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ABSTRACT

Direct RNA sequencing technology works by allowing long RNA molecules to
pass through tiny pores, generating electrical current, called squiggle, that are
interpreted as a series of RNA nucleotides through the use of Deep Learning
algorithms. The platform has also facilitated computational detection of RNA mod-
ifications via machine learning and statistical approaches as they cause detectable
shift in the current generated as the modified nucleotides pass through the pores.
Nevertheless, since modifications only occur in a handful of positions along the
molecules, existing techniques require segmentation of the long squiggle in order
to filter off irrelevant signals and this step produces large computational and storage
overhead. Inspired by the recent work in vector similarity search, we introduce a
segmentation-free approach by utilizing scaled-dot product attention to perform
implicit segmentation and feature extraction of raw signals that correspond to sites
of interest. We further demonstrate the feasibility of our approach by achieving
significant speedup while maintaining competitive performance in m6A detection
against existing state-of-the-art methods.

1 INTRODUCTION

RNA modifications have been discovered since the 1950s (Cohn & Volkin, 1951; Kemp & Allen,
1958; Davis & Allen, 1957) and have been found to play a prominent role in a wide range of
biological processes (Xu et al., 2017; Yankova et al., 2021; Nombela et al., 2021)]. Several methods
exist to detect these modifications, most prominently N6-methyladenosine (m6A) (Meyer et al.,
2012; Dominissini et al., 2012; Chen et al., 2015; Ke et al., 2015; Molinie et al., 2016; Linder et al.,
2015; Koh et al., 2019; Dierks et al., 2021)], pseudouridine (ψ) (Schwartz et al., 2014a; Lovejoy
et al., 2014; Carlile et al., 2014; Liu et al., 2015), and N5-methylcytosine (m5C) (Squires et al., 2012;
Hussain et al., 2013; Huang et al., 2019). These methods, while useful, require specific antibody or
chemical reagents as well as experimental expertise that is beyond the reach of most computational
labs.

The recent development of direct RNA sequencing technology by Oxford Nanopore (Gar-
alde et al., 2018) allows the direct sequencing of native RNA molecules. The technology works
through the use of a motor protein that controls the translocation of RNA molecules through the
nanopores, generating an electrical current called squiggle that corresponds to the identity of the
molecules passing through the pores Figure 1a. The electrical current is deciphered into a sequence
of four RNA nucleotides (G, A, C, U) through a process called basecalling and this involves training
either Recurrent Neural Networks (RNN) or Convolutional Neural Networks (CNN) (Boža et al.,
2017; Stoiber & Brown, 2017; Teng et al., 2018; Zeng et al., 2020) using Connectionist Temporal
Classification (CTC) approach (Graves et al., 2006). The presence of a modified nucleotide often
results in a shift in the electrical current which can be exploited for RNA modification detection.
Nevertheless, modified nucleotides are rare and so only a short portion of a long RNA squiggle is
relevant for modification detection. As a result, segmentation algorithms (Loman et al., 2015; Stoiber
et al.) are often used by existing detection methods during preprocessing in order to extract useful
signals matching to modified positions (Stoiber et al.; Leger et al., 2019; Lorenz et al., 2020; Ueda;
Pratanwanich et al., 2021; Gao et al., 2021; Begik et al., 2021; Parker et al., 2021; Hendra et al.,
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Figure 1: (a) RNA molecule being translocated through the Nanopore. Image is adapted from (Wan
et al., 2022)(b) Electrical current, or nanopore squiggle, generated as the RNA nucleotides pass
through the Nanopore. (c) The squiggle is deciphered a series of nucleotides through basecalling.
RNA modification such as m6A modification can only occur in the presence of AC motif, so signals
matching all other motifs might not be useful for detecting m6A modifications.(d) The basecalled
sequence is mapped to the reference transcripts, correcting some errors made during basecalling. (e)
Segmentation step is performed by most modification detection methods in order to map the squiggle
corresponding to the candidate AC motif before further preprocessing and modification prediction.
(f) Our method skips the segmentation step and outputs modification probability corresponding to the
candidate positions directly

2021; Stephenson et al., 2022; Sethi et al., 2022). However, modifications such as m6A for example,
mostly occur within 18 out of the 1024 possible 5-mer motifs (Meyer et al., 2012; Dominissini et al.,
2012; Schwartz et al., 2014b) while other modifications such as m5C or pseudouridine only occur
within segments containing the C or U nucleotides. Since segmentation algorithms typically segment
the entire transcriptome, the modification detection pipeline often requires a huge storage space to
store the segmentation results and suffers from slow running time due to the many preprocessing
steps required to extract relevant features from the potential modified positions.

In this work we attempt to address these shortcomings by putting together several machine
learning techniques that can help to streamline the RNA modification detection process. Firstly, we
make use of the deep features learnt by the CTC basecaller, with the aim of integrating modification
detection to basecalling process in the future. Secondly, we implement an attention layer between
sequence embeddings of the candidate modified positions and the deep CTC features to perform
implicit segmentation and feature extraction of the target positions. Finally, to address the issue with
noisy modification labels, we implement an end-to-end Attention-based Multiple Instance Learning
approach on top of the extracted attention features so as to perform robust classification of modified
positions. We validate our approach by performing m6A detection task and demonstrate that our
approach is significantly faster than existing m6A detection methods while achieving comparable
performance to the current state-of-the-art algorithm. Our work contributes to the field of RNA
modification by developing a more scalable solution to RNA modification detection and we hope to
drive a wider adoption of machine learning techniques to problems in biology, especially in long read
RNA sequencing.

2 METHOD

The direct RNA sequencing workflow involves basecalling of RNA squiggles, followed by alignment
of the basecalled results to the transcriptome (Figure 1) and for modification detection, another
segmentation step is usually required by most detection algorithms. This step is often necessary
as RNA squiggle is noisy and modifications only occur on a handful of positions which suggests
that most of the signals are not useful for detecting RNA modifications. Nevertheless, segmentation
algorithms produce a lot of unused segmented signal regions and most detection algorithms require
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further preprocessing steps before predictions can be made, resulting in additional storage overhead
and longer compute time. One way to speed up the detection process is to incorporate the modified
nucleotides directly to basecalling process but this is significantly more difficult for RNA modification
since we usually do not have access to modification labels on a single read level (Linder et al., 2015;
Koh et al., 2019). In an attempt to move closer towards streamlining the modification detection
process to basecalling, we propose making use of the deep features from the penultimate layer
of a RNA basecaller for modification detection. Intuitively, such features contains semantically
meaningful representations that correspond to the underlying nucleotides sequence of a given RNA
molecule and can be generated during the basecalling process.

Formally, given a signal chunk x ∈ RL, and a reference transcript z = (z1, . . . , zNz ) ∈
{G,A,C, T}Nz associated with the signal x ∈ RL, our goal is to predict RNA modifications
across all possible modified positions in 1 ≤ j ≤ Nz within the reference transcript z.

To do so, we first learn a basecaller that takes x as input and produces a prediction ŝ(x) ∈
{G,A,C, T}|ŝ(x)| for the associated underlying sequence. The predicted underlying sequence
ŝ(x) can subsequently be aligned to the reference transcript z. Crucially, we propose to design the
basecaller as the composition of two functions:

1. a feature extractor f : RL → RT,D that takes as input a signal chunk x ∈ RL of length
L ≥ 1 and produces a representation vector of fixed length T ≥ 1 and dimension D ≥ 1

2. a decoder function g : RT,D → RT,5
+ that takes as input the representation vector

f(x) ∈ RT,D is leveraged (using dynamics programming) to produce a prediction
ŝ(x) ∈ {G,A,C, T}|ŝ(x)| of the underlying nucleotide sequence.

The purpose of learning the basecaller is to identify whether a given signal chunk x contains candidate
modified positions. For example, m6A modifications only occur mostly within the DRACH (D=A,
G, or U, R=A or G while H is A, C or U) (Meyer et al., 2012; Dominissini et al., 2012), and so the
basecalling step is crucial to identify whether such motifs exist within a given signal chunk. On top
of identifying the existence of modified motifs within a given signal chunk x, we are going to make
use of the features f(x) for modification detection.

Next, for each of the modified positions j within x, we learn a signal-sequence feature extractor
h that outputs a D-dimensional vector h(f(x), z, j) ∈ RD that corresponds to the representation
of position j within the transcript z with respect to the deep features f(x). This is analogous to
performing segmentation and extracting features from segments that correspond to candidate modified
positions as described in Figure 1e.

Finally, in order to detect RNA modification at position j of transcript z, we collect the set Sz,j

that includes all raw signal chunks xi ∈ RL harbouring position j of transcript z identified through
basecalling and mapping. We extract the representation vectors h(xi, z, j) ∈ RM for all signal
chunks xi ∈ Sz,j and following earlier work by Hendra et al. (2021), the RNA modification detection
problem can then be formulated as a Multiple Instance Learning (MIL) problem (Maron & Lozano-
Pérez, 1998) that can be approached with modern statistical learning methods (Ilse et al., 2018; Lee
et al., 2019; Cheplygina et al., 2019). The following three subsections describe each step in more
details.

2.1 BASECALLING

Let s(x) ∈ {G,A,C, T}|s(x)| be the true nucleotide sequence associated with raw signal chunk x.
A perfect basecaller will predict the nucleotide sequence s(x) given the raw squiggle chunk x ∈ RL.
Furthermore, the nucleotide sequence s(x) is a continuous subset of the transcript z in a sense that
s(x) = (s1, . . . , s|s(x)|) = (zi(x), . . . , zi(x)+|s(x)|) for some index 0 ≤ i(x) ≤ Nz − |s(x)|.

Let f : RL → RT,D be a function parameterized by a neural network (such as CNN or RNN) that
transforms the squiggle x ∈ RL to a high dimensional representation vector f(x) ∈ RT,D of length
T and dimension D. Under the CTC approach (Graves et al., 2006), we associate a probability
distribution for each of the T high dimensional representation over {G,A,C, T, ε} where G, A,
C, T are the four nucleotides and ε is a gap character. The gap character allows the network to
produce variable length output since the raw signals can represent variable-length nucleotide sequence
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(Silvestre-Ryan & Holmes, 2021). For this purpose, consider a function g : RT,D → RT,5
+ that

transform the representation vector f(x) ∈ RT,D into a sequence of probability vectors. More
specifically and slightly abusing notations by identifying [A,C,G, T, ε] ∼= [1, 2, 3, 4, 5], the vector
π(x) = g ◦ f(x) ∈ RT,5

+ is such that

π(x)[t, A] + π(x)[t, C] + π(x)[t, G] + π(x)(t, A) + π(x)[t, ε] = 1

for any index 1 ≤ t ≤ T . In other words, at any position 1 ≤ t ≤ T the vector π(x)[t, ·] ∈ R5
+

represents a probability distribution over {A,C,G, T, ε}.

The gap characters introduce a many-to-one mapping between the possible path including the gap
character and valid nucleotide sequences. For example, the path GεAεεCCεTε is mapped to the
valid nucleotide sequence GACCT . We denote this mapping with the operator B in the sense that,
for example, B(GεAεεCCεTε) = GACCT . For a given nucleotide sequence s ∈ {A,C,G, T}|s|,
we consider the set of sequences s̃ ∈ {A,C,G, T, ε}T that maps to s in the sense that B(s̃) = s.
This allows one to define the probability p(s | x) ∈ (0, 1) of the nucleotide sequence s given the raw
input x ∈ RL by setting

p(s | x) =
∑

s̃:B(s̃)=s

{
T∏

t=1

π(x)[t, s̃t]

}
. (1)

The predicted nucleotide sequence associated to the raw signal chunk x ∈ RL is obtained by
maximizing the score over all possible valid nucleotide sequences s ∈ {A,C,G, T}|s|,

ŝ(x) = argmax
{
p(s | x) : s is a valid nucleotide sequence

}
. (2)

All these operation can be efficiently approximated with dynamic programming techniques. Since
equation 1 describes a likelihood function, the model can be trained by maximum likelihood estima-
tion (Graves et al., 2006). We train a basecaller following this methodology using the open source
Bonito model (https://github.com/nanoporetech/bonito) with sequence ground truth obtained from
Nanopolish eventalign (Loman et al., 2015).

2.2 EXTRACTION OF SIGNAL-SEQUENCE REPRESENTATION

DNN models are able to learn effective representations that can capture essential aspects of the data
domain. Networks trained for object detection, for example, are often trained on image classification
tasks for which larger datasets are available Girshick et al. (2014). As a result, features from the
deeper layer of the networks tend to be more informative and can easily be adapted to different
tasks Mikolov et al. (2013); Donahue et al. (2014); Devlin et al. (2018). Similarly, while RNA
modifications are rare, sequence labels for basecalling training are abundant Chen et al. (2021) and
should therefore provide rich features for RNA modification detection. Here we view the basecaller
training as a form of pretraining task for modification detection where the deep features from the
second last layer of the basecaller network can be used to represent a potentially modified nucleotide
segments.

Figure 2: Overview of the model. The signal module f comprises 3 CNN layers followed by 5 LSTM
layers while the sequence module R comprises 3 bidirectional LSTM layers followed by 1 linear layer.
The scaled dot product attention combines the output the two modules to produce signal-sequence
representation and the CTC decoder g outputs sequence prediction from the signal representation.
The MIL attention layer takes in the signal-sequence representation to output modification probability
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Given the deep features f(x) ∈ RT,D, we want to extract the M -dimensional signal-sequence
representation vector h(f(x), z, j) ∈ RM . Our goal here is to predict RNA modification at position j
of transcript z and so computing h is analogous to segmenting the D-dimensional sequential features
of f(x) and summarizing its features across a high-dimensional segment that corresponds to position
j.

To begin, we calculate the embedding of z at position j by passing K = 10 flanking nu-
cleotides around the j-th position using a bidirectional LSTM. More specifically, given a position
j within the reference transcript, consider the sequence [z]j,K ≡ (zj−K , zj−K+1, . . . , zj+K) ∈
{A,C,G, T}2K+1 of K-neighbouring nucleotides. The representation of the position j is ob-
tained by passing through the sequence [z]j,K through a bidirectional LSTM denoted as R :
{A,C,G, T}2K+1 → RM to obtain a representation vector R([z]j,K) ∈ RM .

Afterwards, we compute the representation h(x, z, j) ∈ RM of the j-th position within the reference
transcript z and whose signal is present within the raw signal chunk x ∈ RL with a standard scaled
dot-product attention mechanism (Vaswani et al., 2017).

h(x, z, j) = Attention
(
R([z]j,K), [f(x)WK ], [f(x)WV ]

)
∈ RM (3)

for query R([z]j,K) ∈ RM , key f(x)WK ∈ RT,M and value f(x)WV ∈ RT,M . The projection
matrices WK ∈ RD,M and WV ∈ RD,M are learnable parameters of the attention mechanism. For
query Q ∈ RM , key K ∈ RT,M and value V ∈ RT,M , the attention mechanism (Niu et al., 2021) is
defined as

Attention(Q,K, V )m =

T∑
t=1

αt Vt,m where α = softmax
{
V Q√
M

}
∈ RT

+ (4)

for any coordinate 1 ≤ m ≤ M . Here, we reason that the signal representation f(x) ∈ RT,D,
where the feature extractor f : RL → RT,D has been obtained when training the basecaller, can be
informative since it is trained to maximize the probability of observing the underlying true nucleotide
sequence s(x) ∈ {A,C,G, T}|s(x)|. Intuitively, the attention concentrates the representation of the
signal f(x) on a sub-sequence that is the most similar to the positional representation R([z]j,K) of
the j-th position with the reference transcript z.

2.2.1 DETECTING M6A MODIFICATIONS

In order to detect m6A modification, we update the parameters of the LSTM-based feature extractor R
while keeping the feature extractor f trained during the basecalling fixed. As empirically demonstrated
in Hendra et al. (2021), m6A detection can be formulated as a Multiple Instance Learning (MIL)
problem (Maron & Lozano-Pérez, 1998). Recall that Sz,j is the set of signal chunks xi ∈ RL that
contains some part associated to the position j with the reference transcript z. Each raw signal chunk
xi ∈ Sz,j can be associated with a binary label yi,j ∈ {0, 1} indicating whether the part of the
signal xi associated to the position j contains m6A modification. However, we do not have access
to this label yi,j because of the lack of resolution in the labelling process: instead, we only have
access to a single label yj ∈ {0, 1} representing the modification status at position j of the collective
signal chunks. We propose to extract the collection of signal-sequence M -dimensional representation
vectors

{
h(xi, z, j)

}
xi∈Sz,j

and pool them following the Attention-based Deep MIL framework of
Ilse et al. (2018). Set

H(j,z) =
∑

xi∈Sz,j

axi h(xi, z, j) ∈ RM (5)

where the probability vector a = {axi}xi∈Sz,j is defined as

a = softmax
({
U tanh (V h(xi, z, j))

}
xi∈Sz,j

)
∈ R|Sz,j |

+ . (6)

The matrices U ∈ R1,H and V ∈ RH,M are learnable parameters. The coefficient axi
∈ (0, 1)

measures the relative contribution of the raw signal chunk xi in the collective representation H(j,z).
The representation vector H(j,z) ∈ RM can then be used as a feature vector within a standard logistic
regression classifier. The complete model is trained end-to-end by minimizing the cross-entropy loss
with stochastic gradient descent.
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Dataset Mean Acc Median Acc IoU
HCT116 91.2% 93.6% 88.1%

HEK293T 90.1% 93.5% 86.0

Table 1: Basecalling Accuracy and Intersection over Union on HCT116 and HEK293T datasets

3 EXPERIMENTS

3.1 DATASETS

HCT116 direct RNA Sequencing Data: The HCT116 cell line direct RNA sequencing data was
provided by the SG-NEX project (Chen et al., 2021). The dataset was spit on the gene level into train,
validation, and test sets. We use the training set to train networks for basecalling and m6A detection
and use the validation set for model selection. The dataset also comes with m6A labels generated
using the m6ACe-seq protocol (Koh et al., 2019). We follow the training procedure of Hendra et al.
(2021) where we restrict our training data to sites harbouring DRACH motifs.

HEK293T direct RNA Sequencing Data: The HEK293T cell line direct RNA sequencing data
is provided by (Pratanwanich et al., 2021). The m6A labels for this dataset was generated by
m6ACE-seq (Koh et al., 2019) and miCLIP (Linder et al., 2015). We use this dataset to validate
both the basecalling performance as well as m6A classification performance. Similar to the HCT116
dataset, we restrict our prediction to the DRACH sites(D=A, G, or U, R=A or G while H is A, C or
U).

3.2 BASECALLING AND MAPPING ACCURACY

We first evaluate the accuracy of our basecaller and whether it can identify positions within raw
signal chunks correctly by aligning the predicted sequence to its underlying reference label using the
Smith-Waterman algorithm (Smith et al., 1981). We measure the mapped accuracy as:

Accuracy =
Number of Matched Bases

Number of Reference Bases
. (7)

In order to extract accurate feature representation, we need to identify whether the position we wish
to model exists within a given read chunk. To do this, we align each predicted sequence ŝxi to its
reference transcript zi and obtain a set of predicted positions L̂i spanned by read i. The alignment
step serves to correct small error in the prediction and so we do not necessarily need a very high
basecalling accuracy to correctly identify the positions spanned by a given signal chunk. As such, we
also measure the Intersection over Union (IoU) of the predicted positions L̂i against the ground-truth
transcript positions Li represented in read i. This is given by:

IoU =
L̂i ∩ Li

L̂i ∪ Li

(8)

On the HCT116 cell line, we manage to achieve a mean accuracy of 91.2% and median accuracy of
93.6% while on the HEK293T cell line, it achieves a mean accuracy of 90.1% and median accuracy of
93.5%. Additionally, the model achieves an average IoU of 88.1% on the HCT116 cell line and 86.0%
on the HEK293T cell line. This indicates that the model can recognize the underlying sequence of
each signal chunk and its mapped alignment coincides strongly with the ground truth label. Another
way to improve the mapping quality will be to consider the outputs from two adjacent overlapping
signal chunks, a strategy implemented by the original Bonito basecaller (Silvestre-Ryan & Holmes,
2021), which we leave for future work.

3.3 COMPARISON OF M6A DETECTION AGAINST EXISTING METHODS

Here we demonstrate the effectiveness of our approach by training our model to perform m6A
detection based on the extracted signal-sequence representation. We name our approach m6Araw and
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Figure 3: Run time comparison of the models on HCT116 cell line

Figure 4: ROC Curves and PR Curves of m6Araw and other existing approaches on HCT116 cell
line

compare the runtime as well as ROC-AUC and PR-AUC on several partition of the HCT116 against
several existing methods (Stoiber et al.; Lorenz et al., 2020; Gao et al., 2021; Liu et al., 2021; Hendra
et al., 2021) for m6A detection as detailed in Hendra et al. (2021). Since not all methods detect
m6A modifications on all DRACH motifs, we compare m6Araw separately with these methods on
the subset of the HCT116 test set and the HEK293T dataset that contain motifs required by each
approach.

Firstly, we note that m6Araw has the fastest running time out of all other methods on the HCT116
dataset (3) with just one GPU, roughly 6 times faster than m6Anet, the current state-of-the-art method
for m6A detection. On the other hand, the EpiNano 1, EpiNano 2, EpiNano 3, and EpiNano 4 models
could not be run without crashing our machine with 126 GB of RAM. As such, we have to modify
the code for the EpiNAno models discarding all non-DRACH motif motifs during preprocessing step
so as to run it successfully. We do not have the run time comparison for the HEK293T cell line since
some of the methods require segmentation algorithms that do not work with the HEK293T file format
and so additional run time for file conversion is required.

On the HCT116 dataset, m6Araw perform comparably (ROC-AUC: 0.930, PR-AUC: 0.385, ROC-
AUC: 0.927, PR-AUC:0.609, ROC-AUC:0.917, PR-AUC:0.497) against m6Anet (ROC-AUC: 0.926,
PR-AUC:0.451, ROC-AUC: 0.916, PR-AUC:0.565, ROC-AUC:0.908, PR-AUC:0.543) while outper-
forming all other methods (Figure 4, Table 2). We observe similar results in the HEK293T cell line
where our model outperform existing methods (ROC-AUC: 0.818, PR-AUC: 0.319, ROC-AUC: 0.812,
PR-AUC:0.333, ROC-AUC:0.796, PR-AUC:0.389) and perform comparably against m6Anet (ROC-

7



Under review as a conference paper at ICLR 2023

5-mer Motifs Model ROC-
AUC
(HCT116)

PR-AUC
(HCT116)

ROC-
AUC
(HEK293T)

PR-AUC
(HEK293T)

8*18 motifs m6Araw (ours) 0.930 0.385 0.818 0.319
m6Anet 0.926 0.451 0.838 0.366
Tombo 0.707 0.121 0.507 0.0857

EpiNano 1 0.776 0.206 0.710 0.240
EpiNano 2 0.788 0.133 0.725 0.182
EpiNano 3 0.781 0.176 0.722 0.213
EpiNano 4 0.764 0.235 0.704 0.227
EpiNano 5 0.736 0.167 0.670 0.170

4*12 motifs m6Araw (ours) 0.927 0.620 0.812 0.333
m6Anet 0.916 0.565 0.837 0.373
Tombo 0.759 0.296 0.504 0.099

nanom6a 0.787 0.364 0.719 0.203
4*4 motifs m6Araw (ours) 0.917 0.504 0.796 0.389

m6Anet 0.908 0.543 0.825 0.440
Tombo 0.767 0.280 0.515 0.166
MINES 0.792 0.340 0.708 0.326

Table 2: Performance comparison of m6Araw against existing m6A detection methods

AUC: 0.838, PR-AUC: 0.366, ROC-AUC: 0.837, PR-AUC:0.373, ROC-AUC:0.825, PR-AUC:0.440)
(Figure 5, Table 2). These results suggest that our approach can produce informative signal-sequence
representation to detect m6A modifications and is competitive against existing segmentation-based
approaches.

3.4 ROBUSTNESS OF M6A PREDICTION DESPITE LABEL NOISE

The modifications labels used to train and validate m6Araw predictions on both HCT116 and
HEK293T datasets often fail to capture genuine modified sites. Different protocols to detect m6A

Figure 5: ROC Curves and PR Curves of m6Araw and other existing approaches on HEK293T cell
line
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Figure 6: Metagene plots of m6Araw prediction on test sets of HCT116 and HEK293T and precision
of the top predicted sites for m6Araw before and after METTL3-KO

modifications for example have reported different modified sites (Grozhik & Jaffrey, 2018; Koh
et al., 2019). This limitation will affect both training and validation of any models trained to detect
m6A modifications as the modification labels will be noisy and likely contain a large number of
false positives and negatives. Several work has therefore incorporated additional validation criteria
based on the known biology of m6A modification. This involves checking for significant deviation in
the signal intensity of wild type samples against samples in which METTL3, a known m6A writer,
gene has been knocked out (Lorenz et al., 2020; Hendra et al., 2021). Additionally, one can also
check for the distribution of m6A predicted sites along each transcript since m6A modification is
known to be enriched around the 3’UTR (Linder et al., 2015; Ke et al., 2017)]. Here we reason that
our approach displays a robustness to label noise by demonstrating that m6Araw can capture sites
not previously labelled by miCLIP (Linder et al., 2015) or m6ACe-seq (Koh et al., 2019). We see
that m6Araw predicted sites display a strong enrichment towards the 3’UTR in both HCT116 and
HEK293T cell lines(Figure 6). Furthermore, incorporating METTL3 sensitive sites as modified sites
result in roughly 20% increase in the model precision for the top predicted sites, suggesting that our
previous precision is underestimated.

4 DISCUSSION

In recent years, we have seen an increasing number of computational tools being developed to
detect RNA modifications from direct RNA sequencing data. These tools have facilitated a growing
number of studies into RNA modifications but at the same time require a lot of compute resources.
Our study explores the possibility of streamlining such processes by avoiding extra segmentation
and preprocessing steps, and instead, detect RNA modifications directly from raw signals. We
demonstrate that our approach can produce informative signal-sequence representations to detect m6A
modifications, achieving competitive performance against state-of-the-art method in m6A detection.
Furthermore, we have also demonstrated the feasibility of integrating modification detection to
basecalling by performing modification detection using features generated by the second last layer of
our trained basecaller. In the future we hope to combine RNA basecalling along with detection of
other RNA modifications. Lastly, we hope that this work can lay the foundation for further study into
representation learning in the context of detecting RNA modifications directly from raw signals.
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