui et al.,
2023). Fine-tuning the decoder first (while initially
keeping the embedding network frozen) helps to
mitigate the effect of the different selections of
learning rates used in the experiments on the de-
gree to which the decoder adapts to the embedding
network versus vice-versa. The much higher learn-
ing rate required by some of the variants can be
quite an advantage or disadvantage as a randomly
initialized decoder requires significantly more tun-
ing. The hyperparameters used to tune the decoders
can be found in Table 4 in Appendix A.

Like the fine-tuned task-specific decoder, the gra-

dient statistics can also be shared across multiple
repetitions of the experiment. A different decoder
initialization leads to different gradients. Hence,
using the same initialization of the decoder across
the experiments is required to allow sharing of the
gradient statistics.
Experimental framework and hyperparameters.
All experiments were conducted using the Flair-
framework (Akbik et al., 2019), using their de-
fault implementations for the embeddings and task-
specific decoders. 2

Most of the hyperparameters used in fine-tuning
the embedding network are set to standard values
and are kept consistent over all experiments. There
is no indication that these settings favor any of the
variants (though this cannot be entirely ruled out).
These hyperparameters can be found in Table 2.

To ensure a level playing field, an exhaustive
grid search was performed over an equally spaced

>The configurations, code, and resulting metadata will be
published upon acceptance.

Task CoNLL-2003 QNLI SST-2 TREC-6 Avg.
Variant

Full fine-tuning 0.9217 £0.0009 0.9290 = 0.0018 0.9468 + 0.0013 0.9752 +0.0046 0.9432
LoRA (rank 4) 0.9139 £0.0018 0.9165 +0.0021 0.9406 £0.0031 0.9708 £0.0041 0.9354
Random subset 0.9087 £0.0012 0.9048 £0.0029 0.9342 +0.0028 0.9720 +0.0032 0.9299
Bitfit 0.9080 +£0.0014 0.9039 £0.0018 0.9383 £0.0026 0.9592 +0.0059 0.9273
Largest pretr. sq-grad 0.9073 £0.0016 0.9037 £0.0028 0.9378 +0.0052 0.9552 +0.0061 0.9260
Largest downstr. sq-grad 0.9073 £0.0020 0.9075 £0.0010 0.9399 +0.0031 0.9580 +0.0049 0.9282
Combined gradient stats 0.9082 +0.0022 0.9100 £0.0020 0.9431 +0.0033 0.9644 £0.0030 0.9314
Pruning with re-training 0.9108 £0.0025 0.9059 +0.0026 0.9390 +0.0044 0.9696 +0.0017 0.9313
Pruning w/o re-training 0.9002 £0.0011 0.9102 £0.0016 0.9376 £0.0059 0.9556 +0.0022 0.9259

Table 1: Performance of the tested variants using roberta-base and a subset size similar to bitfit (except full fine-

tuning). All scores are averaged over 5 runs (seeds).

Hyperparameter Value

Number of epochs 2or4
Batch size 16

Weight decay none
Gradient norm clipping 5.0

Learning rate schedule
Warm-up fraction

Linear with warm-up
10%

Table 2: The hyperparameters used in the fine-tuning
experiments. Default values of Flair (Akbik et al., 2019)
for fine-tuning are denoted in ifalics. For the larger task
(QNLI) 2 epochs were used, in all other tasks 4.

grid (in the case of the learning rate, in logarith-
mic space). In cases where the limit of the range
was selected, we considered the experiment to be
invalid and repeated it with a larger range. This
ensures that a sufficiently large range is selected
(assuming the objective is convex with respect to
the respective hyperparameters).

3.3 Results

We present the experimental results, first focusing
on the different subset selection strategies (Sec-
tion 3.3.1) and then present an ablation study where
we vary the size of the subset (Section 3.3.2).

3.3.1 Selection Strategies

Table 1 reports the performance on each of the
four downstream tasks. We make the following
observations:

Full fine-tuning best, followed by LoRA. Unsur-
prisingly, we note that the full fine-tuning base-

line outperforms all parameter-efficient fine-tuning
methods on all of the tasks. It therefore represents
the upper bound that selection-based approaches
can achieve. Through not a selection-based ap-
proach, we also find that LoRA is always among
the top two PEFT methods.

Different selectors score similarly. We also note
that different selection-based strategies score simi-
larly, with combined gradient statistics marginally
outperforming the other two approaches using gra-
dient statistics. On average it outperforms all
proper subset tuning methods which do not require
any initial full fine-tuning. The method using com-
bined gradient statistics consistently outperforms
the other two approaches using gradient statistics
(though only by a small margin).

Surprisingly strong results for random subset.
Even the random baseline (using a large enough
learning rate), fares surprisingly well. In a single
instance, it even outperforms the other PEFT meth-
ods. We conclude that the performance differences
in these experiments are not drastic and that even a
properly tuned random subset scores competitively
with more complex approaches.

3.3.2 Subset Size

It is important to consider the joint impact of
the subset size and selection method on the ideal
learning rate when trying to optimize performance.
Hence, in this ablation, we vary the subset size and
assess its impact independently.

While the gradient flow throughout the network
remains unchanged by the subset, the potential
change of the network’s function depends on (1) the

Randomly selected subset Largest downstream sq-grad

Learning rate

10~ 1071 10~ 1071

Subset size Subset size

Figure 2: Selected learning rate (y-axis) based on the
subset size (x-axis) and two selection strategies: Ran-
dom (left) and largest average squared gradient on the
downstream data (right). A red triangle indicates that
the learning rate at the limit of the range was selected
and might therefore be suboptimal. For more learning
rate selection plots, see Figure 4.

number of parameters that can be affected and
(2) the gradient these parameters receive. If the
average gradient is much lower for a given set of
parameters, a higher learning rate may produce
better results.

This is very prominent in the comparison of a
random subset and a subset selected by large Fisher
Information (see Figure 2). The latter subset re-
ceives (on average) a larger gradient magnitude
and may therefore require a lower learning rate.

Figure 3 illustrates the impact of the tuned subset
size on the downstream performance.

The approaches of using either the combined
or only the downstream gradient statistics method
outperform all other selective PEFT methods when
using very small subset sizes. Pruning without
retraining underperforms likely due to the large
amount of information that is lost during the prun-
ing step. At small subset sizes and compared to
the other approaches, the random baseline does not
perform as well. It should be mentioned though,
that in the case of the smallest subset size (and for
TREC-6 the second smallest), the highest available
learning rate of 0.1 was selected. Due to the already
large range, we did not repeat this experiment with
even larger learning rates.

4 Generality & Adaptability of the
Embedding Network

We extend our evaluation to investigate how the
generality of the embedding network is impacted
by the applied fine-tuning method. To this end,
we leverage the transformer networks fine-tuned
with different selection strategies on a primary task
from the previous experiment and evaluate their
usefulness for a distinct secondary task.

CoNLL-2003

Full fine-tuning
o 0.90
£ Q
o
T 0.85 1
a
0.80 T T T
TREC-6
L0 Fyy fine-tuning
N P
c
£
5 0.9 1
o
a
08 T T T
105 103 101
Subset Size

Variant

Random subset

Pruning w/o re-training
Pruning with re-training
Largest downstr. sg-grad
Largest pretr. sq-grad

Combined gradient stats

Figure 3: Performance of different variants across dif-
ferent subset sizes

In total, we report the following measures:

1. The test score on the primary task and the
generalization gap,

2. the performance on a masked-language mod-
eling (MLM) task using a tuned two-layer
probe, and

3. the performance on a set of secondary tasks
(after adapting the model).

We therefore assess how the embedding net-
work’s function changes in terms of its capability
to adapt to new tasks.

4.1 Notes on Measuring Generality

We preface this experiment with the note that the
“generality” of a model is no well-defined concept.
Zaken et al. (2022) mention the generalization gap
(the difference between the test and train perfor-
mance). We are, however, not only interested in

Prim. MLM Gap Sec. Sec. (decoder)
Variant
Full fine-tuning 0.0000 +0.0023 -0.0584 +0.0172 -0.0402 £0.0189 -0.0020 +0.0026 0.0421 +0.1070
Regularized FT (L1, 0.01) -0.0290 +0.0178 -0.0274 +0.0087 -0.0025 +0.0194 -0.0029 +0.0039 0.0423 +0.1015
Regularized FT (L1, 0.10) -0.0527 £0.0264 -0.0299 £0.0180 0.0068 +0.0174 -0.0018 +0.0029 0.0401 +0.0845
Regularized FT (L2, 0.01) -0.0025 £ 0.0034 -0.0431 £0.0114 -0.0376 +£0.0208 -0.0035 +0.0036 0.0330 +0.1188
Regularized FT (L2, 0.10) -0.0028 +0.0028 -0.0293 +0.0060 -0.0311 +£0.0204 -0.0042 +0.0041 0.0614 = 0.1114
LoRA (rank 4) -0.0077 £0.0041 -0.0742 +0.0109 -0.0225 +0.0218 -0.0271 +0.1153 0.0014 +0.1127
Random subset -0.0133 £0.0079 -0.0675 +£0.0270 -0.0245 +0.0200 -0.0054 +0.0038 0.0387 +0.1290
Bitfit -0.0159 +£0.0068 -0.1202 £0.0392 -0.0066 +0.0174 -0.0026 +0.0029 -0.0096 * 0.1583
Largest pretr. sq-grad -0.0172 £0.0073 -0.1469 £0.0436 -0.0092 +0.0212 -0.0051 £0.0039 -0.0225 +0.1367
Largest downstr. sq-grad ~ -0.0150 £0.0061 -0.1162 £0.0328 -0.0078 £0.0195 -0.0046 +0.0040 0.0033 +0.1356
Combined gradient stats ~ -0.0118 £0.0061 -0.1140 +0.0249 -0.0072 £0.0187 -0.0039 +0.0038 0.0112 +0.1382
Pruning with re-training -0.0119 £0.0073 -0.0613 £0.0195 -0.0238 £0.0205 -0.0054 +0.0039 0.0543 + 0.1280
Pruning w/o re-training -0.0173 £0.0057 -0.0496 +0.0125 -0.0021 £0.0193 -0.0014 +0.0032 0.0451 £0.1162

Table 3: Performance of the tested variants using roberta-base. Primary and secondary score differences compared
to full fine-tuning on the pretrained embedding network. Secondary score of a tuned decoder (compared to a decoder
tuned on the pretrained embedding network). Gap refers to the negative train/test gap (values smaller than zero
indicate the test score is lower than the train score; the higher the better). MLM score difference to the inital MLM
score. All scores are averaged over 5 runs (seeds) and all secondary tasks. Higher values are better (in all of the
columns). We mark the best score (per column) in bold and the second best in italics. See Table 1 for the primary

scores on each of the tasks.

whether a model generalizes well to the test data
but a broader notion of generality.

Looking solely at the test score is also not suf-
ficient as we might not be confident that the test
set represents our deployment distribution. Addi-
tionally, the current fine-tuning step might not be
the last in our transfer learning pipeline. In these
cases, we want to preserve some general language
capabilities much like we would like to preserve
a good performance on some previous task in a
continuous learning setting (see e.g. Kirkpatrick
et al., 2017). The primary objective of this work,
however, is not to attempt to resolve the question
of how to quantify generality.

In light of the vague nature of the objective and
due to the lack of a more suitable evaluation frame-
work, we opt to report masked-language modeling
(MLM) and performance on secondary tasks as a
proxy for generality. Though we are not strictly in
a continuous learning setting, these measures can
be conceived of as backward and forward transfer
(compare with Lopez-Paz and Ranzato, 2022). The
first measure represents how much of the previous
function (i.e. the masked-language modeling) was
preserved, while the second describes how well

each variant preserved the task-generality (see Lin
et al., 2023) while fine-tuning on a specific task (or
averaged across the complete set).

4.2 Experimental Setup

The experimental setup is identical to the first se-
ries of experiments (as described in Section 3.2),
but extends it by a final step. After fine-tuning the
model with one of the approaches, the embedding
network is reused with a new task-specific classi-
fication head, fine-tuned on a secondary task, and
then evaluated on the respective test sets.

During MLM probing, the embedding network
remains unchanged while a two-layer MLP decoder
head is tuned to solve an MLM task (a small por-
tion of wikitext, see Table 5 in Appendix A for
a detailed list of used hyperparameters). After a
few epochs of training, the model is evaluated on
the test set. Re-training an MLM head may not
seem necessary (as one might want to conserve the
original embeddings). We believe, however, that a
simple transformation (e.g. a rotation, scaling, etc.)
should not be counted as a reduction in the general
capabilities: The underlying information content
would not have changed, only the representation.

Hence, we re-train the MLM decoder to correct for
such transformations.

To fine-tune the (already tuned) model on the sec-
ondary tasks, we use the same hyperparameter as
presented in Table 2. Regardless of the fine-tuning
strategy that is applied in the primary adaption, we
first tune the task-specific decoder to adapt to the
current state of the embedding network (the scores
of tuning only the decoder are reported separately;
this is similar to Xu et al., 2021). We then apply a
full fine-tuning of the model together with the de-
coder. This ensures a fair evaluation and guarantees
we are measuring a property of the current state of
the model, not the ability of the approach to adapt
the model. The learning rate is selected based on
a grid search conducted on the pretrained version
of the model. Thus, for all secondary fine-tuning
runs, the same learning rates are used.

4.3 Results

Table 3 contains a summary of the collected results.
As mentioned in the previous section, LoRA ex-
hibits the largest average primary test scores among
the parameter-efficient fine-tuning techniques. In
terms of the generalization, it has a mid-range rank.
As expected, using the largest Fisher informa-
tion on the pretraining data not only fares worse
in regard to the primary score but also is one of
the worst with respect to its generalization capabili-
ties. Using these statistics combined with the down-
stream information, however, does slightly improve
the subsets based on the largest downstream Fisher
information (largest downstream sq-grad). If the
embedding network is not tuned a second time (but
only the task-specific decoder), this approach also
outperforms BitFit.
Subset tuning impairs adaptation to new tasks.
None of the strategies outperform full fine-tuning in
terms of the embedding network’s ability to adapt
to new tasks by fine-tuning the complete model or
only the decoder. Follow-up experiments would
be required to determine whether the same applies
when fine-tuning the model with the same strategy
as in the primary adaptation.
BitFit with small train/test gap. As observed by
Zaken et al. (2022), BitFit has a very low train/test
gap. In our experiments, it has the lowest train/test
gap among the PEFT methods. Only one of the
regularized methods has a better gap (here the test
score is actually higher; the primary score of this
is very low). Full fine-tuning (as one might expect)
has the highest overall train/test gap.

4.4 Similar vs. Dissimilar Secondary Tasks

In a follow-up experiment, we assess the impact
of the similarity between the primary and sec-
ondary task. We first fine-tune a cross-lingual trans-
former model (XLM-RoBERTa-base, 279M param-
eters, Conneau et al., 2020) on the English version
of CoNLL-2003 (a named entity recognition task)
and then evaluate its performance after running a
secondary fine-tuning on CoNLL-2003 in German
(which we assume to be similar as the classes are
identical) as well as TREC-6 which is a question
classification task and thus differs more from the
primary task.

Unfortunately, the data is fairly inconsistent.
Since we only used two tasks (one for each cat-
egory of similar vs. dissimilar), it is not possible to
draw any definite conclusions from this. Nonethe-
less, we include these results in the appendix. Ta-
ble 8 in the appendix contains a detailed report of
these results.

5 Conclusion

In our evaluation of fine-tuning strategies, full
fine-tuning consistently outperforms all parameter-
efficient fine-tuning (PEFT) methods across vari-
ous tasks. LoRA consistently ranks among the top
two PEFT methods in our experiments.

Examining the utilization of gradient statistics,
we observe that the method using combined gra-
dient statistics consistently outperforms its coun-
terparts, although the performance improvement is
marginal. On average, this approach surpasses all
proper subset tuning methods that do not necessi-
tate initial full fine-tuning.

Nevertheless, it is worth noting that the differ-
ences in performance across these experiments may
not be substantial enough to justify the added com-
plexity. Surprisingly, even the random baseline,
with a sufficiently high learning rate, demonstrates
competitive performance, occasionally outperform-
ing other PEFT methods.

Given the strong results of the random baseline
and the generally similar performance on primary
tasks, our results call into question whether there
is a clear optimal subset of parameters to tune. Fur-
thermore, our generalization experiments indicate
that selective PEFT strategies impair rather than
increase generalizability to secondary tasks, likely
due to PEFT affecting more localized and severe
changes to the transformer network.

Limitations

The experiments we report on in this paper were
performed using a single model (roberta-base)
and on a limited number of tasks. Hence, there is
no guarantee that these findings transfer to large
models and more complex transfer-learning scenar-
i0s. Due to the exhaustive learning rate search, we
set out to conduct and given the resources that were
available to us, testing the observations on a larger
set of models and tasks was not possible. Testing
specific hypotheses on a broader set of models and
tasks may be part of future work.

Impact Statement

Large language models have the potential to re-
produce multiple forms of stereotypes due to their
ability to absorb societal biases ingrained in the
training data. Research into parameter-efficient
fine-tuning methods is unlikely to change this be-
havior. Additionally, training of language models
is computationally demanding and carries a sub-
stantial environmental burden. This complexity
further hampers the prospects of reproducing re-
search findings and conducting subsequent studies
in an academic setting. Parameter-efficient fine-
tuning aims to reduce the required computational
resources and might enable broader use of such
models.

The experiments we conducted in the context of
this paper amount to an estimated number of 150
GPU days using a mix of GPUs (mostly Nvidia
Tesla V100S and some Nvidia Ampere A100).

References

Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif
Rasul, Stefan Schweter, and Roland Vollgraf. 2019.
FLAIR: An Easy-to-Use Framework for State-of-
the-Art NLP. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics (Demonstrations),
pages 54-59, Minneapolis, Minnesota. Association
for Computational Linguistics.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia
Liu, Yang Zhang, Zhangyang Wang, and Michael
Carbin. 2020. The Lottery Ticket Hypothesis for
Pre-trained BERT Networks. In Proceedings of the
34th International Conference on Neural Information
Processing Systems, NIPS’20, pages 15834—15846,
Red Hook, NY, USA. Curran Associates Inc.

Xiaohan Chen, Yu Cheng, Shuohang Wang, Zhe Gan,
Jingjing Liu, and Zhangyang Wang. 2021. The Elas-
tic Lottery Ticket Hypothesis.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmadn, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
Cross-lingual Representation Learning at Scale.

Ganqu Cui, Wentao Li, Ning Ding, Longtao Huang,
Zhiyuan Liu, and Maosong Sun. 2023. Decoder Tun-
ing: Efficient Language Understanding as Decoding.

Jonathan Frankle and Michael Carbin. 2019. The Lot-
tery Ticket Hypothesis: Finding Sparse, Trainable
Neural Networks. arXiv:1803.03635 [cs].

Zhuocheng Gong, Di He, Yelong Shen, Tie-Yan Liu,
Weizhu Chen, Dongyan Zhao, Ji-Rong Wen, and Rui
Yan. 2022. Finding the Dominant Winning Ticket
in Pre-Trained Language Models. In Findings of
the Association for Computational Linguistics: ACL
2022, pages 1459-1472, Dublin, Ireland. Association
for Computational Linguistics.

Demi Guo, Alexander M. Rush, and Yoon Kim. 2021.
Parameter-Efficient Transfer Learning with Diff Prun-
ing.

Eduard Hovy, Laurie Gerber, Ulf Hermjakob, Chin-
Yew Lin, and Deepak Ravichandran. 2001. Toward
Semantics-Based Answer Pinpointing. In Proceed-
ings of the First International Conference on Human
Language Technology Research.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. LoRA: Low-Rank Adaptation
of Large Language Models.

Diederik P. Kingma and Jimmy Ba. 2017. Adam: A
Method for Stochastic Optimization.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A. Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, Demis Hassabis, Clau-
dia Clopath, Dharshan Kumaran, and Raia Had-
sell. 2017. Overcoming catastrophic forgetting
in neural networks. Proceedings of the National
Academy of Sciences of the United States of America,
114(13):3521-3526.

Xin Li and Dan Roth. 2002. Learning Question Clas-
sifiers. In COLING 2002: The 19th International
Conference on Computational Linguistics.

Vladislav Lialin, Vijeta Deshpande, and Anna
Rumshisky. 2023. Scaling Down to Scale Up: A
Guide to Parameter-Efficient Fine-Tuning.

Chen Liang, Simiao Zuo, Minshuo Chen, Haoming
Jiang, Xiaodong Liu, Pengcheng He, Tuo Zhao, and
Weizhu Chen. 2021. Super Tickets in Pre-Trained
Language Models: From Model Compression to Im-
proving Generalization.

https://doi.org/10.18653/v1/N19-4010
https://doi.org/10.18653/v1/N19-4010
https://doi.org/10.18653/v1/N19-4010
http://arxiv.org/abs/2103.16547
http://arxiv.org/abs/2103.16547
http://arxiv.org/abs/2103.16547
https://doi.org/10.48550/arXiv.1911.02116
https://doi.org/10.48550/arXiv.1911.02116
https://doi.org/10.48550/arXiv.1911.02116
http://arxiv.org/abs/2212.08408
http://arxiv.org/abs/2212.08408
http://arxiv.org/abs/2212.08408
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1803.03635
http://arxiv.org/abs/1803.03635
https://doi.org/10.18653/v1/2022.findings-acl.115
https://doi.org/10.18653/v1/2022.findings-acl.115
https://doi.org/10.18653/v1/2022.findings-acl.115
https://doi.org/10.48550/arXiv.2012.07463
https://doi.org/10.48550/arXiv.2012.07463
https://doi.org/10.48550/arXiv.2012.07463
https://aclanthology.org/H01-1069
https://aclanthology.org/H01-1069
https://aclanthology.org/H01-1069
https://doi.org/10.48550/arXiv.2106.09685
https://doi.org/10.48550/arXiv.2106.09685
https://doi.org/10.48550/arXiv.2106.09685
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1073/pnas.1611835114
https://doi.org/10.1073/pnas.1611835114
https://aclanthology.org/C02-1150
https://aclanthology.org/C02-1150
https://aclanthology.org/C02-1150
http://arxiv.org/abs/2303.15647
http://arxiv.org/abs/2303.15647
http://arxiv.org/abs/2303.15647
https://doi.org/10.48550/arXiv.2105.12002
https://doi.org/10.48550/arXiv.2105.12002
https://doi.org/10.48550/arXiv.2105.12002
https://doi.org/10.48550/arXiv.2105.12002
https://doi.org/10.48550/arXiv.2105.12002

Yong Lin, Lu Tan, Hangyu Lin, Zeming Zheng, Renjie
Pi, Jipeng Zhang, Shizhe Diao, Haoxiang Wang, Han
Zhao, Yuan Yao, and Tong Zhang. 2023. Speciality
vs Generality: An Empirical Study on Catastrophic
Forgetting in Fine-tuning Foundation Models.

David Lopez-Paz and Marc’Aurelio Ranzato. 2022.
Gradient Episodic Memory for Continual Learning.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
Weight Decay Regularization.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer Sentinel Mixture Mod-
els.

Sai Prasanna, Anna Rogers, and Anna Rumshisky. 2020.
When BERT Plays the Lottery, All Tickets Are Win-
ning.

Wang Qi, Yu-Ping Ruan, Yuan Zuo, and Taihao Li. 2022.
Parameter-Efficient Tuning on Layer Normalization
for Pre-trained Language Models.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive Deep Models for
Semantic Compositionality Over a Sentiment Tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631-1642, Seattle, Washington, USA. Asso-
ciation for Computational Linguistics.

Yi-Lin Sung, Varun Nair, and Colin Raffel. 2021. Train-
ing Neural Networks with Fixed Sparse Masks.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoONLL-2003 Shared Task:
Language-Independent Named Entity Recognition.
In Proceedings of the Seventh Conference on Natu-
ral Language Learning at HLT-NAACL 2003, pages
142-147.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A Multi-Task Benchmark and Analysis Platform for
Natural Language Understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: An-
alyzing and Interpreting Neural Networks for NLP,
pages 353-355, Brussels, Belgium. Association for
Computational Linguistics.

Runxin Xu, Fuli Luo, Zhiyuan Zhang, Chuangi Tan,
Baobao Chang, Songfang Huang, and Fei Huang.
2021. Raise a Child in Large Language Model: To-
wards Effective and Generalizable Fine-tuning. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages
95149528, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg.
2022. BitFit: Simple Parameter-efficient Fine-tuning
for Transformer-based Masked Language-models.

10

Rui Zheng, Bao Rong, Yuhao Zhou, Di Liang, Sirui
Wang, Wei Wu, Tao Gui, Qi Zhang, and Xuanjing
Huang. 2022. Robust Lottery Tickets for Pre-trained
Language Models. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 2211-2224,
Dublin, Ireland. Association for Computational Lin-
guistics.

Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosin-
ski. 2020. Deconstructing Lottery Tickets: Zeros,
Signs, and the Supermask. arXiv:1905.01067 [cs,
stat].

http://arxiv.org/abs/2309.06256
http://arxiv.org/abs/2309.06256
http://arxiv.org/abs/2309.06256
http://arxiv.org/abs/2309.06256
http://arxiv.org/abs/2309.06256
https://doi.org/10.48550/arXiv.1706.08840
https://doi.org/10.48550/arXiv.1711.05101
https://doi.org/10.48550/arXiv.1711.05101
https://doi.org/10.48550/arXiv.1711.05101
https://doi.org/10.48550/arXiv.1609.07843
https://doi.org/10.48550/arXiv.1609.07843
https://doi.org/10.48550/arXiv.1609.07843
https://doi.org/10.48550/arXiv.2005.00561
https://doi.org/10.48550/arXiv.2005.00561
https://doi.org/10.48550/arXiv.2005.00561
https://arxiv.org/abs/2211.08682v3
https://arxiv.org/abs/2211.08682v3
https://arxiv.org/abs/2211.08682v3
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
http://arxiv.org/abs/2111.09839
http://arxiv.org/abs/2111.09839
http://arxiv.org/abs/2111.09839
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/2021.emnlp-main.749
https://doi.org/10.18653/v1/2021.emnlp-main.749
https://doi.org/10.18653/v1/2021.emnlp-main.749
https://doi.org/10.48550/arXiv.2106.10199
https://doi.org/10.48550/arXiv.2106.10199
https://doi.org/10.48550/arXiv.2106.10199
https://doi.org/10.18653/v1/2022.acl-long.157
https://doi.org/10.18653/v1/2022.acl-long.157
https://doi.org/10.18653/v1/2022.acl-long.157
http://arxiv.org/abs/1905.01067
http://arxiv.org/abs/1905.01067
http://arxiv.org/abs/1905.01067

A Additional Setup Details

This section contains the remaining hyperparam-
eters used to produce the results presented in this
paper. The code, configurations, and metadata of
the results will be published upon acceptance.

Hyperparameter Value
Number of epochs 5
Learning rate 4x107*
Batch size 64
Weight decay none
Gradient norm clipping 5.0
Learning rate schedule Linear with warm-up
Warm-up fraction 10%

Table 4: The hyperparameters used to fine-tune the task-
specific decoders. Default values of Flair (Akbik et al.,
2019) for fine-tuning are denoted in italics.

Hyperparameter Value
Number of epochs 4
Learning rate 2x 1073
Batch size 64
Weight decay 0.05
Learning rate schedule ~Constant

Table 5: The hyperparameters that used to fine-tune the
MLM head.

B Additional Results

In the following, we present some alternative per-
spectives on the experiments discussed in this paper.
The results are derived from the same set of experi-
ments and are purely a different way of presenting
them.

11

Pruning w/o re-training
on trec-6

Pruning w/o re-training
on conll03

.
15
IR
L
L

=
o
I8

Learning rate

Pruning with re-training
on trec-6

Pruning with re-training
on conll03

._.

15
L
L

=
o
b

Learning rate

Randomly selected subset
on trec-6

Randomly selected subset
on conll03
1071 4 et

&

-
o
b

Learning rate

Largest downstream sqg-gradLargest downstream sq-grad
on conll03

on trec-6

Learning rate

Largest pretraining sq-grad Largest pretraining sq-grad
on trec-6

on conll03

107 4:

103

Learning rate

Combined gradient stats
on trec-6

Combined gradient stats
on conll03

Learning rate

101

104
Subset size

1074 101

Subset size

Figure 4: Selected learning rates for each subset size.
Each grid intersection represents (at least) one experi-
ment conducted in the parameter search. The best learn-
ing is represented by a marker. Learning rates that are
at the limits of the tested intervals are marked red and
may not be optimal given the used resolution (we used
learning rates which, on a logarithmic scale, are approx-
imately equally spaced: 1 x 1074,2 x 1074, 5 x 1074,
1 x 1073, and so on).

CoNLL-2003

task

task = TREC-6

variant = Pruning with re-training

1e-06

N 1e-05

variant = Largest downstr. sq-grad

. 0.0001
. 0.001
. 001
- 01

variant = Largest pretr. sq-grad

variant = Combined gradient stats

s1a1aweled Jo Jaquinu aAne[RYy

task = TREC-6

-2003

task = CoNLL-

sia1sweed Jo JaquINU aANe[RY

variant = Random subset

siajaweed Jo Jaquinu aAnefRy

1e-06

0 1e-05
(B

=
=
=1

variant = Full fine-tuning

s 0.0001
. 0.001

sia1sweed Jo JaquInu aAnejRy

variant = Bitfit

|

Magnitude of chance

siv1pweled Jo Jaquinu aaneRY

sia33weded Jo Jaquinu IAreRY

sia1pweded Jo Jaquinu aaneRy

0~ 10!

10°°

Magnitude of chanpe

Magnitude of chance

Magnitude of chanee

tude of change over the different subset sizes.

in magni

ber of parameters with a certa

: The relative num

Figure 5

12

Primary score

Secondary Score Diff. MLM Precision @1

Primary task Variant
Full fine-tuning 0.9217 £0.0009 -0.0025 +0.0025 0.3756 +0.0024
Random subset 0.9087 £0.0011 -0.0039 +0.0038 0.3754 +0.0061
Bitfit 0.9080 £0.0013 -0.0023 + 0.0023 0.3481 +0.0033

Largest pretr. sq-grad

0.9073 +0.0014

-0.0063 +0.0034

0.2965 +0.0048

CoNLL-2003
Largest downstr. sq-grad 0.9073 +0.0018 -0.0049 + 0.0042 0.3283 +0.0033
Combined gradient stats 0.9082 +0.0020 -0.0046 £ 0.0037 0.3316 +0.0019
Pruning with re-training 0.9108 + 0.0023 -0.0070 +0.0047 0.3552 +0.0063
Pruning w/o re-training 0.9002 +0.0010 -0.0015 =+ 0.0030 0.3891 =+ 0.0028
Full fine-tuning 0.9290 +0.0016 -0.0020 + 0.0016 0.4067 +0.0016
Random subset 0.9048 £0.0026 -0.0056 + 0.0029 0.3817 £0.0031
Bitfit 0.9039 +0.0016 -0.0038 +0.0029 0.2595 £ 0.0151
ONLI Largest pretr. sq-grad 0.9037 £0.0026 -0.0027 +0.0019 0.3040 £ 0.0125
Largest downstr. sq-grad 0.9075 £0.0009 -0.0037 +0.0035 0.3461 £0.0113
Combined gradient stats 0.9100 £0.0018 -0.0028 + 0.0033 0.3407 +£0.0103
Pruning with re-training 0.9059 +0.0024 -0.0051 * 0.0036 0.3828 + 0.0056
Pruning w/o re-training 0.9102 + 0.0014 -0.0013 +0.0032 0.3825 +0.0028
Full fine-tuning 0.9468 +0.0012 -0.0012 + 0.0020 0.3957 +0.0062
Random subset 0.9342 +0.0025 -0.0077 +0.0038 0.3394 +0.0059
Bitfit 0.9383 £ 0.0024 -0.0019 +0.0023 0.3393 +0.0036
SST-2 Largest pretr. sq-grad 0.9378 £0.0048 -0.0021 * 0.0023 0.3531 £0.0036
Largest downstr. sq-grad 0.9399 +0.0028 -0.0017 +0.0027 0.3611 +0.0029
Combined gradient stats 0.9431 +0.0030 -0.0011 = 0.0025 0.3582 +0.0030
Pruning with re-training 0.9390 +0.0040 -0.0051 + 0.0035 0.3854 +0.0036
Pruning w/o re-training 0.9376 +0.0054 -0.0021 +0.0033 0.3950 + 0.0021
Full fine-tuning 0.9752 £ 0.0042 -0.0022 + 0.0031 0.3669 +0.0073
Random subset 0.9720 +0.0029 -0.0022 + 0.0030 0.4135 +0.0033
Bitfit 0.9592 +0.0054 -0.0024 +0.0036 0.3505 +0.0056
TREC-6 Largest pretr. sq-grad 0.9552 £0.0056 -0.0091 * 0.0045 0.2354 £0.0112
Largest downstr. sq-grad 0.9580 +0.0045 -0.0067 +0.0037 0.2781 +£0.0133
Combined gradient stats 0.9644 +0.0027 -0.0048 +0.0042 0.2936 + 0.0099
Pruning with re-training 0.9696 +0.0015 -0.0026 +0.0025 0.4097 £ 0.0037
Pruning w/o re-training 0.9556 +0.0020 -0.0003 = 0.0024 0.4149 = 0.0031

Table 6: Performance of the tested variants using roberta-base. Primary and secondary score compared to full
fine-tuning on the pretrained embedding. MLM is the MLM precision @1 score. All scores are averaged over 5
runs (seeds) and all secondary tasks.

13

Primary score MLM score CoNLL-2003 QNLI SST-2 TREC-6

Primary task ~ Variant

Bitfit 0.9080 +0.0013 0.3481 £0.0033 0.9213 £0.0014 0.9269 +0.0016 0.9433 £0.0026 0.9720 +0.0024
Combined gradient stats ~ 0.9082 +0.0020 0.3316 £0.0019 0.9197 £0.0020 0.9239 +0.0014 0.9383 £0.0021 0.9724 +0.0048

Full fine-tuning 0.9217 £0.0009 0.3756 +0.0024 0.9206 +0.0019 0.9255 £0.0009 0.9433 £0.0039 0.9732 +0.0023
CoNLL-2003 Largest downstr. sq-grad 0.9073 +0.0018 0.3283 +£0.0033 0.9204 £0.0017 0.9248 +0.0014 0.9358 £0.0021 0.9720 + 0.0024
Largest pretr. sq-grad 0.9073 £0.0014 0.2965 +0.0048 0.9180 +£0.0017 0.9235 £0.0020 0.9381 +0.0032 0.9680 + 0.0047
Pruning w/o re-training ~ 0.9002 +0.0010 0.3891 +0.0028 0.9218 +0.0021 0.9277 +0.0013 0.9424 +0.0031 0.9748 + 0.0036
Pruning with re-training ~ 0.9108 £ 0.0023 0.3552 £0.0063 0.9186 £0.0038 0.9179 £0.0013 0.9369 £0.0041 0.9712 +0.0033
Random subset 0.9087 £0.0011 0.3754 £0.0061 0.9188 £0.0013 0.9233 £0.0021 0.9394 £0.0040 0.9756 + 0.0017
Bitfit 0.9039 £0.0016 0.2595 £0.0151 0.9188 £0.0022 0.9248 £0.0015 0.9406 £0.0026 0.9736 +0.0033
Combined gradient stats ~ 0.9100 £0.0018 0.3407 £0.0103 0.9173 £0.0016 0.9256 £0.0009 0.9420 £0.0019 0.9768 + 0.0036
Full fine-tuning 0.9290 +0.0016 0.4067 £0.0016 0.9206 + 0.0013 0.9270 +0.0015 0.9450 +0.0014 0.9720 = 0.0020
ONLI Largest downstr. sq-grad ~ 0.9075 £0.0009 0.3461 £0.0113 0.9182 £0.0004 0.9257 £0.0013 0.9388 £0.0021 0.9752 +0.0033
Largest pretr. sq-grad 0.9037 £0.0026 0.3040 £0.0125 0.9184 £0.0015 0.9257 £0.0010 0.9445 +0.0033 0.9732 £0.0011
Pruning w/o re-training ~ 0.9102 £ 0.0014 0.3825+0.0028 0.9193 +0.0020 0.9263 +0.0017 0.9447 +0.0030 0.9772 +0.0036
Pruning with re-training ~ 0.9059 +0.0024 0.3828 + 0.0056 0.9161 £0.0024 0.9240 +0.0020 0.9399 £0.0055 0.9724 +0.0033
Random subset 0.9048 +£0.0026 0.3817 £0.0031 0.9175+0.0015 0.9246 +0.0027 0.9385 +0.0031 0.9696 + 0.0030
Bitfit 0.9383 +£0.0024 0.3393 £0.0036 0.9199 +0.0011 0.9281 +0.0018 0.9445 £0.0037 0.9728 +0.0023
Combined gradient stats ~ 0.9431 +0.0030 0.3582 £0.0030 0.9196 £0.0012 0.9268 +0.0009 0.9472 £ 0.0037 0.9748 = 0.0027
Full fine-tuning 0.9468 +0.0012 0.3957 £0.0062 0.9205 +0.0012 0.9284 +0.0011 0.9443 £0.0019 0.9748 = 0.0030
SST-2 Largest downstr. sq-grad 0.9399 +0.0028 0.3611 £0.0029 0.9192 £0.0017 0.9277 £0.0018 0.9450 +0.0014 0.9740 + 0.0051
Largest pretr. sq-grad 0.9378 £0.0048 0.3531 £0.0036 0.9197 £0.0010 0.9278 £0.0016 0.9450 +0.0024 0.9720 + 0.0037
Pruning w/o re-training ~ 0.9376 +0.0054 0.3950 +0.0021 0.9199 +0.0020 0.9262 +0.0006 0.9461 + 0.0030 0.9720 +0.0057
Pruning with re-training ~ 0.9390 +0.0040 0.3854 £0.0036 0.9166 +0.0007 0.9222 +0.0022 0.9420 +0.0057 0.9716 % 0.0036
Random subset 0.9342 +0.0025 0.3394 £0.0059 0.9142+0.0029 0.9183 £0.0034 0.9420 +0.0047 0.9676 +0.0017
Bitfit 0.9592 +0.0054 0.3505 £0.0056 0.9192 +0.0011 0.9306 +0.0004 0.9415 +0.0044 0.9720 % 0.0032
Combined gradient stats ~ 0.9644 +0.0027 0.2936 £0.0099 0.9161 £0.0008 0.9252 +0.0031 0.9378 £0.0045 0.9744 + 0.0030
Full fine-tuning 0.9752 +0.0042 0.3669 £0.0073 0.9197 £0.0009 0.9290 + 0.0024 0.9420 +0.0047 0.9732 +0.0018
TREC-6 Largest downstr. sq-grad ~ 0.9580 +0.0045 0.2781 £0.0133 0.9169 £0.0014 0.9237 £0.0017 0.9365 £0.0021 0.9688 +0.0058

Largest pretr. sq-grad 0.9552 £0.0056 0.2354 £0.0112 0.9154 £0.0016 0.9205 £0.0031 0.9365 +0.0033 0.9640 + 0.0076
Pruning w/o re-training ~ 0.9556 +0.0020 0.4149 +0.0031 0.9207 +0.0023 0.9285 +0.0013 0.9486 +0.0025 0.9740 +0.0024
Pruning with re-training ~ 0.9696 +0.0015 0.4097 £0.0037 0.9206 +0.0015 0.9252 +0.0013 0.9427 +0.0024 0.9740 +0.0032
Random subset 0.9720 £ 0.0029 0.4135 £0.0033 0.9200 £0.0012 0.9275 £0.0023 0.9415 £0.0014 0.9748 + 0.0041

Table 7: Performance of full fine-tuning on a secondary task after a applying each variant on the primary task using
a RoBERTa (base). All scores are averaged over 5 runs (std in parentheses).

14

CoNLL-2003 (English) CoNLL-2003 (German) TREC-6
Sec. (decoder) Sec. (full) Sec. (decoder) Sec. (full)
Subset size Variant
Combined gradient stats 0.8874 = 0.0017 0.7808 +0.0058 0.8659 £ 0.0041 0.5048 +0.0934 0.9624 +0.0054
Largest downstr. sq-grad 0.8849 +0.0039 0.7749 £0.0025 0.8648 £0.0033 0.5252 £ 0.0354 0.9660 =+ 0.0065
0.000100 Largest pretr. sq-grad 0.8665 +0.0023 0.7419 £0.0056 0.8608 +£0.0035 0.4928 +0.0966 0.9660 + 0.0051
Pruning w/o re-training 0.8867 + 0.0016 0.7926 £0.0025 0.8717 +0.0017 0.4860 +0.0462 0.9716 + 0.0046
Pruning with re-training 0.8618 +0.0028 0.4617 £0.0134 0.8598 £0.0035 0.3048 £0.0539 0.9636 +0.0048
Random subset 0.8590 +0.0026 0.3151 £0.0210 0.8504 +0.0049 0.2576 +0.0095 0.9572 +0.0041
Combined gradient stats 0.8962 + 0.0009 0.7868 £0.0055 0.8690 +0.0025 0.4708 +0.0768 0.9700 + 0.0032
Largest downstr. sq-grad 0.8980 + 0.0025 0.7883 +0.0041 0.8704 +0.0033 0.4468 +0.0389 0.9700 = 0.0032
0.001000 Largest pretr. sq-grad 0.8910 +0.0027 0.7655 £0.0087 0.8654 £0.0029 0.5488 +0.0318 0.9640 + 0.0081
Pruning w/o re-training 0.8891 +0.0019 0.7899 +0.0019 0.8719 £0.0009 0.4972 +0.0256 0.9700 = 0.0051
Pruning with re-training 0.8986 + 0.0013 0.7410 £0.0030 0.8578 £0.0047 0.4404 £0.0632 0.9680 +0.0051
Random subset 0.9000 = 0.0020 0.7430 +0.0106 0.8581 £0.0035 0.3924 +0.0724 0.9684 + 0.0057
Combined gradient stats 0.9081 +0.0019 0.7896 +0.0066 0.8682 +0.0027 0.4524 +0.0713 0.9656 + 0.0078
Largest downstr. sq-grad 0.9078 +0.0018 0.7991 £0.0027 0.8683 +0.0020 0.4240 £0.0770 0.9696 + 0.0017
0.010000 Largest pretr. sq-grad 0.9028 +0.0012 0.7671 £0.0040 0.8636 +£0.0056 0.5052 +0.0278 0.9636 +0.0033
Pruning w/o re-training 0.9078 £ 0.0015 0.7987 +0.0047 0.8727 £0.0034 0.5352 +0.0276 0.9680 = 0.0047
Pruning with re-training 0.9121 + 0.0019 0.7912 £0.0040 0.8668 +0.0027 0.5316 £0.0415 0.9704 +0.0017
Random subset 0.9112 +0.0022 0.7927 +0.0022 0.8670 +0.0038 0.4956 +0.0478 0.9636 + 0.0038
Combined gradient stats 0.9135 + 0.0026 0.7918 +0.0052 0.8661 £0.0051 0.5112 £0.0363 0.9676 +0.0043
Largest downstr. sq-grad 0.9139 + 0.0026 0.7881 £0.0037 0.8629 £0.0043 0.5420 £ 0.0248 0.9696 + 0.0048
0.100000 Largest pretr. sq-grad 0.9117 £0.0020 0.7811 £0.0049 0.8664 +0.0019 0.5196 £0.0528 0.9660 + 0.0062
Pruning w/o re-training ~ 0.9080 + 0.0017 0.7989 +0.0047 0.8720 +0.0028 0.5332 +0.0301 0.9688 + 0.0052
Pruning with re-training 0.9123 +0.0019 0.7885 £0.0057 0.8651 £0.0051 0.5536 +0.0417 0.9688 + 0.0066
Random subset 0.9108 +0.0017 0.7701 £0.0064 0.8638 £0.0044 0.4304 £0.1021 0.9656 +0.0055

Table 8: Score a full fine-tuning on CoNLL-2003 (german), compared to a baseline (full ft on pretrained) of 0.8724
(0.0023), and TREC-6 after fine-tuning using each of the variants on CoNLLO3 (english). Each score is shown in
the respective column.

Task CoNLL-2003 QNLI SST-2 TREC-6
Variant

LoRA (rank 1, 0.03%) 0.9059 £0.0025 0.9072 +0.0026 0.9353 +0.0043 0.9636 + 0.0043
LoRA (rank 2,0.06%) 09114 £0.0020 0.9133 £0.0022 0.9353 £0.0039 0.9652 +0.0039
LoRA (rank 3,0.09%) 0.9129 +0.0011 0.9157 £0.0026 0.9360 +0.0039 0.9692 +0.0048
LoRA (rank 4, 0.12%) 0.9139 £0.0018 0.9165 £0.0021 0.9406 + 0.0031 0.9708 + 0.0041
LoRA (rank 16, 0.47%) 0.9173 +0.0009 0.9202 +0.0014 0.9404 +0.0054 0.9712 + 0.0046
LoRA (rank 64, 1.89%) 0.9185 +0.0020 0.9217 +0.0009 0.9399 +0.0029 0.9744 = 0.0033

Table 9: Performance of Low-Rank adoption (Hu et al., 2021) across four different tasks (five runs each).

15

Primary score MLM score CoNLL-2003 QNLI SST-2 TREC-6
Primary task
CoNLL-2003 0.9139 £0.0016 0.3659 +£0.0125 0.9173 £0.0014 0.9166 +0.0017 0.9385 +0.0046 0.9708 +0.0033
QNLI 0.9165 +£0.0020 0.3776 £0.0112 0.9167 +0.0005 0.9260 +0.0021 0.9392 +0.0035 0.8792 +0.1997
SST-2 0.9406 +0.0028 0.3737 £0.0046 0.9173 £0.0009 0.9218 £0.0013 0.9420 +0.0015 0.8112 +0.3484
TREC-6 0.9708 £0.0038 0.3659 £0.0089 0.9178 £0.0009 0.9227 £0.0025 0.9411 £0.0024 0.9700 +0.0014

Table 10: Performance of Low-Rank adoption with a rank of 4 (Hu et al., 2021) after fine-tuning on secondary task
(five runs each).

Primary score ~ Gap MLM score CoNLL-2003 QNLI SST-2 TREC-6
Primary task ~ Reg. Coeff.
0.01 0.9013 £0.0007 -0.0337 £0.0004 0.4044 +0.0016 0.9217 +0.0008 0.9278 £0.0009 0.9399 +0.0039 0.9712 +0.0036
1 0.10 0.8824+0.0013 -0.0165 +0.0014 0.3869 £0.0026 0.9211 £0.0009 0.9275 + 0.0010 0.9424 +0.0025 0.9744 + 0.0033
CoNLL-2003 1.00 0.8387+0.0015 -0.0101 +0.0009 0.4106 +0.0007 0.9215 +0.0013 0.9267 +0.0018 0.9433 +0.0059 0.9752 + 0.0018
0.01 0.9203 +0.0010 -0.0704 £0.0009 0.3870 £0.0053 0.9211 £0.0025 0.9229 +0.0013 0.9404 £0.0018 0.9684 + 0.0036
2 0.10 0.9210 £0.0025 -0.0654 +0.0027 0.4067 +£0.0035 0.9213 £0.0022 0.9248 £0.0007 0.9394 +0.0029 0.9720 + 0.0028
1.00 0.919220.0016 -0.0595+0.0009 0.4086 + 0.0058 0.9223 +0.0013 0.9237 +0.0025 0.9413 £0.0053 0.9720 + 0.0020
0.01 0.8701 £0.0008 0.0149 +0.0009 0.4177 £0.0022 0.9197 £0.0013 0.9258 £0.0010 0.9415 £0.0037 0.9756 = 0.0030
11 0.10 0.8323+0.0008 0.0198+0.0012 0.4259 +0.0016 0.9211 +0.0021 0.9267 £0.0012 0.9415 +0.0045 0.9748 +0.0023
QNLI 1.00 0.6640 +0.0005 0.0086 0.0005 0.4434 £ 0.0013 0.9218 £0.0018 0.9276 £0.0017 0.9436 +0.0038 0.9760 * 0.0042
0.01 0.9270 £0.0018 -0.0203 £0.0020 0.4146 +0.0036 0.9196 £0.0014 0.9310 £0.0014 0.9385 +0.0033 0.9760 + 0.0037
2 010 09242+000i6 -0.0174£00016 0.4210+00013 0.9194£00012 0.9301 £0.0018 0.9344 £0.0033 0.9700 +0.0058
1.00 0.9132 £0.0018 -0.0041 £0.0014 0.4247 £0.0026 0.9189 £0.0018 0.9306 + 0.00/18 0.9443 +0.0039 0.9776 + 0.0026
0.01 0.9326 £0.0022 -0.0026 £0.0023 0.4279 £0.0017 0.9206 +0.0020 0.9275 +£0.0018 0.9413 £ 0.0026 0.9752 +0.0018
1 0.10 0.9177 £0.0014 -0.0023 £0.0013 0.4328 £0.0012 0.9194 £0.0013 0.9284 +0.0013 0.9401 £0.0022 0.9772 + 0.0023
SST-2 1.00 0.8711 £0.0012 0.0170 = 0.0013 0.4400 £ 0.0015 0.9182 £0.0028 0.9277 +0.0024 0.9392 £0.0034 0.9776 = 0.0022
0.01 0.9436 +0.0020 -0.0386 £0.0020 0.4034 £0.0019 0.9198 +0.0011 0.9256 £0.0012 0.9411 £0.0032 0.9736 +0.0036
12 0.10 0.9438 £ 0.0021 -0.0255+0.0019 0.4169 £0.0027 0.9196 +0.0017 0.9269 £0.0021 0.9394 £0.0030 0.9736 + 0.0048
1.00 0.9429+0.0012 -0.0118 £0.0010 0.4266 £0.0016 0.9198 +0.0017 0.9257 £0.0005 0.9417 £0.0017 0.9752 + 0.0030
0.01 0.9528 £0.0021 0.0114 £0.0022 0.4203 £0.0005 0.9216 +0.0024 0.9250 £0.0017 0.9378 +0.0056 0.9724 +0.0046
1 0.10 0.9296 +£0.0024 0.0262 +0.0035 0.4133 £0.0015 0.9201 £0.0009 0.9269 +0.0021 0.9424 +0.0025 0.9764 + 0.0026
TREC-6 1.00 0.4836+0.0033 0.0568 +0.0056 0.4434 £0.0017 0.9190 +0.0012 0.9288 +0.0008 0.9411 £0.0015 0.9756 + 0.0017
0.01 0.9720 +0.0061 -0.0209 £0.0056 0.4011 +0.0058 0.9217 £0.0019 0.9265 £0.0015 0.9438 +0.0038 0.9716 +0.0033
12 0.10 0.9724 £ 0.0030 -0.0159 £0.0025 0.4166 £0.0023 0.9207 +0.0018 0.9268 +0.0014 0.9397 £0.0017 0.9680 + 0.0047
1.00 0.9680+0.0050 -0.0086 +0.0057 0.4233 +0.0035 0.9203 +0.0021 0.9263 +0.0021 0.9417 £0.0041 0.9716 +0.0017

Table 11: Effect of regularization on primary and secondary scores.

16

TREC-6

0.975
©
8 0.970 1
g
}—
0.965
0960- T T T T T T
SST-2
0.9450
0.9425 -
[
5 0.9400
®
% 0.9375
'_
0.9350
0.9325 -
CoNLL-2003
0.920
o 0.915 4
%
£ 0.910 A
0.905
QNLI
0.920
©
g 0.915 -
3
}—
0.910
0905- T T T T T T
1 2 34 16 64
Rank

Figure 6: Primary test performance using Low-Rank
adoption (Hu et al., 2021) with varying ranks.

17

	Introduction
	Background
	Selective Parameter-Efficient Fine-Tuning
	Lottery Ticket Hypothesis

	Subset Selection and Downstream Task Performance
	Subset Selection Strategies
	Experimental Setup
	Results
	Selection Strategies
	Subset Size

	Generality & Adaptability of the Embedding Network
	Notes on Measuring Generality
	Experimental Setup
	Results
	Similar vs. Dissimilar Secondary Tasks

	Conclusion
	Additional Setup Details
	Additional Results

