
Neurocomputing 460 (2021) 9–19
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier .com/locate /neucom
A tile-fusion method for accelerating Winograd convolutionsq
https://doi.org/10.1016/j.neucom.2021.06.003
0925-2312/� 2021 Published by Elsevier B.V.

q This work was supported by the National Key Research and Development
Program of China (2016YFB0200902).
⇑ Corresponding author.

E-mail address: xjzhang@xjtu.edu.cn (X. Zhang).
Zeyu Ji, Xingjun Zhang ⇑, Zheng Wei, Jingbo Li, Jia Wei
School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
a r t i c l e i n f o

Article history:
Received 13 August 2020
Revised 29 April 2021
Accepted 3 June 2021
Available online 5 June 2021
Communicated by Zidong Wang

Keywords:
Fast convolution
Winograd algorithm
Parallel algorithm
Convolutional neural network
Tile size
Zero padding
a b s t r a c t

Compared with fast convolution methods such as im2col and the fast Fourier transform, Winograd-based
convolution, which has been widely applied to accelerate convolutional neural networks (CNNs), can pro-
vide high performance with smaller filters. Although there are several reported studies on the algorithmic
optimization of CNNs, most of them are targeted at hardware architectures. The existing implementa-
tions of the Winograd method perform well below what one would expect, due to the fact that the tile
size of Winograd-based convolution is usually empirical and the features of each convolution layer are
ignored. This study aims to fill this gap and focuses on the efficient implementation of Winograd-
based convolution in the CNN model. Specifically, we discuss the causes of poor performance, calculate
the coefficient of computation complexity model and demonstrate a speedup in the inference process
using an elaborate tile-fusion method, which derives the optimal tile size for each convolution layer in
a CNN model. Compared with the representative existing implementations of CuDNN with a 4 � 4 tile,
Arm Compute Library with a 6 � 6 tile, and NNPACK with an 8 � 8 tile, the results show significant per-
formance improvements on of up to 1.89 � , 1.29 � and 1.17 � , respectively.

� 2021 Published by Elsevier B.V.
1. Introduction

A convolutional neural network(CNN) [1] is a set of deep learn-
ing algorithms that have achieved notable performance for diversi-
form AI tasks, including video surveillance, speech recognition,
natural language processing, and self-driving. In the past decade,
CNNs have presented a grander prospect and have been the focus
of a great deal of research. Convolutional layer, which is memory
intensive and computationally expensive, is prevalent in advanced
CNNs, including AlexNet, VGG, OverFeat, and ResNet. Conse-
quently, they dominate the total performance of a CNN.

The exponential growth of data and increasingly complex mod-
els make the diffusion of deep learning possible. As well, they lead
to an additional training overhead and extra computation time.
Therefore, training and inferring CNN models in a short time is a
tremendous challenge for researchers.

Deep neural networks(DNNs) can be trained in a short time by
using distributed training techniques on clusters equipped with
huge memory resources and computational power [2–4]. In a dis-
tributed environment, a variety of consistency strategies including
bulk synchronous parallel (BSP) [5,6], staleness synchronous paral-
lel(SSP) [7,8], and asynchronous parallel(ASP) [8,9] are proposed
allowing us to train and serve a model on multiple physical
machines. To guarantee the same computational results as on a
single machine, BSP forces all the slave workers to globally syn-
chronize in each iteration. ASP [8,9] relaxes the consistency con-
straint and allows every worker to update the global parameters
as soon as the worker finishes its own iteration. As a tradeoff
between BSP and ASP, the SSP [7,8] introduces a new parameter,
called the staleness threshold, which bounds iteration cycles
between the fastest worker and the slowest worker in a cluster.
Within the staleness threshold, workers can update themselves
instead of pulling global parameters from the server via the
network.

Compared to distributed training, the training and inference of a
CNN on a single machine is limited by how efficiently the I/O band-
width can be occupied. The model compressing techniques, which
alleviate the I/O problem, aid in the developing smaller and more
efficient neural networks, including parameter pruning, parameter
sharing, low-rank decomposition, and knowledge distillation. They
achieve DNN compression and acceleration without significantly
degrading model performance. By removing redundancy and low
information weights from existing well-trained deep network
models, parameter pruning-based approaches [10,11] reduce the
parameters of neural networks and speed up the computation
time. Parameter sharing involves the design of mapping to share
multiple parameters with the same data. In recent years, quantiza-

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2021.06.003&domain=pdf
https://doi.org/10.1016/j.neucom.2021.06.003
mailto:xjzhang@xjtu.edu.cn
https://doi.org/10.1016/j.neucom.2021.06.003
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom


Z. Ji, X. Zhang, Z. Wei et al. Neurocomputing 460 (2021) 9–19
tion [12] has been widely used as a parameter sharing technique
by using low bit-width numbers instead of floating-point numbers.
Additionally, hash functions and structured linear mapping can be
used as a form of parameter sharing. The main idea of low-rank
decomposition [13] is to use matrix or tensor decomposition tech-
nique to estimate and decompose the original convolution kernel
in a DNN model. Nevertheless, these methods are only applicable
to neural networks that are overparameterized and where suffi-
cient redundant information exists that can be safely reduced
without significant loss of accuracy. The studies in [14,15] propose
a more efficient network architecture which generates acceptable
accuracy with a relatively small model size.

A number of optimization approaches have been proposed to
reduce the overhead of convolution algorithms, such as sliding
windows, im2col, fast Fourier transforms (FFTs), and Winograd
algorithms. A sliding window [16,17] is a spatial domain-based
algorithm that sums the product of a feature map with a corre-
sponding filter kernel to generate the output data. Convolution
based on img2col [18,19] can be considered as fast matrix–matrix
multiplication, and profits from highly optimized linear algebra
packages, e.g., BLAS and MKL. FFT-based convolution [20,21] uses
the following principle: multiplication in the frequency domain
corresponds to convolution in the time domain. The input signal
is transformed into the frequency domain using the discrete Four-
ier transform (DFT), multiplied by the frequency response of the
filter, and then transformed back into the time domain using the
inverse DFT. Winograd-based convolution [22], is developed for
fast computation of finite impulse response (FIR) filters [23]. The
Hadamard product in the Winograd domain corresponds to convo-
lution in the spatial domain, which is similar to FFT convolution.
FFT and Winograd methods fundamentally reduce the computa-
tional complexity of the convolution algorithm, and are broadly
used for accelerating CNN models.

Winograd-based convolution is widely integrated into numer-
ous off-the-shelf deep learning frameworks [17,18,24,25], due to
state-of-art performance for CNNs with small filters. However,
most implementations of Winograd based convolution are only
optimized for parallel computation on the different platforms,
including CPUs [26,27], GPUs [18], MICs [28], FPGAs [29,30], and
ASIC devices [31]. The DNN community has witnessed very little
research on improving the performance of the Winograd-based
convolution. Theoretically, Winograd-based convolution should
speed up the process of computation, however, in practice, several
existing challenges make it difficult to fully utilize the computa-
tional resources or memory bandwidth. To minimizing the number
of necessary calculations, the existing implementations of Wino-
grad convolution [22,27] need to hand-craft the minimal transform
of the input data, the kernel, and the output data. Hence, it is dif-
ficult to offer a flexible tile size for each convolutional layer. For
instance, Nvidia CuDNN has a fixed tile size of 4� 4, the Arm Com-
pute Library has a fixed tile size of 6� 6, and NAPACK has a fixed
tile size of 8� 8. Taking a kernel size of 3� 3 as an example, when
the output tile size is 4� 4, the tile size of Winograd-based convo-
lution is 4� 4(m-r + 1). In the first convolution layer of VGG, the
output size is 222(224–3 + 1), which is not divisible by 4. To deter-
mine the indivisibility problem, the padding method has been
introduced; however, it degrades the performance of Winograd-
based convolution. The detrimental effects of these problems are
more evident in resource-constrained applications, e.g., cell
phones, smart wearables, and vehicular devices. The small tile can-
not scale the performance of Winograd-based convolution. Instead,
the large tile introduces zero-padding, which increases the over-
head at both the transformation and the matrix multiplication
stages. Previous studies [28,27] have only proposed experimental
tile sizes for Winograd transforms, and they do not analyze the
10
arithmetic complexity of Winograd-based convolution
quantitatively.

To address this issue, a tile-fusion method is proposed in this
paper to ameliorate the performance of Winograd-based convolu-
tion. We attempt to decompose the construction of Winograd
transforms and establish a quantitative arithmetic complexity
model that can calculate the computational complexity by the fea-
tures of each convolutional layer (e.g., kernel size (R), channels (C),
width (W), height (H), number of kernels (K)). We then select an
optimal tile size for each convolution layer based on the model.
The main contributions of this work are summarized as follows.

1. A comprehensive model analysis of Winograd-based convolu-
tion is presented.

2. A quantitative arithmetic complexity model for Winograd-
based convolution is generated. The parameters include kernel
size (R), channels (C), width (W), height (H), and number of ker-
nels (K).

3. Base on the above model, a tile-fusion method is proposed to
minimize the total overhead of a CNN.

The remainder of this paper is organized as follows: Section 2 cov-
ers related work; Section 3 provides background material; Section 4
presents how to calculate the coefficient of computation complexity
model; Section 5 describes the optimization method; Section 6
summarizes the experiment; and Section 7 concludes the study.

2. Related work

2.1. Direct convolution

The sliding window algorithmwas first applied in Caffe [17], yet
it does not offer satisfying performance. For reducing the training
time of a CNN, Fang optimized sliding window-based convolution
on the Sunway TaihuLight supercomputer [16]. Nvidia integrated
im2col into CuDNN, which is a GPU accelerated library of primi-
tives for DNNs. Cho and Brand [19] improved the im2col method,
whose main idea is to lower the input matrix in a highly compact
way to improve the performance of computing a convolution in a
CNN. Meanwhile, the im2col method incurs large memory over-
head due to the redundancy of the transformation of the input
data, which is not friendly for a device having a relatively small
cache and low bandwidth.

2.2. Fast convolution

An important class of algorithms referred to as fast convolution
includes the FFT and Winograd methods. FFT-based [21,20] convo-
lution reduces the arithmetic complexity of convolutional layers by
using the Fourier transform, which is employed in GPUs and CPUs.
However, it is inefficient when the kernels are relatively small.
More recently, Lavin et al. proposed Winograd-based convolution
[22], which can dramatically reduce the number of multiplications
in convolution and demonstrated that it can achieve better perfor-
mance than the FFT-based method for small kernels (e.g., 3�). The
general recipe of Winograd-based convolution is composed of
three parts. Both the data and the kernel are first transformed to
theWinograd domain. Next, an element-wise multiplication is per-
formed instead of sliding-window convolution in the spatial
domain. An inverse transformation generates the result of the con-
volution. GPU implementations [18] have been developed by Nvi-
dia and Nervana Systems. Open source libraries, such as NNPACK
[25] and Intel MKL-DNN [32] integrate CPU implementations. Fur-
thermore, Budden et al. [26] and Jia et al. [28] independently gen-
erated a method for arbitrary dimensions and kernel sizes on a CPU



3�T

Z. Ji, X. Zhang, Z. Wei et al. Neurocomputing 460 (2021) 9–19
and an Intel Xeon Phi. Shen et al. [29] and Shi et al. [30]have pro-
vided FPGA implementations. Some studies [31,27] optimize the
Winograd-based convolution for mobile phones. However, all cur-
rent Winograd-based implementations cannot adjust the efficient
tile-size of the Winograd transform for each convolutional layer
in a modern ConvNet due to manual handcrafted minimal algo-
rithms. Thus, for ConvNet, a fixed tile-size for the Winograd trans-
form means that the convolution layers will acquire disparity
inefficiency because of their own features. Meanwhile, it will also
yield massive memory access and a padding problem.

3. Background

3.1. One-Dimensional Winograd-Based Convolution

Shmuel Winograd introduced an algorithm for fast convolution
of FIR filters in the signal processing domain [23].

We denote the computation of m outputs of an r-tap FIR filter
by Fðm; rÞ, which requires m� r multiplications for direct convolu-
tion. For the Winograd-based method, the requirement for the
number of multiplications is reduced to mþ r � 1. Taking Fð2;3Þ
as an example, the Winograd-based method first transforms the
input data d ¼ ðd0; d1; d2; d3Þ and filter data g ¼ ðg0; g1; g2Þ to
j ¼ ðj0; j1; j2; j3Þ and h ¼ ðh0;h1;h2Þ sparately via

j0 ¼ d0 � d2;h0 ¼ g0

j1 ¼ d1 þ d2; h1 ¼ g0þg1þg2
2

j2 ¼ d2 � d1; h2 ¼ g0�g1þg2
2

j3 ¼ d1 � d3; h3 ¼ g2

ð1Þ

Next, it performs the Hadamard product with j and h as follows:

c0 ¼ j0 � h0; c1 ¼ j1 � h1

c2 ¼ j2 � h2; c3 ¼ j3 � h3
ð2Þ

Lastly, the final result y ¼ ðy0; y1Þ is generated through:

y0 ¼ c0 þ c1 þ c2; y1 ¼ c1 � c2 � c3 ð3Þ
The procedure above can be written in matrix form as

Y ¼ AT Gg½ � � BTd
h ih i

, where � indicates the Hadamard produce.

The Hadamard product in Fð2;3Þ requires
mþ r � 1 ¼ 2þ 3� 1 ¼ 4 multiplications, while a direct convolu-
tion requires m� r ¼ 2� 3 ¼ 6 multiplications.

BT¼

1 0 �1 0
0 1 1 0
0�1 1 0
0 1 0 �1

2
6664

3
7775G¼

1 0 0
1
2

1
2

1
2

1
2�1

2
1
2

0 0 1

2
6664

3
7775AT¼ 11 1 0

01�1�1

� �
g¼ g0g1g2½ �Td¼ d0d1d2d½

ð4Þ
3.2. Two-dimensional Winograd-based convolution

The one-dimension Winograd method can be unfolded to two-
dimension or higher dimensional convolutions by being nested
with itself. Fðm�m; r � rÞ can be denoted as follows:

Y ¼ AT GgGT
h i

� BTdB
h ih i

A ð5Þ

where vector g is an r � r filter and vector d is a l� l ðl ¼ mþ r � 1Þ
input tile. The size of the output tile Y is m�m. The nesting method
can be also used for non square filters and outputs. Taking
Fð2� 2;3� 3Þ as an example, it uses 4� 4 ¼ 16 multiplications,
while the direct convolution method requires 2� 2� 3� 3 ¼ 36
multiplications. Thus it achieves a 36=16 ¼ 2:25 multiplication
reduction. The input transform, filter transform and output trans-
form use 32,28, and 24 floating-point instructions, respectively.
11
3.3. Winograd algorithm in ConvNet layer

Fðm�m; r � rÞ can be employed to compute ConvNet layers
with r � r kernels. the input image, each channel is divided into
tiles of size ðmþ r � 1Þ � ðmþ r � 1Þ and the neighboring tiles
are overlapped with r � 1 elements, which yields
P ¼ NdH=medW=me tiles per channel C. Denoting U ¼ GgGT and
V ¼ BTdB, we have:

Y ¼ AT U � V½ � ð6Þ
Labeling tile coordinates as �x; �yð Þ, we can obtain another form of the
formula with image i, filter k, and tile �x; �yð Þ as follows:

Yi;k;�x;�y ¼
Xc

c¼1

Di;c;�x;�y � Gk;c

¼
Xc

c¼1

AT Uk;c � Vc;i;�x;�y
� �

A

¼ AT
Xc

c¼1

Uk;c � Vc;i;�x;�y

" #
A

ð7Þ

Using the benefits from Eq. (7), the inverse transform can be
reduced over C channels, which amortizes the cost of the output
transform over the number of channels. With the formulation
above, the Winograd method is efficiently implemented on CPUs,
GPUs and FPGAs. Algorithm 1 is implemented firstly by Lavin A
and Gray S [22] on GPU.

Algorithm 1: Compute ConvNet layer with Winograd
minimal filtering algorithm Fðm�m; r � rÞ
P ¼ NdH=medW=me is the number of image tiles.
a ¼ mþ r � 1 is the input tile size.
Neighboring tiles overlap by r � 1.
dc;b 2 Ra�a is input tile b in channel c.
gk;c 2 Rr�r is kernel k in channel c.

G;BT and AT are filter, data, and inverse transforms.
Yk;b 2 Rm�m is output tile b in filter k. for k ¼ 0 to K do

for c ¼ 0 to C do

u ¼ Ggk;cG
T 2 Ra�a

Scatter u to matrices U:Un;v
k;c ¼ un;v

for b ¼ 0 to P do
for c ¼ 0 to C do
v ¼ BTdc;bB 2 Ra�a

Scatter v to matrices V:Vn;v
c;b ¼ vn;v

for n ¼ 0 to a do
for v ¼ 0 to a do
Mn;v ¼ Un;vVn;v

for k ¼ 0 to K do
for b ¼ 0 to P do

Gather m from matrices M:mn;v ¼ Mn;v
k;b

Yn;v ¼ ATmA
4. Methodology

4.1. Arithmetic comlexity analysis

Algorithm 1 can be decomposed into four parts:

1. Filter transform;
2. Input tiles transform;



Z. Ji, X. Zhang, Z. Wei et al. Neurocomputing 460 (2021) 9–19
3. General matrix to matrix multiplication (GEMM);
4. Inverse transform.

Compared with direct convolution, the Winograd-based method
reduces the requirement of the number of multiplications in part3,
while it attaches overhead of the transforms in parts 1, 2, and 4. For
Fðm� n;R� SÞ, the arithmetic complexity of the multiplication
stage in a one layer of a ConvNet is given by

X ¼ N
H
m

� �
W
n

� �
CK mþ R� 1ð Þ nþ S� 1ð Þ ð8Þ

When m ¼ n ¼ 1;X equals the computational complexity of direct
convolution. As a result, direct convolution in Winograd-based form
is Fð1� 1;R� SÞ. To simplify the model, we assume that W is divis-
ible by m and H is divisible by n. We also assume that filters and
input tiles are squared (R ¼ S;m ¼ n). Then the Eq. (8) can be rewrit-
ten as follows:

X ¼ mþ R� 1ð Þ2
m2 N � H �W � C � K ð9Þ

We denote a ¼ mþ R� 1ð Þ2 ¼ tile size2, which is the arithmetic
complexity of multiplication per input tiles. Idem, the arithmetic
complexities of the data, filter, and inverse transforms can be writ-
ten as

T Dð Þ ¼ b
m2 NHWC

T Fð Þ ¼ cCK
T Ið Þ ¼ d

m2 NHWC

ð10Þ

where b; c, and d are the number of floating instructions used by the
input, filter, and inverse transforms, respectively, for a single tile.
Dividing T Dð Þ; T Fð Þ, and T Ið Þ by X generates therelative formulas.
The terms b0; c0, and d0 denote the normalized computational com-
plexity of the input, filter, and inverse transforms, separately. Fur-
ther, P ¼ NHW=m2 is the number of tiles in each channel, and
a0 ¼ a=m2 denotes the normalized computational complexity of
multiplication. Thus,

T Dð Þ
X ¼ b

Ka ¼ b0
K

T Fð Þ
X ¼ c

NHW
m2 a ¼

c
Pa ¼ c0

P

T Ið Þ
X ¼ d

Ca ¼ d0
C

ð11Þ

Summing the terms for the four parts yields the total arithmetic
complexity for one ConvNet layer:

L ¼ a0 1þ b0

K
þ c0

P
þ d0

C

� 	
N � H �W � C � K ð12Þ

In Eq. (12), we can conclude that a0;b0; c0, and d0 should be as small
as possible for achieving a large speedup. In the case of direct con-
volution, a0 ¼ a ¼ R and b0 ¼ c0 ¼ d0 ¼ 0, hence the theoretical max-
imum speedup of the Winograd-based method is R2=a0.

4.2. Transform matrices

According to the definitions of a0; b0; c0, and d0 in Section 4.1, we
can calculate the terms as follows:

a0 ¼ a
m2 ¼ mþR�1

m


 �2
b0 ¼ b=a
c0 ¼ c=a
d0 ¼ d=a

ð13Þ

We take Fð4;3Þ as an example to explore how to generate the trans-
form matrices A;B, and G. The three-element filter g and the four-
elements signal d can be represented as polynomials:
12
g xð Þ ¼ g2x
2 þ g1xþ g0

d xð Þ ¼ d3x3 þ g2x
2 þ d1xþ d0

ð14Þ

And the linear convolution g � d is equal to the coefficients of the
polynomial product

y xð Þ ¼ g xð Þd xð Þ ð15Þ
For polynomial mðxÞ of degree 5, this is equal to

y xð Þ ¼ g xð Þd xð ÞmodmðxÞ þ RmðxÞ yðxÞ½ � ð16Þ
where RmðxÞ yðxÞ½ � is the remainder of yðxÞ divided by mðxÞ. We
choose

m xð Þ ¼ mð0Þ xð Þmð1Þ xð Þmð2Þ xð Þmð3Þ xð Þmð4Þ xð Þmð5Þ xð Þ
¼ xðx� 1Þðxþ 1Þðx� 2Þðxþ 2Þðx�1Þ ð17Þ

which use the convention of writing x�1 instead of RmðxÞ yðxÞ½ �. The
residues of gðxÞ and cðxÞ with respect to mðiÞðxÞ are
gð0ÞðxÞ ¼ gðxÞmodmð0Þ ¼ g0

gð1ÞðxÞ ¼ gðxÞmodmð1Þ ¼ g0 þ g1 þ g2

gð2ÞðxÞ ¼ gðxÞmodmð2Þ ¼ g0 � g1 þ g2

gð3ÞðxÞ ¼ gðxÞmodmð3Þ ¼ g0 þ 2g1 þ 4g2

gð4ÞðxÞ ¼ gðxÞmodmð4Þ ¼ g0 � 2g1 þ 4g2

gð5ÞðxÞ ¼ gðxÞmodmð5Þ ¼ g2

ð18Þ

and

dð0ÞðxÞ ¼ dðxÞmodmð0Þ ¼ d0

dð1ÞðxÞ ¼ dðxÞmodmð1Þ ¼ d0 þ d1 þ d2 þ d3

dð2ÞðxÞ ¼ dðxÞmodmð2Þ ¼ d0 � d1 þ d2 � d3

dð3ÞðxÞ ¼ dðxÞmodmð3Þ ¼ d0 þ 2d1 þ 4d2 þ 8d3

dð4ÞðxÞ ¼ dðxÞmodmð4Þ ¼ d0 � 2d1 þ 4d2 � 8d3

dð5ÞðxÞ ¼ dðxÞmodmð5Þ ¼ d3

ð19Þ

We can represent the residues dðiÞðxÞ in matrix form as

A ¼

1 0 0 0
1 1 1 1
1 �1 1 �1
1 2 4 8
1 �2 4 �8
0 0 0 1

2
666666664

3
777777775

ð20Þ

Define MðiÞðxÞ ¼ mðxÞ=mðiÞðxÞ, yielding:
Mð0ÞðxÞ ¼ x4 � 5x2 þ 4

Mð1ÞðxÞ ¼ x4 þ x3 � 4x2 � 4x

Mð2ÞðxÞ ¼ x4 � x3 � 4x2 þ 4x

Mð3ÞðxÞ ¼ x4 þ 2x3 � x2 � 2x

Mð4ÞðxÞ ¼ x4 � 2x3 � x2 þ 2x
mðxÞ ¼ x5 � 5x3 þ 4x

ð21Þ

Matrix B is constructed such that column Bi is the coefficients of

Mði�1ÞðxÞ, and column B6 is the coefficients of m, yielding:

B ¼

4 0 0 0 0 0
0 �4 4 �2 2 4
�5 �4 4 �1 �1 0
0 1 �1 2 �2 �5
1 1 1 1 1 0
0 0 0 0 0 1

2
666666664

3
777777775

ð22Þ



Z. Ji, X. Zhang, Z. Wei et al. Neurocomputing 460 (2021) 9–19
In order to apply the Chinese Remainder Theorem, we should solve

for nðiÞðxÞ;NðiÞðxÞ, such that

nðiÞðxÞmðiÞðxÞ þ NðiÞðxÞMðiÞðxÞ ¼ 1 ð23Þ
which yields:

Nð0ÞðxÞ ¼ 1
4

Nð1ÞðxÞ ¼ � 1
6

Nð2ÞðxÞ ¼ � 1
6

Nð3ÞðxÞ ¼ 1
24

Nð4ÞðxÞ ¼ 1
24

ð24Þ

Matrix G is constructed by setting row Gi to be equal to the coeffi-

cients of gði�1Þ multiplied by Nði�1Þ.
In summary, the transform matrices A;B, and G are determined

by mðxÞ and the kernel. The values of the transform matrices are
determined by the form of mðxÞ. The size of the transform matrices
is determined by the kernel size and the degree of mðxÞ, which
equals to value of the tile.

The value of a transform matrix, which is generated by Chinese
Remainder Theorem in Lavin’s research, affects the arithmetic
complexity model. In number theory, the Chinese Remainder The-
orem states that if one knows the remainders of the Euclidean divi-
sion of an integer n by several integers, then one can uniquely
determine the remainder of the division of n by the product of
these integers, under the condition that the divisors are pairwise
coprime. This cannot be generalized to any principal ideal domain,
but its generalization to Euclidean domains is straightforward. The
univariate polynomials over a field is the typical example of a
Euclidean domain, which is not the integers.

The size of matrix BT is equal to ðmþ R� 1Þ2 (the tile size). The
size of matrix G is equal to ðmþ R� 1Þ � R. The size of matrix AT is
equal to m� ðmþ R� 1Þ.
b ¼ b1D � 2� ðmþ R� 1Þ
c ¼ c1D � ðmþ R� 1þ RÞ
d ¼ d1D � ðmþ R� 1þmÞ

ð25Þ

In Eq. (25), b1D; c1D; d1D are the arithmetic complexities of the input,
filter, and inverse transforms respectively in the case of one-
dimension.

4.3. Arithmetic complexity in manual mode

In Eq. (5), the input data transform processing is expressed as
BTdB, the filter transform processing is expressed as GgGT , and

the inverse transform processing is expressed as AT ½� � ��A. We use
the Chinese Remainder Theorem to generate the matrices

BT ;G;AT , and find that the value of b relies on the transform matrix
B, and that the size of matrix B is only determined by the tile size
ðmþ R� 1Þ. Similarly the value of c relies on the transform matrix
G, and the size of matrix G is determined by the tile size ðmþ R� 1Þ
and the kernel size R. The value of d relies on the transform matrix
A, and the size of matrix A is determined by the tile size ðmþ R� 1Þ
and the output size m. If the tile size is even, then

b1D ¼ tile2�2tile
2 ¼ tile� tile

2 � 1

 �

c1D ¼ tile
2 � ðRþ 1Þ � R

d1D ¼ tile2�ðRþ1Þ�tile
2 þ 2ðR� 1Þ

ð26Þ

If the tile size is odd, then
13
b1D ¼ ðtile� 3Þ2 þ 3tile
2 � 5

2

c1D ¼ tile�1
2 � ðRþ 1Þ � R

d1D ¼ tile2�R�tileþ3R�5
2

ð27Þ

According the Eq. (25), we can calculate b; c, and d. Then we will cal-
culate b0; c0, and d0 respectively depending on Eq. (13).

If the tile size is even, then

b0 ¼ tile� 2

c0 ¼ Rþ1
2 þ R2�R

2tile � R2

tile2

d0 ¼ tile� 3Rþ1
2 þ R2þ8R�9

2tile � 2ðR�1Þ2
tile2

a0 ¼ tile
tileþ1�R

� 
2

ð28Þ

If the tile size is odd, then

b0 ¼ 2tile� 9þ 13
tile

c0 ¼ Rþ1
2 þ R2�2R�1

2tile � 3R2þR
2tile2

d0 ¼ tile� 3R�1
2 þ R2þ5R�10

2tile � ð3R2�8Rþ5Þ
2tile2

a0 ¼ tile
tileþ1�R

� 
2

ð29Þ

Substituting the value of b0; c0, and d0 into Eq. (12), the conclusion
can be drawn that the relationship the between total arithmetic
complexity and the tile size is that of an anti ’S’ shape.

4.4. Arithmetic complexity in auto mode

Since the Winograd-based convolution via matrix multiplica-
tion can be extended to arbitrary dimensions facilely comparing
to manually reducing the transform costs. In some studies
[26,28], the Winograd transform and the inverse transform are
implemented by matrix multiplication. We can construct the arith-
metic complexity model by a similar analysis as that used above.

For one n�mmatrix and onem� pmatrix, the arithmetic com-
plexity of schoolbook matrix multiplication is n�m� p. In Sec-
tion 4.2, the sizes of matrices G;B, and A are

ðmþ R� 1Þ � R; ðmþ R� 1Þ2, and ðmþ R� 1Þ �m. Then we can
conclude that the total arithmetic complexity of the data, filter,
and inverse transforms for the automatic case are as follows:

b ¼ 2ðmþ R� 1Þ3
c ¼ ðmþ R� 1ÞR2 þ Rðmþ R� 1Þ2
d ¼ ðmþ R� 1Þm2 þmðmþ R� 1Þ2

ð30Þ

According the definition of b0; c0, and d0, we generate the formulas
for calculating b0; c0, and d0 in auto model as follows:

b0 ¼ b
a ¼ 2ðmþ R� 1Þ

c0 ¼ c
a ¼ Rþ R2

mþR�1

d0 ¼ d
a ¼ mþ m2

mþR�1

ð31Þ

Substituting the values of b0; c0, and d0 into Eq. (12), we can obtain
conclusion similar to that of Section 4.3.

By a quantitative analysis of the previous view, when the size of
the convolution kernel is fixed, there is a theoretical upper limit in
the acceleration effect of the Winograd algorithm, and the speedup
of the growth curve is S-shaped. This means that when tile size
exceeds a certain threshold value, the acceleration effect will be
significantly reduced. Fig. 1 shows the actual reduction in compu-
tations as a function of kernels and tile sizes. Fig. 2 shows the
actual reduction in computations as a function of channels and ker-
nels. Our optimization is based on the computational complexity
model, and we will describe it in the next section.



Fig. 1. The speed-up achieved by Winograd convolution for a kernel ð3� 3Þ as a function of number layer channels and tile sizes. Dashed line indicates direct convolution
baseline.

Fig. 2. The speed-up achieved by Winograd convolution for a kernel (3 � 3) as a function of number layer channels and kernels. Dashed line indicates direct convolution
baseline.

Z. Ji, X. Zhang, Z. Wei et al. Neurocomputing 460 (2021) 9–19
5. Optimization methods

5.1. Tile fusion

Through the quantitative analysis in Section 4, compared with
4� 4 tile, 6� 6 or larger tile can result in a better convolution
acceleration effect when the convolution kernel size is fixed at
3� 3. However, there is a problem with loss of precision in the
Winograd-based fast convolution algorithm. A single-precision
floating-point has only 24 bits for the significand, which can dra-
matically increase the computation error for larger tiles. To benefit
from large tiles, we propose a tile-fusion method for CNNs. The
14
method includes structure-based and data-based tile-fusion
schemes. The former means that each layer of a CNN performs con-
volution operations with tiles of different sizes. The latter means
that the input data are divided into parts. For each part of the input
data a CNN in entered with a tile of a different size. In order to
improve the convolution efficiency as much as possible, we will
fuse tiles of different sizes within the allowable error range. In
Algorithm 1, we calculate the actual parameter values for different
slices. In the case of divisible, we use the original parameters. In
the case of non-divisible, we will consider zero paddings and recal-
culate the values of parameters H and W. Finally, the optimal tile
size is calculated by the calculation model.



Z. Ji, X. Zhang, Z. Wei et al. Neurocomputing 460 (2021) 9–19
Algorithm 2: Compute optimized tile size for each ConvNet
layer

m is the size of the output tile, R is the kernel size.
T ¼ mþ R� 1 is the size of the input tile.
L is the number of layers.

for i ¼ 0 to L do
if (wi-R + 1)modm– 0 then

wi ¼ dwi � Rþ 1e=mð Þ �mþ R� 1
hi ¼ dhi � Rþ 1e=mð Þ �mþ R� 1

Ti ¼ minðFðCi;Ni;Wi;Hi;Ki; TÞÞ
end for
Table 1
The parameters of each convolution layers in VGG 19, SqueezeNet, GoogleNet, and
ResNet.

Convolution layers C H W K

Vgg 1.1 3 224 224 64
Vgg 1.2 64 224 224 64
Vgg 2.2 128 112 112 128
Vgg 3.2 256 56 56 256
Vgg 4.2 512 28 28 512
Vgg 5 512 14 14 512
SqueezeNet Fire2 64 55 55 128
SqueezeNet Fire3 64 55 55 256
SqueezeNet Fire5 128 27 27 256
SqueezeNet Fire6 196 27 27 384
SqueezeNet Fire9 256 13 13 512
GoogleNet2 64 56 56 192
GoogleNet3 128 28 28 192
GoogleNet4 144 14 14 288
5.2. Matrix Sparsification

There are two methods for the transform and inverse
transform-manual transform and automatic transform. For the
manual transform, the matrix multiplication parts in the formula
are combined into a one-time calculation, and the repeated calcu-
lation part in the process is reduced manually. In this case, the cal-
culation requirement is the least. For the automatic transform, the
matrix multiplication part of the formula is divided into two
matrix multiplications to facilitate the call of library functions,
which have strong scalability; however, the calculation require-
ment increases correspondingly. In the above-mentioned quantita-
tive analysis model, we found some calculation patterns, which can
make better use of the sparsity of matrices A;B;G, and reduce the
calculation requirement in the conversion process.

5.3. Batch Size Fusion

In the Winograd algorithm, we can see that the main source of
computation is matrix multiplication. For each convolution kernel
matrix, multiplications with N input feature map matrices are
implemented. Therefore, we can merge these input feature map
matrices to compute matrix multiplication with the convolution
kernel matrix. This optimization will expand the scale and improve
the efficiency of matrix multiplication. On the other hand, it also
takes into account the interface of general libraries, such as
openBLAS.

6. Experiment

This section presents the results of our experiments to demon-
strate the performance of the tile fusion method. We test the tile-
fusion method from three aspects:

1. How does the method perform for different convolutional lay-
ers?
The experimental results show that the tile fusion method can
compute the optimal performance tile size with acceptable
accuracy for all the convolutional layers in the four common
models including VGG19 [33], ResNet [34], GoogleNet [35],
and SqueezeNet [15].

2. How does the method perform for different model?.
The experimental results show that for the four mainstream
convolutional neural network models, the tile fusion method
improves by 1.17 � - 3.57 � compared to the methods in base-
line, respectively.
15
3. What is the error of the tile fusion method comparing with
standard convolution methods?. Comparing to the direct con-
volution method with 64-bit data, the tile fusion method with
32ibt offers an error that is on average lower than E-02, and
the error loss is acceptable.

6.1. Experimental Setting

6.1.1. Experimental environment
We benchmark the tile fusion method and baseline methods on

the FT1500A platform which contains ARM-v8(16 cores, 1.5 GHz),
32 KB L1 cache, 8 MB L2 cache, 8 MB L3 cache and 16 GB DRAM.

6.1.2. Workload
Winograd-based convolution is widely used in prevalent CNN

models, including VGG-19, ResNet, GoogleNet, and SqueezeNet.
The models contain a mass of small size filters, which is suited
for Winograd-based convolution. For example, 60%of convolution
filters in GoogleNet are 3 � 3, 1 � 5, 1 � 7, etc. All the filters
in the convolution layers of VGG-19 are 3 � 3. Hence, we select
VGG-19, GoogleNet, Resnet, and SqueezeNet to be the baseline
model.

6.1.3. Baseline
We organize 4 state-of-the-art implementations as the baseline,

which can be divided into two groups: (1) GEMM-based baseline:
im2col; (2) Wingrad with fixed tile baseline: 2 � 2 tile(CuDNN), 4
� 4 tile(Arm Compute Library), and 6 � 6 tile(NNPACK).

6.2. For the different convolution layers

We implement the tile fusion method and test it on each convo-
lution layer in different models. Table 1 lists all the convolution
layers parameters of the four models above. Take the VGG-19
model as an example, we test the performance of Winograd in dif-
ferent convolution layers with a fixed tile firstly, and the results
show a very erratic performance, for instance, the 6 � 6 tiles pro-
vide the best performance at the VGG1.1 convolutional layer but
poor performance at the VGG 4.2 convolutional layer.

In Fig. 3, the blue bars show that padding problems occur with
the tile size, and the gold bar does not generate a padding problem.
The dashed lines show the threshold of the tile size. Once the tile
size exceeds the threshold, the result of the Winograd-based con-
volution is not acceptable. For the VGG1.1, 1.2, and 2.1 layers,
GoogleNet5 192 7 7 384
ResNet Conv2 64 56 56 64
ResNet Conv3 64 28 28 128
ResNet Conv4 128 14 14 256
ResNet Conv5 256 7 7 512



Fig. 3. For each layers of VGG19 E, we test different tile sizes with 1 input feature map.

Z. Ji, X. Zhang, Z. Wei et al. Neurocomputing 460 (2021) 9–19
the cause of the small channel value, the performance curve is U-
shaped. In the following layers, such as VGG2.2, because the chan-
nel number is greater than 100, the performance curve increases
linearly with an increase of the tile value. When the tile size is
greater than 8, the gradient of the performance curve slows down.
There are some abnormal points on the curve because the width
and height of the feature map cannot be divided by the tile size,
and additional padding operations are unavoidable. In the
VGG4.2 and VGG5 layers, the number of the kernel is 512, the sizes
of the feature maps are 28 � 28, and 14 � 14, and only one feature
map is processed in a batch. Therefore, the number of tiles is very
small, which means that the transform cost of 512 convolution fil-
ters has not been distributed, and the large tile size increases the
total computation overhead.

In Fig. 4, we set the value of batch to 32, and for VGG4.2 and
VGG5 layers, the transform cost of the convolutional kernel is
shared by the 32 feature maps. Thus, the performance of different
Fig. 4. For each layers of VGG19 E, we test the performan

16
tiles meets the description of the computation model. However,
when the feature map turns small, the overhead of padding which
a large tile introduces covers the benefits it brings. In general, we
can observe that the parameters of each convolution layer are dif-
ferent. Running a VGG model with a unique tile, the performance
of each layer is instable. In Fig. 5, we show the performance of
the tile fusion method on SuqueezeNet, ResNet and GoogleNet
models and the results are similar to the VGG model.

6.3. For the different networks

Finally, we test the performance of different tiles in the whole
VGG neural network, and the batch size is set to 32. In Fig. 6, we
can observe that the overall trend of performance is improved by
the increasing tile size. Compared with a fixed tile size, the tile-
fusion method solves the problem of unbalanced performance by
selecting the optimal tile size for each layer. After its use, the over-
ce of different tile sizes with 32 input feature maps.



Fig. 5. The performance of different tile sizes with different convolution layers on models SqueezeNet, GoogleNet, and ResNet.

Fig. 6. The performance of different baselines on model VGG, GoogleNet, SqueezeNet, and ResNet.

Z. Ji, X. Zhang, Z. Wei et al. Neurocomputing 460 (2021) 9–19
all performance is improved by approximately 47.2%, 22.1%, and
16.2% respectively, compared with tile size 4, tile size 6, and tile
size 8, which are implemented using CuDNN [12], TVM [25], Arm
Compute Library [24], and NNPACK [18]. Tests on the models
ResNet, GoogleNet, and SqueezeNet presented similar results, as
shown in Fig. 6. However, in the three models mentioned above,
the tile fusion method does not significantly improve the perfor-
mance due to the introduction of a 1X1 convolutional kernel which
cannot be processed.
Table 2
The calculation error for different tile sizes.

Tile size 4 5 6 7

Error max 7.67e-5 7.53e-4 8.45e-4 2.98e-3
Error avg 9.94e-8 3.07e-7 3.62e-5 3.67e-5

17
6.4. Error

As the tile size increases, higher precision numbers are needed
for the Winograd algorithm to ensure the accuracy of the convolu-
tion results. Most deep learning algorithms use 32-bit floating-
point data, which has a limited number of bits (24) for data.
Single-precision floating-point data may result in unacceptable
calculation errors for larger tile sizes. Therefore, we measure the
calculation error for different tile sizes in order to determine the
8 10 12 direct conv

8.1e-2 7.31 211228.6 9.81e-5
4.53e-5 6.87e-3 3.98 2.49e-7



Z. Ji, X. Zhang, Z. Wei et al. Neurocomputing 460 (2021) 9–19
acceptable range of tile sizes. Using 32-bit floating-point as a refer-
ence, we tested the maximum and average errors for various val-
ues of f ðm; rÞ and the error of direct convolution. The direct
convolution algorithm using long-double data is used as a ground
truth. The input image data and convolution kernel data are uni-
formly distributed in [0, 1]. Accuracy is more important for training
as it affects stability, but has less effect on inference. There is evi-
dence [36,37] that error values under E-02 do not affect the stabil-
ity of the training and that the inference error may be an order of
magnitude higher. Our test results, displayed in Table 2, indicate
that when the tile size is less than or equal to 10, the average error
is within the acceptable range, and when the tile size is less than or
equal to 8, the maximum error and average error are within the
acceptable range.
7. Conclusion

Since the Winograd algorithm can significantly reduce the com-
putational complexity of the convolutional layer, it is applied in
many popular platforms and machine learning frameworks. Our
study is based on the calculation model of theWinograd algorithm,
and a quantitative model of the computational complexity was
generated. We explored the impact of different tile sizes on CNNs
and proposed a series of optimization schemes based on the tile-
fusion method. The test results on VGG-19 show that compared
with the convolution method that is integrated into the prevalent
deep learning framework, the acceleration effect of the CNN is
improved by 16% - 47%.
CRediT authorship contribution statement

Zeyu Ji: Conceptualization, Methodology, Software, Investiga-
tion, Writing - original draft, Validation. Xingjun Zhang:
Resources, Funding acquisition, Project administration, Supervi-
sion. Zheng Wei: Formal analysis. Jingbo Li: Investigation. Jia
Wei: Data curation, Validation.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
Acknowledgement

We would like to thank the anonymous reviewers, whose
insightful comments greatly improved the quality of this paper.
The work described in this paper was supported in part by the
National Key Research and Development Program of China
(2016YFB0200902).

References

[1] Gu. Jiuxiang, Zhenhua Wang, Jason Kuen, Lianyang Ma, Amir Shahroudy, Bing
Shuai, Ting Liu, Xingxing Wang, Gang Wang, Jianfei Cai, et al., Recent advances
in convolutional neural networks, Pattern Recogn. 77 (2018) 354–377.

[2] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,
Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large
minibatch sgd: Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677,
2017. .

[3] Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of
convolutional networks. arXiv preprint arXiv:1708.03888, 2017. .

[4] Chris Ying, Sameer Kumar, Dehao Chen, Tao Wang, and Youlong Cheng. Image
classification at supercomputer scale. arXiv preprint arXiv:1811.06992, 2018. .

[5] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja
Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. Scaling distributed
machine learning with the parameter server. In 11th fUSENIXg Symposium on
Operating Systems Design and Implementation (fOSDIg 14), pages 583–598,
2014. .
18
[6] Frédéric Loulergue, Frédéric Gava, David Billiet, Bulk synchronous parallel ml:
modular implementation and performance prediction, in: International
Conference on Computational Science, Springer, 2005, pp. 1046–1054.

[7] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim, Phillip B
Gibbons, Garth A Gibson, Greg Ganger, and Eric P Xing. More effective
distributed ml via a stale synchronous parallel parameter server. In Advances
in neural information processing systems, pages 1223–1231, 2013. .

[8] Eric P. Xing, Qirong Ho, Pengtao Xie, Dai Wei, Strategies and principles of
distributed machine learning on big data, Engineering 2 (2) (2016) 179–195.

[9] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A
lock-free approach to parallelizing stochastic gradient descent. In Advances in
neural information processing systems, pages 693–701, 2011. .

[10] Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing
deep neural network with pruning, trained quantization and huffman coding.
In Yoshua Bengio and Yann LeCun, editors, 4th International Conference on
Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2–4, 2016,
Conference Track Proceedings, 2016. .

[11] Xingyu Liu, Jeff Pool, Song Han, and William J. Dally. Efficient sparse-winograd
convolutional neural networks. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. OpenReview.net, 2018. .

[12] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, Yoshua
Bengio, Quantized neural networks: Training neural networks with low
precision weights and activations, J. Mach. Learn. Res. 18 (1) (2017) 6869–
6898.

[13] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up
convolutional neural networks with low rank expansions. arXiv preprint
arXiv:1405.3866, 2014. .

[14] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017. .

[15] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J
Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and< 0.5 mb model size. arXiv preprint arXiv:1602.07360, 2016. .

[16] Jiarui Fang, Haohuan Fu, Wenlai Zhao, Bingwei Chen, Weijie Zheng, and
Guangwen Yang. swdnn: A library for accelerating deep learning applications
on sunway taihulight. In 2017 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 615–624. IEEE, 2017. .

[17] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional
architecture for fast feature embedding. In Proceedings of the 22nd ACM
international conference on Multimedia, pages 675–678, 2014 .

[18] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John
Tran, Bryan Catanzaro, and Evan Shelhamer. cudnn: Efficient primitives for
deep learning. arXiv preprint arXiv:1410.0759, 2014 .

[19] Minsik Cho and Daniel Brand. Mec: memory-efficient convolution for deep
neural network. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 815–824, 2017. .

[20] Michaël Mathieu, Mikael Henaff, and Yann LeCun. Fast training of
convolutional networks through ffts. In Yoshua Bengio and Yann LeCun,
editors, 2nd International Conference on Learning Representations, ICLR 2014,
Banff, AB, Canada, April 14–16, 2014, Conference Track Proceedings, 2014. .

[21] Nicolas Vasilache, Jeff Johnson, Michael Mathieu, Soumith Chintala, Serkan
Piantino, and Yann LeCun. Fast convolutional nets with fbfft: A gpu
performance evaluation. arXiv preprint arXiv:1412.7580, 2014. .

[22] Andrew Lavin, Scott Gray, Fast algorithms for convolutional neural networks,
in: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 4013–4021.

[23] Shmuel Winograd. Arithmetic complexity of computations, volume 33. Siam,
1980. .

[24] Arm compute library. [EB/OL]. https://github.com/ARM-software/
ComputeLibrary. .

[25] Acceleration package for neural networks on multi-core cpus: Maratyszcza.
[EB/OL]. https://github.com/Maratyszcza/NNPACK. .

[26] David Budden, Alexander Matveev, Shibani Santurkar, Shraman Ray
Chaudhuri, and Nir Shavit. Deep tensor convolution on multicores, in:
International Conference on Machine Learning, 2017, pp. 615–624.

[27] Partha Maji, Andrew Mundy, Ganesh Dasika, Jesse Beu, Matthew Mattina, and
Robert Mullins. Efficient winograd or cook-toom convolution kernel
implementation on widely used mobile cpus. In 2019 2nd Workshop on
Energy Efficient Machine Learning and Cognitive Computing for Embedded
Applications (EMC2), pages 1–5. IEEE, 2019. .

[28] Zhen Jia, Aleksandar Zlateski, Fredo Durand, Kai Li, Optimizing n-dimensional,
winograd-based convolution for manycore cpus, in: Proceedings of the 23rd
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
2018, pp. 109–123.

[29] Junzhong Shen, You Huang, Zelong Wang, Yuran Qiao, Mei Wen, and
Chunyuan Zhang. Towards a uniform template-based architecture for
accelerating 2d and 3d cnns on fpga. In Proceedings of the 2018 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, pages 97–106,
2018. .

[30] Feng Shi, Haochen Li, Yuhe Gao, Benjamin Kuschner, Song-Chun Zhu, Sparse
winograd convolutional neural networks on small-scale systolic arrays, in:
Proceedings of the 2019 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, 2019, p. 118.

http://refhub.elsevier.com/S0925-2312(21)00898-5/h0005
http://refhub.elsevier.com/S0925-2312(21)00898-5/h0005
http://refhub.elsevier.com/S0925-2312(21)00898-5/h0005
http://refhub.elsevier.com/S0925-2312(21)00898-5/h0030
http://refhub.elsevier.com/S0925-2312(21)00898-5/h0030
http://refhub.elsevier.com/S0925-2312(21)00898-5/h0030
http://refhub.elsevier.com/S0925-2312(21)00898-5/h0030
http://refhub.elsevier.com/S0925-2312(21)00898-5/h0040
http://refhub.elsevier.com/S0925-2312(21)00898-5/h0040
http://refhub.elsevier.com/S0925-2312(21)00898-5/h0060
http://refhub.elsevier.com/S0925-2312(21)00898-5/h0060
http://refhub.elsevier.com/S0925-2312(21)00898-5/h0060
http://refhub.elsevier.com/S0925-2312(21)00898-5/h0060
http://refhub.elsevier.com/S0925-2312(21)00898-5/h0110
http://refhub.elsevier.com/S0925-2312(21)00898-5/h0110
http://refhub.elsevier.com/S0925-2312(21)00898-5/h0110
http://refhub.elsevier.com/S0925-2312(21)00898-5/h0110
http://refhub.elsevier.com/S0925-2312(21)00898-5/h0130
http://refhub.elsevier.com/S0925-2312(21)00898-5/h0130
http://refhub.elsevier.com/S0925-2312(21)00898-5/h0130
http://refhub.elsevier.com/S0925-2312(21)00898-5/h0130
http://refhub.elsevier.com/S0925-2312(21)00898-5/h0140
http://refhub.elsevier.com/S0925-2312(21)00898-5/h0140
http://refhub.elsevier.com/S0925-2312(21)00898-5/h0140
http://refhub.elsevier.com/S0925-2312(21)00898-5/h0140
http://refhub.elsevier.com/S0925-2312(21)00898-5/h0140
http://refhub.elsevier.com/S0925-2312(21)00898-5/h0150
http://refhub.elsevier.com/S0925-2312(21)00898-5/h0150
http://refhub.elsevier.com/S0925-2312(21)00898-5/h0150
http://refhub.elsevier.com/S0925-2312(21)00898-5/h0150
http://refhub.elsevier.com/S0925-2312(21)00898-5/h0150


Z. Ji, X. Zhang, Z. Wei et al. Neurocomputing 460 (2021) 9–19
[31] Lanmin Zheng and Tianqi Chen. Optimizing deep learning workloads on arm
gpu with tvm. In Proceedings of the 1st on Reproducible Quality-Efficient
Systems Tournament on Co-designing Pareto-efficient Deep Learning, page 1.
2018. .

[32] Mkl. [EB/OL]. https://github.com/oneapi-src/oneDNN. .
[33] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks

for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014. .
[34] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep residual learning for

image recognition, in: Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[35] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1–9, 2015. .

[36] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Training deep
neural networks with low precision multiplications. arXiv preprint
arXiv:1412.7024, 2014. .

[37] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, Pritish Narayanan, Deep
learning with limited numerical precision, in: International Conference on
Machine Learning, 2015, pp. 1737–1746.

Zeyu Ji received the B.S.degree from the School of
Information Engineering, Zhengzhou University,
Zhengzhou, China, in 2008, and the M.S. degree from the
Polytechnic University of Tours, Tours, France. He is
currently a PhD candidate with Xi’an Jiaotong Univer-
sity, Xi’an, China.. His main research interests include
computer architecture, high performance computing,
and deep learning.
Xingjun Zhang received his Ph.D degree in Computer
Architecture from Xi’an Jiaotong University, China, in
2003. From Jan. 2004 to Dec. 2005, he was Postdoctoral
Fellow at the Computer School of Beihang University,
China. From Feb. 2006 to Jan. 2009, he was Research
Fellow in the Department of Electronic Engineering of
Aston University, United Kingdom. He is now a Full
Professor and the Dean of the School of Computer Sci-
ence & Technology, Xi’an Jiaotong University. His
research interests include high performance computing,
big data storage system and machine learning acceler-
ation.
19
Jia Wei received the B.E.degree from the School of
Information science and technology, NorthWest
University, Xi’an, China, in 2019. He is currently a PhD
candidate with the Computer science and technology
School, Xi’an Jiaotong University. His research interests
include computer architecture, high performance com-
puting, and deep learning.
Jingbo Li is currently pursuing a Ph.D. degree with Xi’an
Jiaotong University, Xi’an, China. His main research
interests include computer architecture, job scheduling,
and high performance computing.
Zheng Wei received the B.S. and M.S degrees from the
school of Communication Engineering from Xidian
University, Xi’an, China, in 2013 and 2016, respectively.
He is currently pursuing a Ph.D. degree with Xi’an
Jiaotong University, Xi’an, China. His research interests
include computer architecture, deep compression algo-
rithms, and hardware accelerators for deep learning.

http://refhub.elsevier.com/S0925-2312(21)00898-5/h0170
http://refhub.elsevier.com/S0925-2312(21)00898-5/h0170
http://refhub.elsevier.com/S0925-2312(21)00898-5/h0170
http://refhub.elsevier.com/S0925-2312(21)00898-5/h0170
http://refhub.elsevier.com/S0925-2312(21)00898-5/h0185
http://refhub.elsevier.com/S0925-2312(21)00898-5/h0185
http://refhub.elsevier.com/S0925-2312(21)00898-5/h0185
http://refhub.elsevier.com/S0925-2312(21)00898-5/h0185

	A tile-fusion method for accelerating Winograd convolutions
	1 Introduction
	2 Related work
	2.1 Direct convolution
	2.2 Fast convolution

	3 Background
	3.1 One-Dimensional Winograd-Based Convolution
	3.2 Two-dimensional Winograd-based convolution
	3.3 Winograd algorithm in ConvNet layer

	4 Methodology
	4.1 Arithmetic comlexity analysis
	4.2 Transform matrices
	4.3 Arithmetic complexity in manual mode
	4.4 Arithmetic complexity in auto mode

	5 Optimization methods
	5.1 Tile fusion
	5.2 Matrix Sparsification
	5.3 Batch Size Fusion

	6 Experiment
	6.1 Experimental Setting
	6.1.1 Experimental environment
	6.1.2 Workload
	6.1.3 Baseline

	6.2 For the different convolution layers
	6.3 For the different networks
	6.4 Error

	7 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgement
	References


