
Enhancing Unit-tests for Invariance Discovery

Piersilvio De Bartolomeis 1 Antonio Orvieto 1 Giambattista Parascandolo 2

Abstract
Recently, Aubin et al. (2021) proposed a set of
linear low-dimensional problems to precisely eval-
uate different types of out-of-distribution general-
ization. In this paper, we show that one of these
problems can already be solved by established
algorithms, simply by better hyper-parameter tun-
ing. We then propose an enhanced version of
the linear unit-tests. To the best of our hyper-
parameter search and within the set of algorithms
evaluated, AND-mask is the best performing al-
gorithm on this new suite of tests. Our findings
on synthetic data are further reinforced by experi-
ments on an image classification task where we
introduce spurious correlations.

1. Introduction
Over the last decade, deep learning has shown impressive
performance in a variety of application domains, ranging
from computer vision to natural language processing (Col-
lobert & Weston, 2008; He et al., 2015). However, recent
years have been marked by a multitude of examples showing
that deep learning models are prone to exploiting spurious
correlations (Beery et al., 2018). To address this issue,
AND-mask (Parascandolo et al., 2020) and several other
works (Arjovsky et al., 2019; Koyama & Yamaguchi, 2020;
Khezeli et al., 2021) proposed to learn correlations that are
invariant across multiple training distributions. The key idea
behind these methods is that when different interventions
are used to produce the training datasets, invariant correla-
tions should reflect the fixed causal mechanism underlying
the target variable. Aubin et al. (2021) noted, however, that
these algorithms perform poorly across a catalog of simple
low-dimensional linear problems. Since then, it has become
common practice for a growing body of literature (Ahuja
et al., 2021; Khezeli et al., 2021; Koyama & Yamaguchi,
2020; Du et al., 2021; Wang et al., 2022; Nguyen et al.,
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2022) to evaluate the performance of algorithms for invari-
ance discovery using the Linear Unit-Tests proposed by
Aubin et al. (2021). These unit-tests entail three classes of
low-dimensional linear problems, each capturing a different
structure for inducing spurious correlations. Here, we will
focus on the two linear classification tasks:

• Example 2 is a classification problem inspired by the cow
vs. camel example (Beery et al., 2018) where spurious
correlations are interpreted as background color.

• Example 3 is based on a classification experiment in Paras-
candolo et al. (2020) where the spurious correlations pro-
vide a shortcut in minimizing the training error while the
invariant classifier takes a more complex form.

In this paper we argue that, despite the conceptual appeal
of these simple problems, evaluating an algorithm’s per-
formance on these tasks can be misleading. In Section
3, we show that Example 2 is a trivial problem that can
be solved via empirical risk minimization (ERM) (Vapnik,
1998), while in Section 4 we show that Example 3 can
become a much harder problem than intended. Towards
resolving these issues, we propose an enhanced version of
the Linear Unit-Tests in Section 5. We find that, to the best
of our hyper-parameters search and within the set of algo-
rithms evaluated, AND-mask (Parascandolo et al., 2020) is
the only algorithm that effectively solves these new prob-
lems. To support our findings on synthetic data, we evaluate
AND-mask on a more realistic image classification task in
Section 6 and find that it significantly outperforms ERM
when spurious correlations are introduced.

2. Preliminaries
We consider nenv environments; for each environment
e ∈ E = {Ej}nenv

j=1 we denote by De = {xe
i , y

e
i }

ne

i=1 the
corresponding dataset contaning ne samples. The input
feature vector xe = (xe

inv, x
e
spu) ∈ Rd contains features

xe
inv ∈ Rdinv that elicits invariant correlations as well as fea-

tures xe
spu ∈ Rdspu that elicits spurious correlations. Our

goal is to construct invariant predictors that estimate ye by
relying on xe

inv and ignoring xe
spu. We provide here a brief

overview of the algorithms compared in this work:

• Empirical Risk Minimization (Vapnik, 1998) minimizes
the error on the union of all the training splits.
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• Invariant Risk Minimization (Arjovsky et al., 2019)
finds a representation of the features such that there exists
a classifier, on top of that representation, that is simulta-
neously optimal for all environments.

• Inter-environmental Gradient Alignment (Koyama &
Yamaguchi, 2020) minimizes the error on the training
splits while reducing the variance of the gradient of the
loss per environment.

• AND-mask (Parascandolo et al., 2020) minimizes the
error on the training splits by updating the model on those
directions where the sign of the gradient of the loss is the
same for most environments.

• Information Bottleneck Invariant Risk Minimization
(Ahuja et al., 2021) finds the predictor with the least en-
tropy among all the highly predictive invariant predictors.

• Oracle (Aubin et al., 2021) is a version of ERM where
features xe

spu in the train set are shuffled at random across
examples, hence spurious features are trivial to ignore.

3. Example 2: Cows versus Camels
We consider Example 2 from the linear unit-tests of Aubin
et al. (2021) and prove that ERM, as well as all other algo-
rithms considered in this paper, can solve this problem. We
report the data generating process here:

µcow = 1dinv , µcamel = −µcow, νanimal = 10−2,
µgrass = 1dspu , µsand = −µgrass, νbg = 1,

where 1m ∈ Rm denotes a vector of ones. To construct the
datasets De for every e ∈ E we sample:

je ∼ Categorical (fese, besefe (1− se) , be (1− se)) ,

xe
inv ∼

{
(Ndinv (0, 0.1) + µcow ) · νanimal if je ∈ {1, 2}
(Ndinv (0, 0.1) + µcamel ) · νanimal if je ∈ {3, 4} ,

xe
spu ∼

{ (
Ndspu (0, 0.1) + µgrass

)
· νbg if je ∈ {1, 4}(

Ndspu (0, 0.1) + µsand
)
· νbg if je ∈ {2, 3} ,

ye ←

{
1 if 1⊺dinv

xe
inv > 0

0 else
,

where for the first three environments the background prob-
abilities are be0 = 0.95, be1 = 0.97, be2 = 0.99 and the
animal probabilities are se0 = 0.3, se1 = 0.5, se2 = 0.7.
When the number of environments are greater than three,
then fej ∼ Uniform (0.9, 1), and sej ∼ Uniform (0.3, 0.7).

Proposition 1. (Informal) Consider the setting of Exam-
ple 2. In this scenario, ERM, IRM, IB-IRM and AND-
Mask solve the OOD generalization problem.

The proof is a direct consequence of the results in (Ahuja
et al., 2021) and can be found in the appendix.
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Figure 1. We plot mean and standard deviation over 5 runs for
the average test error for all algorithms with (dinv, dspu, nenv) =
(5, 5, 3). All algorithms hyper-parameters are tuned to yield the
best performance. Details in the appendix.

It should be noted that most of the experimental findings
in the literature (Ahuja et al., 2021; Khezeli et al., 2021;
Koyama & Yamaguchi, 2020; Du et al., 2021; Wang et al.,
2022; Nguyen et al., 2022) fail to achieve satisfactory per-
formance in this example. The issue lies with the hyper-
parameter search proposed in Aubin et al. (2021), in partic-
ular, the learning rates tested are too small for convergence.
In light of Proposition 1, we argue that all the algorithms
evaluated in the linear unit-tests should solve Example 2.
We run experiments with higher learning rates and all the
algorithms reach zero test error. We report these results in
Figure 1, notably ANDMask converges significantly faster
than all the other algorithms — even after tuning all hyper-
parameters (see Appendix A.1). Moreover, ERM achieves
zero error, making the task trivial for the other algorithms.
Overall, these results suggest that Example 2, in its current
form, is not effective for evaluating invariance discovery
algorithms. In Section 5, we address this issue and pro-
pose a more challenging version of the problem where an
algorithm is ranked based on how much weight it puts on
spurious features.

4. Example 3: Small Invariant Margin
We consider Example 3 from the linear unit-tests of Aubin
et al. (2021). This problem is a linear version of a clas-
sification experiment in Parascandolo et al. (2020) where
the spurious correlations provide a shortcut in minimizing
the training error while the invariant classifier takes a more
complex form. Even though AND-mask was shown to solve
the non-linear version of this problem in Parascandolo et al.
(2020), it has been experimentally observed that it fails to
solve its linear counter-part. In Section 4.2 we resolve this
contradiction and provide an explanation for the failure of
AND-mask observed in Aubin et al. (2021); Ahuja et al.
(2021).

] Following Aubin et al. (2021), Example 3 is generated
as follows: γ = 0.1 · 1dinv , and µe ∼ Ndspu(0, 1), for all
environments. To construct the datasets De for every e ∈ E
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we sample:
µe ∼ Ndspu(0, 1),

ye ∼ Bernoulli

(
1

2

)
,

xe
inv ∼

{
Ndinv

(
+γ, 10−1

)
if ye = 0

Ndinv

(
−γ, 10−1

)
if ye = 1

,

xe
spu ∼

{
Ndspu

(
+µe, 10−1

)
if ye = 0

Ndspu

(
−µe, 10−1

)
if ye = 1

.

4.1. Can AND-mask solve Example 3?

We present a theoretical analysis of AND-mask in the set-
ting of Example 3, proving that it can solve the OOD gen-
eralization problem when the number of environments is
sufficiently large. For the sake of clarity, we consider
the two dimensional case, i.e. dinv = dspu = 1. We as-
sume that the data is balanced and that AND-mask is ini-
tialized with weights w(0) = (0, 0)⊤ — this choice can
be interpreted as a prior belief that all features are spu-
rious. Along the lines of Parascandolo et al. (2020) we
define for every component [mτ ]j of the mask mτ , [mτ ]j =

1
[
τ ⩽ 1

nenv

∣∣∣∑e sign
(
[∇Le(w)]j

)∣∣∣], where∇Le is the av-
erage gradient within an environment. Our goal is to prove
that AND-mask converges towards an invariant solution,
that is a solution of the form:

w ∈ W∗ = {(w1, w2)
⊤ ∈ R2 : w2 = 0 ∧ w1 < 0}.

First, we prove in Theorem 4.1 that the component of the
mask mτ corresponding to the spurious feature is 0 with
high probability when w = w(0).

Theorem 4.1. LetW = {(w1, w2)
⊤ ∈ R2 : w2 = 0}

and [mτ ]spu be the component of the mask corresponding
to the spurious feature. If w ∈ W then:

P ([mτ ]spu = 0) ≥ 1− exp

(
−τ2nenv

2

)
. (1)

It follows that, if nenv is big enough, [w]spu will likely never
be updated during gradient descent, i.e

∀k : w(k) ∈ W = {(w1, w2)
⊤ ∈ R2 : w2 = 0}.

Next, we prove in Theorem 4.2 that the component of mτ

corresponding to the invariant feature converges almost
surely to 1 for all incorrect solutions of the form:

w ∈ W̃∗ = {(w1, w2)
⊤ ∈ R2 : w2 = 0 ∧ w1 ≥ 0}.

Theorem 4.2. Let W̃∗ be the set of incorrect solutions.
If w ∈ W̃∗ then, as ne →∞ , for all e ∈ E:

[mτ ]inv
a.s−→ 1 (2)

Now if w(k) ∈ W∗ we are done. If instead w(k) ∈ W̃∗

then from Thm. 4.1 and Thm. 4.2, we know that gradient
descent will only update the invariant feature and eventually
converge towards a correct solution *. We can conclude
that with nenv sufficiently large and proper initialization,
AND-mask will only rely on invariant features and converge
towards the invariant solution of Example 3.

4.2. A Tough Problem

Our theoretical analysis suggests that AND-mask should
correctly identify invariant signals in the setting of Example
3 and yet experimental evidence is contradictory (Aubin
et al., 2021; Ahuja et al., 2021). We argue that the problem
of invariance discovery becomes much harder when con-
structing the dataset from a small number of environments.

Proposition 2. Consider the setting of Example 3. We
have that the sign of at least one component [µe]j will
be the same in all the environments with probability
p = 1− (1− 21−nenv)dspu .

Note that, when sign([µe]j) is constant over all the environ-
ments it becomes much hard to distinguish spurious signals
from invariant signals. Now, if we consider the setting
(dinv, dspu, nenv) = (5, 5, 3) adopted in Ahuja et al. (2021);
Aubin et al. (2021), with probability p ≈ 0.97 at least one
spurious dimension will have constant sign across environ-
ments, hence explained why no algorithm could solve the
problem with these settings. In Section 5, we propose a
modified version of Example 3 where we force the sign of
spurious signals to be inconsistent in at least one environ-
ment.

5. Enhancing Linear Unit-Tests
One way to make Example 2 more challenging would be
to change the support of the spurious features distribution
at test-time. In that case, both ERM and IRM fail to solve
the OOD generalization problem as proved in Thm. 3 (In-
sufficiency) of Ahuja et al. (2021). However, changing the
support of the spurious features does not provide a provable
guarantee of robustess; instead, we propose to rank algo-
rithms based on how much weight they place on spurious
features. We denote by wspu the components of the weight
vector corresponding to the spurious features. Note that, if
∥wspu∥∞ > 0 we can always find a distribution shift that
would make the algorithm fail. We consider the task to be
solved if ∥wspu∥∞ = 0.
We run experiments in this new scenario and report the
results in Figure 3. To the best of our hyper-parameters
search, AND-mask is the only algorithm that solves this

*As the invariant component of the gradient for w ∈ W̃∗ is
always positive (see Appendix A.3)



Enhancing Unit-tests for Invariance Discovery

(a) Train dataset (b) Test dataset

Figure 2. In the train dataset (a) Cat is associated with book, carrot and apple while Dog is associated with skateboard, frisbee and orange.
In the test dataset (b) Cat is associated with skateboard, frisbee and orange while Dog is associated with book, carrot and apple.

example correctly, IB-IRM comes close but it could still
fail for some significant distribution shift of the spurious
features. The remaining algorithms fail to solve this task.
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Figure 3. We plot mean and standard deviation over 5 runs of
∥wspu∥∞ for all algorithms for (dinv, dspu, nenv) = (5, 5, 3). All
algorithms hyper-parameters are tuned to yield the best perfor-
mance. Details in the appendix.

As for Example 3, we propose a modified version of the
problem to complement the more challenging one pro-
posed by Aubin et al. (2021). In particular, to mitigate
the issue raised in Prop. 2 we force the sign of the spu-
rious mean in the last environment to be the opposite of
the sign of the spurious mean in the first environment, i.e.
sign(µnenv) = − sign(µ1). This simple modification intro-
duces an asymmetry in the dataset which makes it possible
for an algorithm to identify, in principle, the invariant fea-
tures — in contrast to the data generation process outlined in
Section 4.2. We run experiments for this modified version of
Example 3 and report the results in Table 1. We observe that,
to the best of our hyper-parameters search, only AND-mask
can effectively solve the OOD generalization problem.

Table 1. Average test errors for all algorithms for
(dinv, dspu, nenv) = (5, 5, 3). All algorithms hyper-parameters
are tuned to yield the best performance. Details in the appendix.

METHOD EXAMPLE3 SOLVED?

AND-MASK 0.01± 0.00 ✓
ERM 0.38± 0.16 ✗
IB-IRM 0.39± 0.05 ✗
IGA 0.37± 0.18 ✗
IRMV1 0.37± 0.18 ✗
ORACLE 0.01± 0.00 ✓

6. Image Classification Task
To further assess AND-mask’s performance under more real-
istic conditions, we construct a binary classification problem
for images with spurious correlations. The task is to cor-
rectly classify dog vs. cat; at training-time each class is
associated with n spurious objects and at test-time these
associations are reversed. In Figure 2 we show a few ex-
amples of the dataset for n = 3. The main challenge is
learning a classifier that does not rely on spurious features,
i.e. the associated objects, and thus can generalize well
in the test environment. We extract supervised representa-
tions from the last layer of BiT-M-R152 (Kolesnikov et al.,
2020). Then, we train a linear classifier on top of these rep-
resentations using both AND-mask and ERM. We report the
results of this experiment in Table 2. Overall, AND-mask
consistently outperforms ERM — it is worthwhile to note
how the gap in performance between AND-mask and ERM
increases once spurious associations are introduced.

Table 2. Test accuracy for AND-mask and ERM when 0 and 3
spurious objects are associated with Dog and Cat.

METHOD SPURIOUS OBJECTS TEST ACCURACY

AND-MASK 0 0.95
ERM 0 0.95
AND-MASK 3 0.80
ERM 3 0.70

7. Conclusions
Out of distribution generalization is one of the most chal-
lenging issues in machine learning, and properly evaluating
an algorithm’s performance in this context is essential. This
paper extends the original set of problems proposed by
Aubin et al. (2021) with the purpose of providing a more
fine-grained evaluation of invariance discovery algorithms.
We hope researchers will continue to extend this suite of
tests to learn more about the strengths and weaknesses of
new algorithms in a transparent and standardized manner.
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A. Appendix
A.1. Experiments details

We used the published code of Arjovsky et al. (2019) to conduct all experiments. We follow the same protocol as prescribed
in Aubin et al. (2021) for model selection, hyper-parameter selection, training, and evaluation. For all the examples, the
models used are linear. The training loss is the binary cross-entropy for the classification setting. For AND-mask we use
Adam optimizer while for all the other algorithms we use GD without any batching.

Hyper-parameter tuning for Figure 1 and Figure 3. We run 100 hyper-parameter queries for each model with 5 data
seeds. AND-mask treats every data point as coming from its own environment and we initialize all the weights of the
AND-mask network at 0 †.

Below we report how the search over the hyper-parameter is performed.

METHOD LEARNING RATE WEIGHT DECAY λIRM λIB τ IGA PENALTY

ERM 10Uniform(−2,−1) 10Uniform(−6,−2) ✗ ✗ ✗ ✗

IRMV1 10Uniform(−2,−1) 10Uniform(−6,−2) 1− 10Uniform(−3,−0.3) ✗ ✗ ✗

IB-IRM 10Uniform(−2,−1) 10Uniform(−6,−2) 1− 10Uniform(−3,−0.3) 1− 10Uniform(−2,0) ✗ ✗

AND-MASK 10Uniform(−2,−1) 10Uniform(−6,−2) ✗ ✗ Uniform(0.8, 1.0) ✗

IGA 10Uniform(−2,−1) 10Uniform(−6,−2) ✗ ✗ ✗ 10Uniform(1,5)

Hyper-parameter tuning for Table 1. We run 150 hyper-parameter queries and average over 3 data seeds. Below we report
how the search over the hyper-parameter is performed.

METHOD LEARNING RATE WEIGHT DECAY λIRM λIB τ IGA PENALTY

ERM 10Uniform(−3,−1) 10Uniform(−6,−2) ✗ ✗ ✗ ✗

IRMV1 10Uniform(−3,−1) 10Uniform(−6,−2) 1− 10Uniform(−3,−0.3) ✗ ✗ ✗

IB-IRM 10Uniform(−3,−1) 10Uniform(−6,−2) 1− 10Uniform(−3,−0.3) 1− 10Uniform(−2,0) ✗ ✗

AND-MASK 10Uniform(−3,−1) 10Uniform(−6,−2) ✗ ✗ Uniform(0.4, 0.8) ✗

IGA 10Uniform(−3,−1) 10Uniform(−6,−2) ✗ ✗ ✗ 10Uniform(1,5)

Image Classification Task. Note that there is no standard notion of environments here, which is why AND-mask treats
every example as coming from its own environment. This assumption is not unreasonable, as every image in the dataset was
literally collected in a different physical environment. We train both AND-mask and ERM using GD without any batching.

A.2. Example 2 Proofs

We provide here a proof for Proposition 1.

Proof. Example 2 follows the linear classification SEM (FIIF) with zero noise from Assumption 2 in Ahuja et al. (2021).The
invariant features are strictly separable, bounded and satisfy support overlap; the spurious features are bounded and satisfy
support overlap. It follows from Theorem 3 (Sufficiency) in Ahuja et al. (2021) that both ERM and IRM solve the OOD
generalization problem. As ERM and IRM are edge cases respectively of ANDMask and IB-IRM, for τ = 0 and γ = 0, it
follows that they can both solve the OOD generalization problem as well.

A.3. Example 3 Proofs

We consider datasets {De}e∈E , and De = (xe
i , y

e
i ) , ie = 1, . . . , ne. Here xe

i ∈ X ⊆ Rm is the vector containing the
observed inputs, w ∈ Rm is the vector of weights and yei ∈ {0, 1} are the targets. The superscript e ∈ E can be

†This can be interpreted as a prior belief that all features are spurious. For a fair comparison, we also initialized the weights of all the
other algorithms at 0. We repeated the sweep over hyper-parameters and found no evidence of an improvement in performance (e.g. speed
of convergence or || wspu ||∞).
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interpreted as an environment label. We define αw ∈ Rd as a (signed) measure of gradient agreement across environments
[αw]i :=

1
|E|

∑
e∈E sign([∇Le(w)]i).

We report here the data generating process of Example 3. Let γ = 0.1 · 1dinv
, and µe ∼ Ndspu

(0, 1), for all environments.
To construct the datasets De for every e ∈ E we sample:

ye ∼ Bernoulli

(
1

2

)
,

xe
inv ∼

{
Ndinv

(
+γ, 10−1

)
if ye = 0

Ndinv

(
−γ, 10−1

)
if ye = 1

xe
spu ∼

{
Ndspu

(
+µe, 10−1

)
if ye = 0

Ndspu

(
−µe, 10−1

)
if ye = 1

We analyse learning by minimizing an empirical loss of the form:

L(w) := − 1

|E|
∑
e∈E

:=Le(w)︷ ︸︸ ︷
1

ne

∑
(xe

i ,y
e
i )∈De

yei log
(
σ
(
w⊤xe

i

))
+ (1− yei ) log

(
1− σ

(
w⊤xe

i

))
. (3)

The following lemma characterizes the asymptotic behaviour of∇Le as ne →∞:

Lemma A.1. Let P(θ1,θ2) be the distribution of N
(
[θ1, θ2]

T , Iσ2
)
. If {De}e∈E are sampled according to Example 3 then

the following holds:

∇Le(w)
a.s.−−→ 1

2

([
γ
µe

]
+ E

x∼P(γ,µe)

[
σ(w⊤x) · x

]
+ E

x∼P−(γ,µe)

[
σ(w⊤x) · x

])
(4)

Proof. It suffices to apply the law of large numbers, i.e. sums converge to expectations:

∇Le(w) =
1

ne

∑
i

[
σ(w⊤xe

i )− yei
]
· xe

i (5)

=
1

2

 2

ne

∑
i:ye

i=0

σ(w⊤xe
i ) · xe

i +
2

ne

∑
i:ye

i=1

σ(w⊤xe
i ) · xe

i −
2

ne

∑
i:ye

i=1

xe
i

 (6)

a.s.−−→ 1

2

([
γ
µe

]
+ E

x∼P(γ,µe)

[
σ(w⊤x) · x

]
+ E

x∼P−(γ,µe)

[
σ(w⊤x) · x

])
(7)

This concludes the proof.

We now present the proof of Theorem 4.1.

Proof. We will denote with [∇Le(w)]spu the components of the gradient corresponding to the spurious features. Similarly
[x]inv and [x]spu will denote the components of the feature vector correspoding to invariant and spurious features, respectively.
From assumptions we have w = (k, 0)⊤ for some k ∈ R. Applying Lemma A.1 we have that:

[∇Le(w)]spu
a.s.−−→ 1

2

(
µe + E

x∼P(γ,µe)

[σ(k · [x]inv) · [x]spu] + E
x∼P−(γ,µe)

[σ(k · [x]inv) · [x]spu]

)
(8)

=
1

2

(
µe + E

x∼Pγ

[σ(k · x)] · E
x∼Pµe

[x] + E
x∼P−γ

[σ(k · x)] · E
x∼P−µe

[x]

)
(9)

=
µe

2

(
1 + E

x∼Pγ

[σ(k · x)]− E
x∼P−γ

[σ(k · x)]
)
. (10)
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Next, the fact that σ(x) = 1− σ(−x) and x ∼ P−γ =⇒ −x ∼ Pγ , we get

[∇Le(w)]spu
a.s.−−→ µe

2

(
E

x∼Pγ

[σ(k · x)] + E
x∼P−γ

[1− σ(k · x)]
)

(11)

=
µe

2

(
E

x∼Pγ

[σ(k · x)] + E
x∼P−γ

[σ(−k · x)]
)

(12)

=
µe

2

(
E

x∼Pγ

[σ(k · x)] + E
x∼Pγ

[σ(k · x)]
)

(13)

= µe · E
x∼Pγ

[σ(k · x)] . (14)

It follows that sign
(
[∇Le(w)]spu

)
does not depend on w:

sign
(
[∇Le(w)]spu

)
a.s.−−→ sign

µe ·
>0︷ ︸︸ ︷

E
x∼Pγ

[σ(k · x)]

 = sign (µe) . (15)

Moreover, we have that for spurious signals αw converges to:

[αw]spu
a.s.−−→ 1

|E|
∑
e∈E

sign (µe) . (16)

Now, recall that µe ∼ N (0, 1) are independent and normally distributed. Therefore sign(µ1), . . . , sign(µnenv) are indepen-
dent bounded random variables with sign(µi) ∈ {−1, 1} for all i. We can bound this sum using Hoeffding’s inequality:

P
(
| [αw]spu | ≥ ϵ

)
≤ exp

(
−ϵ2nenv

2

)
. (17)

and it follows that:

P ([mτ ]spu = 0) = P
(
| [αw]spu | ≥ τ

)
≤ exp

(
−τ2nenv

2

)
. (18)

Next, we provide a proof for Theorem 4.2.

Proof. First, we prove the statement for w0 = (0, 0)⊤. Applying Lemma A.1 we have that:

[∇Le(w0)]inv
a.s.−−→ 1

2

(
γ + E

x∼P(γ,µe)

[
σ(w⊤

0 x) · [x]inv
]
+ E

x∼P−(γ,µe)

[
σ(w⊤

0 x) · [x]inv
])

(19)

=
1

2

(
γ +

1

2
E

x∼Pγ

[x] +
1

2
E

x∼P−γ

[x]

)
(20)

=
γ

2
. (21)

Then it follows that:

[αw0
]inv =

1

|E|
∑
e∈E

sign([∇Le(w0)]inv)
a.s.−−→ 1

|E|
∑
e∈E

sign
(γ
2

)
= 1. (22)

Now, to prove that [αw]inv
a.s.−→ 1 for all w ∈ W̃∗ = {(w1, w2)

⊤ ∈ R2 : w2 = 0 ∧ w1 ≥ 0} it suffices to show that
[∇Le(w0)]inv ≤ [∇Le(w)]inv for all w ∈ W̃∗. It is enough to prove that the first derivative of

[
∇Le((w, 0)

⊤)
]

inv is always
positive:
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d

dw

[
∇Le((w, 0)

⊤)
]

inv
a.s.−−→ 1

2

d

dw

(
γ + E

x∼Pγ

[σ(w · x) · x] + E
x∼P−γ

[σ(w · x) · x]
)

(23)

=
1

2

(
E

x∼Pγ

[
d

dw
σ(w · x) · x

]
+ E

x∼P−γ

[
d

dw
σ(w · x) · x

])
(24)

=
1

2

(
E

x∼Pγ

[
σ(w · x)(1− σ(w · x)) · x2

]
+ E

x∼P−γ

[
σ(w · x)(1− σ(w · x)) · x2

])
(25)

≥ 0. (26)

Finally, to conclude the proof we have: [mτ ]inv = 1 [τ ≤| [αw]inv |]
a.s.−→ 1.

Finally, we provide the proof of Proposition 2.

Proof.

P{∃j : ∀(e, e′) : sign([µe]j) = sign([µe′ ]j)} (27)
= 1− P{∀j ∃(e, e′) : sign([µe]j) ̸= sign([µe′ ]j)} (28)

= 1−
dspu∏
j=1

P{∃(e, e′) : sign([µe]j) ̸= sign([µe′ ]j)} (29)

= 1−
dspu∏
j=1

1− P{∀(e, e′) : sign([µe]j) = sign([µe′ ]j)} (30)

= 1−
dspu∏
j=1

1− 21−nenv = 1− (1− 21−nenv)dspu . (31)


