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Abstract

This paper presents a simple yet effective method for anomaly detection. The main
idea is to learn small perturbations to perturb normal data and learn a classifier to
classify the normal data and the perturbed data into two different classes. The per-
turbator and classifier are jointly learned using deep neural networks. Importantly,
the perturbations should be as small as possible but the classifier is still able to
recognize the perturbed data from unperturbed data. Therefore, the perturbed data
are regarded as abnormal data and the classifier provides a decision boundary be-
tween the normal data and abnormal data, although the training data do not include
any abnormal data. Compared with the state-of-the-art of anomaly detection, our
method does not require any assumption about the shape (e.g. hypersphere) of the
decision boundary and has fewer hyper-parameters to determine. Empirical studies
on benchmark datasets verify the effectiveness and superiority of our method.

1 Introduction

Anomaly detection (AD) is an important research problem in many areas such as computer vision,
machine learning, and chemical engineering [Chandola et al., 2009; Ramachandra et al., 2020; Pang
et al., 2021; Ruff et al., 2021]. AD aims to identify abnormal data from normal data and is usually an
unsupervised learning task because the anomaly samples are unknown in the training stage. In the
past decades, numerous AD methods [Schölkopf et al., 1999, 2001; Breunig et al., 2000; Liu et al.,
2008] have been proposed. For instance, one-class support vector machine (OCSVM) [Schölkopf
et al., 2001] maps the data into high-dimensional feature space induced by kernels and tries to find
a hyperplane giving the possibly maximal distance between the normal data and the origin. Tax
and Duin [2004] proposed a method called support vector data description (SVDD), which finds the
smallest hyper-sphere encasing the normal data in a high-dimensional feature space. SVDD is similar
to OCSVM with a Gaussian kernel function.

Classical anomaly detection methods such as OCSVM and SVDD are generally not suitable for
large-scale data due to the high computational costs and are not effective to deal with more complex
data such as those in vision scenarios. To address these issues, a few researchers [Erfani et al., 2016;
Golan and El-Yaniv, 2018; Abati et al., 2019; Wang et al., 2019; Qiu et al., 2021] attempted to take
advantage of deep learning [LeCun et al., 2015; Goodfellow et al., 2016] to improve the performance
of anomaly detection. One typical way is to use a deep auto-encoder or its variants[Vincent et al.,
2008; Kingma and Welling, 2013; Pidhorskyi et al., 2018; Wang et al., 2021] to learn effective
data representation or compression models. Auto-encoder and its variants have achieved promising
performance in AD. In fact, these methods do not explicitly define an objective for anomaly detection.
Instead, they usually use the data reconstruction error as a metric to detect anomalies.
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There are a few approaches to building deep anomaly detection objectives or models. Typical
examples include classical one-class learning based approach[Ruff et al., 2018, 2019; Perera and
Patel, 2019; Bhattacharya et al., 2021], probability estimation based approach [Zong et al., 2018;
Pérez-Cabo et al., 2019; Su et al., 2019], and adversarial learning based approach [Deecke et al., 2018;
Perera et al., 2019; Raghuram et al., 2021]. For example, Ruff et al. [2018] proposed deep one-class
classification (DSVDD), which applies deep neural network to learn an effective embedding for the
normal data such that in the embedding space, the normal data can be encased by a hyper-sphere
with minimum radius. The deep autoencoding Gaussian mixture model (DAGMM) proposed by
Zong et al. [2018] is composed of a compression network and an estimation network based on the
Gaussian mixture model. The anomaly score is defined as the output energy of the estimation network.
Perera et al. [2019] proposed one-class GAN (OCGAN) to learn a latent space to represent a specific
class by adversarially training the auto-encoder and discriminator. The properly trained OCGAN
network can well reconstruct the specific class of data, while failing to reconstruct other classes
of data. Moreover, some latest works also explore interesting perspectives. Goyal et al. [2020]
proposed the method called deep robust one-class classification (DROCC). DROCC assumes that
the normal samples generally lie on low-dimensional manifolds, and regards the process of finding
the optimal hyper-sphere in the embedding space as an adversarial optimization problem. Yan et
al. [2021] claimed that anomalous domains generally exhibit different semantic patterns compared
with the peripheral domains, and proposed the semantic context based anomaly detection network
(SCADN) to learn the semantic context from the masked data via adversarial learning. Chen et al.
[2022] proposed the interpolated Gaussian descriptor (IGD) to learn more valid data descriptions
from representative normal samples rather than edge samples. Shenkar and Wolf [2022] utilized
contrastive learning to construct the method called generic one-class classification (GOCC) for AD
on tabular data. It is worth noting that classical AD methods such as OCSVM [Schölkopf et al., 2001]
and DSVDD [Ruff et al., 2018] require specific assumptions (e.g. hypersphere) for the distribution or
structure of the normal data. The GAN-based approaches [Deecke et al., 2018; Perera et al., 2019]
suffer from the instability problem of min-max optimization and have high computational costs.

In this paper, we propose a novel AD method called perturbation learning based anomaly detection
(PLAD). PLAD aims to learn a perturbator and a classifier from the normal training data. The
perturbator uses minimum effort to perturb the normal data to abnormal data while the classifier is
able to classify the normal data and perturbed data into two classes correctly. The main contributions
of our work are summarized as follows:

• We propose a novel AD method called PLAD. PLAD does not require any assumption about the
shape of the decision boundary between the normal data and abnormal data. In addition, PLAD
has much fewer hyper-parameters than many state-of-the-art AD methods such as [Wang et al.,
2019; Goyal et al., 2020; Yan et al., 2021].

• We propose to learn perturbations directly from the normal training data. For every training data
point, we learn a distribution from which any sample can lead to a perturbation such that the normal
data point is flipped to an abnormal data point.

• Besides the conventional empirical studies on one-class classification, we investigate the perfor-
mance of our PLAD and its competitors in recognizing abnormal data from multi-class normal
data. These results show that our PLAD has state-of-the-art performance.

• Although our experiments are mainly on images and tabular data, PLAD is actually a framework
of AD and can also be applied to time series, text, and graph data via changing the network
components.

2 Proposed method

Suppose we have a distribution D of dimension d and any data drawn from D are deemed as normal
data. Now we have some training data X = {x1,x2, . . . ,xn} randomly drawn from D and we want
to learn a discriminative function f from X such that f(x) > 0 for any x ∈ D and f(x) < 0 for any
x /∈ D. This is an unsupervised learning problem and also known as anomaly detection, where any
x /∈ D are deemed as abnormal data.

In contrast to classical anomaly detection methods such as one-class SVM [Schölkopf et al., 2001],
deep SVDD [Ruff et al., 2018] , and DROCC [Goyal et al., 2020], in this paper, we do not make any
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assumption about the distribution D. Inspired from the generative adversarial learning (GAN) [Good-
fellow et al., 2014], we propose to learn a discriminator that is able to recognize fake data (abnormal
data) and a generator that is able to fool the discriminator, but the input of the generator is real
data (normal data), which is essentially different from GAN. To be more precise, we propose to
learn perturbations for x such that the perturbed X (denoted by X̃ = {x̃1, x̃2, . . . , x̃n}) are abnormal
but quite close to X. To ensure the abnormality of X̃, we learn a classifier f from {X, X̃} such
that f(x) > 0 for any x ∈ X and f(x̃) < 0 for any x̃ ∈ X̃. To ensure that X̃ is close to X, the
perturbations should be small enough. Therefore, we propose to solve the following problem

minimize
θ, X̃

1

n

n∑
i=1

`(yi, fθ(xi)) +
1

n

n∑
i=1

`(ỹi, fθ(x̃i)) +
λ

n

n∑
i=1

φ(xi, x̃i), (1)

where `(·, ·) denotes some loss function such as cross-entropy and y1 = · · · = yn = 0 and
ỹ1 = · · · = ỹn = 1 are the labels for the normal data and perturbed data respectively. θ denotes the
set of parameters of the classifier f and φ(·, ·) is some distance metric quantifying the difference
between two data points. λ is a hyperparameter to control the magnitudes of the perturbations.
However, directly solving (1) encounters the following difficulties.

• First, the number (|θ|+ dn) of decision variables to optimize can be huge if n is large, where |θ|
denotes the cardinality of the set θ.

• Second, it is hard to use mini-batch optimization because some decision variables (i.e. X̃) are
associated with the sample indices.

• Lastly, it is not easy to determine φ because φ relies on the unknown distribution D. For instance,
φ(x, x̃) = ‖x − x̃‖2, namely the squared Euclidean norm, does not work if X is enclosed by a
hypersphere or hypercube (data points close to the centroid require much larger perturbations than
those far away from the centroid, which implies that x− x̃ has a non-Gaussian distribution).

To overcome these three difficulties, we propose to solve the following problem instead

minimize
θ, θ̃

1

n

n∑
i=1

`(yi, fθ(xi)) +
1

n

n∑
i=1

`(ỹi, fθ(x̃i)) +
λ

n

n∑
i=1

(
‖αi − 1‖2 + ‖βi − 0‖2

)
subject to x̃i = xi �αi + βi, (αi,βi) = gθ̃(xi), i = 1, 2, . . . , n,

(2)

where 1 = [1, 1, . . . , 1]> and 0 = [0, 0, . . . , 0]> are d-dimensional constant vectors and � denotes
the Hadamard product of two vectors. αi and βi are multiplicative and additive perturbations for xi
and they are generated from a perturbator gθ̃, where θ̃ denotes the set of parameters to learn. In (2),
we hope that the multiplicative perturbation is close to 1 and the additive perturbation is close to 0
but they rely on the data point x. Therefore, the perturbation learning is adaptive to the unknown
distribution D, which solves the third aforementioned difficulty.

In fact, problem (2) can be reformulated as

minimize
θ, θ̃

1

n

n∑
i=1

(
`
(
yi, fθ(xi)

)
+ `
(
ỹi, fθ(xi � gαθ̃ (xi) + gβ

θ̃
(xi))

))
+
λ

n

n∑
i=1

(
‖gα
θ̃

(xi)− 1‖2 + ‖gβ
θ̃

(xi)− 0‖2
)
,

(3)

where
[
gα
θ̃

(xi)

gβ
θ̃

(xi)

]
= gθ̃(xi), i = 1, 2, . . . , n. We see that we only need to optimize the parameters

θ and θ̃ and the total number of decision variables is |θ| + |θ̃|, which solved the first difficulty we
discussed previously. On the other hand, θ and θ̃ are not associated with the sample indices, which
solved the second difficulty. Once fθ and gθ̃ are learned, we can then use fθ to detect whether a
new data point xnew is normal (e.g. fθ(xnew) < 0.5) or abnormal (e.g. fθ(xnew) > 0.5). We call the
method Perturbation Learning based Anomaly Detection (PLAD).

In PLAD, namely (3), both the classifier fθ and the perturbator gθ̃ are neural networks. They can be
fully connected neural networks, convolutional neural networks (for image data anomaly detection),
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Figure 1: The motivation and network architecture of the proposed PLAD method.

or recurrent neural networks (for sequential data anomaly detection). Figure 1 shows the motivation
of our PLAD and the network architecture. Compared with many popular anomaly detection methods,
our PLAD has the following characteristics.

• PLAD does not make any assumption about the distribution or structure of the normal data. In
contrast, one-class SVM [Schölkopf et al., 2001], deep SVDD [Ruff et al., 2018], and DROC-
C [Goyal et al., 2020] make specific assumptions about the distribution of the normal data, which
may be violated in real applications. For example, deep SVDD assumes that the normal data are
encased by a hypersphere, which is hard to guarantee in real applications and may require a very
deep neural network to transform a non-hypersphere structure to a hypersphere structure.

• In PLAD, besides the network structures, we only need to determine one hyperparameter λ, which
provides huge convenience in real applications. In contrast, many state-of-the-art AD methods such
as [Wang et al., 2019; Goyal et al., 2020; Yan et al., 2021] have at least two key hyperparameters.
For example, in DROCC [Goyal et al., 2020], one has to determine the radius of the hyper-sphere,
the step size of gradient-ascent, and two regularization parameters.

• In PLAD, we can use gradient-based optimizer such as Adam to solve the optimization. The
time complexity is comparable to that of vanilla deep neural networks (for classification or
representation). On the contrary, many recent advances DROCC [Goyal et al., 2020] of anomaly
detection especially those GAN based methods [Deecke et al., 2018; Perera et al., 2019; Yan et al.,
2021] have much higher computational costs.

As shown in the left plot of Figure 1, normal training data can be perturbed to abnormal data by
different perturbations. Therefore, we propose to learn a distribution from which any perturbations can
perturb the normal training data to be abnormal. Specifically, for every xi, there exists a distribution
Ωi, such that for any z ∈ Ωi, the perturbation given by (α,β) = h(z) can perturb xi to be abnormal,
where h is a nonlinear function modelled by a neural network. We can just assume that Ωi is a
Gaussian distribution with mean µi and variance σ2

i , i.e., Ωi = N (µi,σ
2
i ), because of the universal

approximation ability of h. We take the idea of variational autoencoder (VAE) [Kingma and Welling,
2013] and minimize

L(θ̃1, θ̃2) = DKL

(
qθ̃1(z|x)‖p(z)

)
− Eqθ̃2 (z|x)

[
log pθ̃2(ε|z)

]
, (4)

where p(z) = N (0,1), ε =

[
1
0

]
, z = lθ̃1(x), (α,β) = hθ̃2(z), θ̃1 are the parameters of the encoder

l, and θ̃2 are the parameters of the decoder h. Combing (4) with (3), we have θ̃ = {θ̃1, θ̃2} and solve

minimize
θ, θ̃

1

n

n∑
i=1

(
`
(
yi, fθ(xi)

)
+ `
(
ỹi, fθ(xi � gαθ̃ (xi) + gβ

θ̃
(xi))

))
+

1

n
DKL

(
qθ̃1(z|x)‖p(z)

)
− λEqθ̃2 (z|x)

[
log pθ̃2(ε|z)

]
,

(5)

where gθ̃ = hθ̃2 ◦ lθ̃1 . The training is similar to that for VAE [Kingma and Welling, 2013] and will
not be detailed here.
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It should be pointed out that the method (5) is just an extension of the method (3). In (5), we want
to learn a distribution for each normal training data point xi such that any perturbations generated
from the distribution can perturb xi to be abnormal. It is expected that (5) can outperform (3) in real
applications. The corresponding experiments are in Appendix D.

3 Connection with previous works

The well-known one-class classification methods such as OCSVM [Schölkopf et al., 2001], DSVD-
D [Ruff et al., 2018] and DROCC [Goyal et al., 2020] have specific assumptions for the embedded
distribution while our PLAD does not require any assumption and is able to adaptively learn a decision
boundary even if it is very complex. It is also noteworthy that the idea of DROCC in identifying
anomalies is slightly similar to ours, i.e, training a classifier instead of an auto-encoder or embedding
model.

Self-supervised learning based methods, e.g., GOAD [Bergman and Hoshen, 2020] NeuTraL AD [Qiu
et al., 2021], etc., work through designing an appropriate auxiliary task to help the model to learn
useful data features. Both our approach and the self-supervised learning based methods aim to learn
a binary classifier on the original data and auxiliary data. But they are different in the following two
points. First, in self-supervised learning (e.g. contrastive learning) based methods, the auxiliary data
are generated by some pre-defined and manual operations (e.g. image rotation and cropping). In
contrast, in our approach, the auxiliary data are adaptively and dynamically learned from the original
data. Second, self-supervised learning based methods are often designed for some specific types of
data such as image data, whereas it may be difficult to generate auxiliary data for other types of data.
In contrast, it is easy to apply our approach to any type of data.

Adversarial learning based methods [Malhotra et al., 2016; Deecke et al., 2018; Pidhorskyi et al.,
2018; Perera et al., 2019] are generally constructed with auto-encoder and GAN [Goodfellow et
al., 2014], and the most widely used measure of them to detect anomalies is the reconstruction
error. Compared with them, we exploit the idea of VAE when producing perturbations and the
detection decision is made by a classifier, which should be more suitable than reconstruction error for
anomaly detection. On the other hand, in these adversarial learning based AD methods, the min-max
optimization leads to instabilities in detecting anomalies, while the optimization of PLAD is much
easier to solve. Another interesting work SCADN [Yan et al., 2021] tries to produce negative samples
by multi-scale striped masks to train a GAN, but its anomaly score still relies on reconstruction error
and the production of masks has randomness or may be hard to determine in various real scenarios.
Our PLAD learns perturbations adaptively from the data itself, which is convenient and reliable.

4 Experiment

In this section, we evaluate the proposed method in comparison to several state-of-the-art anomaly
detection methods on two image datasets and two tabular datasets. Note that all the compared methods
do not utilize any pre-trained feature extractors.

4.1 Datasets and baseline methods

Datasets description

• CIFAR-10: CIFAR-10 image dataset is composed of 60,000 images in total, where 50,000 samples
for training and 10,000 samples for test. It includes 10 different balanced classes.

• Fashion-MNIST: Fashion MNIST contains 10 different categories of grey-scale fashion style
objects. The data is split into 60,000 images for training and 10,000 images for test.

• Thyroid: Thyroid is a hypothyroid disease dataset that contains 3,772 samples with 3 classes and
6 attributes. We follow the data split settings of [Zong et al., 2018] to preprocess the data for
one-class classification task.

• Arrhythmia: Arrhythmia dataset consists of 452 samples with 274 attributes. Here we also follow
the data split settings of [Zong et al., 2018] to preprocess the data.

The detailed information of each dataset is illustrated in Table 1.
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Table 1: Details of the datasets used in our experiments.

Dataset name Type # Total samples # Dimension

CIFAR-10 Image 60,000 32×32×3
Fashion-MNIST Image 70,000 28×28
Thyroid Tabular 3,772 6
Arrhythmia Tabular 452 274

Baselines and state-of-the-arts. We compare our method with the following classical baseline
methods and state-of-the-art methods: OCSVM [Schölkopf et al., 2001], isolation forest (IF) [Liu et
al., 2008], local outlier factor (LOF) [Breunig et al., 2000], denoising auto-encoder (DAE) [Vincent
et al., 2008], E2E-AE and DAGMM [Zong et al., 2018], DCN [Caron et al., 2018], ADGAN [Deecke
et al., 2018], DSVDD [Ruff et al., 2018], OCGAN [Perera et al., 2019], TQM [Wang et al., 2019],
GOAD [Bergman and Hoshen, 2020], DROCC [Goyal et al., 2020], HRN-L2 and HRN [Hu et al.,
2020], SCADN [Yan et al., 2021], IGD (Scratch) [Chen et al., 2022], NeuTraL AD [Qiu et al., 2021],
and GOCC [Shenkar and Wolf, 2022].

4.2 Implementation details and evaluation metrics

In this section, we first describe the implementation details of the proposed PLAD method. The
settings for image and tabular datasets are illustrated as follows:

• Image datasets. For image datasets (CIFAR-10 and Fashion-MNIST), we utilize the LeNet-based
CNN to construct the classifier, which is same as [Ruff et al., 2018] and [Goyal et al., 2020] to
provide fair comparison. And we apply the MLP-based VAE to learn the noise for data. Since
both image datasets contain 10 different classes, it can be regarded as 10 independent one-class
classification tasks, and each task on CIFAR-10 has 5,000 training samples (6,000 for Fashion-
MNIST) and 10,000 testing samples for both of them. Consequently, the choice of optimizer (from
Adam [Kingma and Ba, 2015] and SGD), learning rate and hyper-parameter λ could be varies
for different classes. The suggested settings of them on each experiment in this paper refer to
Appendix A.

• Tabular datasets. For tabular datasets (Thyroid and Arrhythmia), we both use the MLP-based
classifier and VAE in practice, and we train them by Adam optimizer with learning rate 0.001.
Besides, λ is set to 3 for Thyroid and 2 for Arrhythmia.

For the compared methods in the experiment, we report their performance directly from the following
paper [Hu et al., 2020; Goyal et al., 2020; Yan et al., 2021; Qiu et al., 2021; Chen et al., 2022;
Shenkar and Wolf, 2022] except for DROCC, which we run the official released code to obtain the
results. Due to the limitation of paper length, the details of the our network settings are provided in
Appendix A.

Regarding the evaluation metrics, we follow the previous works such as [Ruff et al., 2018] and [Zong
et al., 2018] to use AUC (Area Under the ROC curve) for image datasets and F1-score for tabular
datasets because the anomaly detection for image and tabular datasets has different evaluation criteria.
Moreover, our method does not need pre-training like [Ruff et al., 2018] and others did, so we
train the proposed method 5 times with 100 epochs to obtain the average performance and standard
deviation. Note that we run all experiments on NVIDIA RTX3080 GPU with 32GB RAM, CUDA
11.0 and cuDNN 8.0.

4.3 Experimental results on image datasets

Table 2 and Table 3 summarize the average AUCs performance of the one-class classification tasks
on CIFAR-10 and Fashion-MNIST, where we have the following observations:

• Compared with some classical shallow model-based approaches such OCSVM and IF, the proposed
PLAD method significantly outperforms them on each one-class classification task with a large
margin. This is mainly due to the powerful feature learning capability of deep neural network.
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Table 2: Average AUCs (%) in one-class anomaly detection on CIFAR-10. Note that for the compared
methods we only report their mean performance, while we further report the standard deviation for
the proposed method. * denotes we run the officially released code to obtain the results. In each case,
the best two results are marked in bold.

Normal Class Airplane Auto
mobile Bird Cat Deer Dog Frog Horse Ship Truck

OCSVM [Schölkopf et al., 2001] 61.6 63.8 50.0 55.9 66.0 62.4 74.7 62.6 74.9 75.9
IF [Liu et al., 2008] 66.1 43.7 64.3 50.5 74.3 52.3 70.7 53.0 69.1 53.2
DAE[Vincent et al., 2008] 41.1 47.8 61.6 56.2 72.8 51.3 68.8 49.7 48.7 37.8
DAGMM [Zong et al., 2018] 41.4 57.1 53.8 51.2 52.2 49.3 64.9 55.3 51.9 54.2
ADGAN [Deecke et al., 2018] 63.2 52.9 58.0 60.6 60.7 65.9 61.1 63.0 74.4 64.2
DSVDD [Ruff et al., 2018] 61.7 65.9 50.8 59.1 60.9 65.7 67.7 67.3 75.9 73.1
OCGAN [Perera et al., 2019] 75.7 53.1 64.0 62.0 72.3 62.0 72.3 57.5 82.0 55.4
TQM [Wang et al., 2019] 40.7 53.1 41.7 58.2 39.2 62.6 55.1 63.1 48.6 58.7
DROCC* [Goyal et al., 2020] 79.2 74.9 68.3 62.3 70.3 66.1 68.1 71.3 62.3 76.6
HRN-L2 [Hu et al., 2020] 80.6 48.2 64.9 57.4 73.3 61.0 74.1 55.5 79.9 71.6
HRN [Hu et al., 2020] 77.3 69.9 60.6 64.4 71.5 67.4 77.4 64.9 82.5 77.3

PLAD 82.5
(0.4)

80.8
(0.9)

68.8
(1.2)

65.2
(1.2)

71.6
(1.1)

71.2
(1.6)

76.4
(1.9)

73.5
(1.0)

80.6
(1.8)

80.5
(1.3)

Table 3: Average AUCs (%) and in one-class anomaly detection on Fashion-MNIST. Note that for
the compared methods we only report their mean performance, while we further report the standard
deviation for the proposed method. * denotes we run the officially released code to obtain the results.
In each case, the best two results are marked in bold.

Normal Class T-shirt Trouser Pullover Dress Coat Sandal Shirt Sneaker Bag Ankle
boot

OCSVM [Schölkopf et al., 2001] 86.1 93.9 85.6 85.9 84.6 81.3 78.6 97.6 79.5 97.8
IF [Liu et al., 2008] 91.0 97.8 87.2 93.2 90.5 93.0 80.2 98.2 88.7 95.4
DAE[Vincent et al., 2008] 86.7 97.8 80.8 91.4 86.5 92.1 73.8 97.7 78.2 96.3
DAGMM [Zong et al., 2018] 42.1 55.1 50.4 57.0 26.9 70.5 48.3 83.5 49.9 34.0
ADGAN [Deecke et al., 2018] 89.9 81.9 87.6 91.2 86.5 89.6 74.3 97.2 89.0 97.1
DSVDD [Ruff et al., 2018] 79.1 94.0 83.0 82.9 87.0 80.3 74.9 94.2 79.1 93.2
OCGAN [Perera et al., 2019] 85.5 93.4 85.0 88.1 85.8 88.5 77.5 93.9 82.7 97.8
TQM [Wang et al., 2019] 92.2 95.8 89.9 93.0 92.2 89.4 84.4 98.0 94.5 98.3
DROCC* [Goyal et al., 2020] 88.1 97.7 87.6 87.7 87.2 91.0 77.1 95.3 82.7 95.9
HRN-L2 [Hu et al., 2020] 91.5 97.6 88.2 92.7 91.0 71.9 79.4 98.9 90.8 98.9
HRN [Hu et al., 2020] 92.7 98.5 88.5 93.1 92.1 91.3 79.8 99.0 94.6 98.8

PLAD 93.1
(0.5)

98.6
(0.2)

90.2
(0.7)

93.7
(0.6)

92.8
(0.8)

96.0
(0.4)

82.0
(0.6)

98.6
(0.3)

90.9
(1.0)

99.1
(0.1)

• PLAD also explicitly outperforms several well-known deep anomaly detection methods such
as DAGMM and DSVDD, and consistently obtains the top two AUC scores on most classes of
CIFAR-10 and Fashion-MNIST compared to some latest methods such as TQM, DROCC and
HRN. Specifically, on the class “Automobile” of CIFAR-10 and class “Sandal” of Fashion-MNIST,
the AUC improvements of the proposed method exceed 5.9% and 4.7% respectively compared to
the runner-up. We also conduct statistical analysis for our method against other competitors, the
detailed analysis refers to Section 4.6.

• It is noteworthy that some deep anomaly detection methods such as DSVDD and DROCC, are
mainly based on the assumption that the normal data in the embedding space are situated in a
hyper-sphere, while anomalies are outside the sphere. Therefore the edge of the hyper-sphere
is then the decision boundary learned by the model to identify anomalies. In contrast, PLAD
does not require any assumption about the shape of the decision boundary. It attempts to learn
the perturbation from data itself by neural network and construct the anomalies by enforcing
the perturbation to original data, then train the network to distinguish the normal samples and
anomalies. This is natural to relate PLAD with some adversarial learning based methods such
as ADGAN and OCGAN, etc. In contrast to them, the optimization of PLAD is a non-adversary
problem and hence is easier to solve.
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(a) training v.s. perturbed (b) training v.s. test (c) training v.s. perturbed v.s. test

Figure 2: The learned embedding space visualized by t-SNE. Note the points marked in blue, orange,
green, and red are training samples, perturbed samples, normal test samples, and anomalous test
samples, respectively. We select the class of “Sneaker” in Fashion-MNIST to provide the visualization.
More results for the other categories can be found in Appendix B.

Table 4 shows the average performance on CIFAR-10 and Fashion-MNIST over all 10 classes to
provide an overall comparison. Note that two more latest methods SCADN and IGD (Scratch) are
also compared in the table, though their performance on each single class were not reported in their
papers. From the table we observe that PLAD achieves the best average AUCs on both datasets
among all compared methods.

Table 4: Average AUCs (%) over all 10 classes on CIFAR-10 and Fashion-MNIST. Note that the best
two results are marked in bold.

Data set CIFAR-10 Fashion-MNIST
OCSVM [Schölkopf et al., 2001] 64.7 87.0
IF [Liu et al., 2008] 59.7 91.5
DAE[Vincent et al., 2008] 53.5 88.1
DAGMM [Zong et al., 2018] 53.1 51.7
ADGAN [Deecke et al., 2018] 62.4 88.4
DSVDD [Ruff et al., 2018] 64.8 84.7
OCGAN [Perera et al., 2019] 65.6 87.8
TQM [Wang et al., 2019] 52.1 92.7
DROCC* [Goyal et al., 2020] 69.9 89.0
HRN-L2 [Hu et al., 2020] 66.6 90.0
HRN [Hu et al., 2020] 71.3 92.8
SCADN [Yan et al., 2021] 66.9 —
IGD (Scratch) [Chen et al., 2022] 74.3 92.0
PLAD 75.1 93.5

We use t-SNE [Van der Maaten and Hinton, 2008] to visualize the learned embedding features of
PLAD. Specifically, we visualize the training samples of a specific category, perturbed data for
training samples, as well as all test samples. They are divided into three sub-figures for ease of
understanding. Figure 2 shows the visualization of the class “Sneaker” in Fashion-MNIST. From this
figure we have the following observations. First, PLAD obviously learns good decision boundary
for distinguishing normal data and perturbed data from Figure 2(a). Second, Figures 2(b) and 2(c)
show that the normal test samples lie in the same manifold as the training samples, while the
abnormal samples (abnormal test samples and perturbed samples) are relatively separated. In other
words, PLAD explicitly learns a discriminative embedding space to distinguish normal samples and
anomalies. More results can be found in Appendix B.

4.4 Experimental results on non-image datasets

Table 5 summarizes the F1-scores of each compared method on the Thyroid and Arrhythmia datasets.
It can be observed that PLAD significantly outperforms several baseline methods such as OCSVM,
DAGMM, DSVDD and DROCC with a large margin. Although NeuTraL AD and GOCC achieve
encouraging 76.8% F1-score on Thyroid, it is worth mentioning that they are both methods designed
for non-image data. The Arrhythmia dataset seems to be a more difficult anomaly detection task
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because of its small sample size, which is not conducive to deep learning. Surprisingly, the proposed
PLAD method shows remarkable performance on Arrhythmia, which surpasses 9.2% compared to
the runner-up. Moreover, the performance of PLAD is also comparable to NeuTraL AD and GOCC
on Thyroid, which fully demonstrates its applicability to the anomaly detection task for non-image
data.

Table 5: Average F1-scores (%) with the standard deviation of each method on the two tabular
datasets (Thyroid and Arrhythmia). * denotes we run the official released code to obtain the results,
and the best two results are marked in bold.

Data set Thyroid Arrhythmia
OCSVM [Schölkopf et al., 2001] 39.0 ± 1.0 46.0 ± 0.0
LOF [Breunig et al., 2000] 54.0 ± 1.0 51.0 ± 1.0
E2E-AE[Zong et al., 2018] 13.0 ± 4.0 45.0 ± 3.0
DCN [Caron et al., 2018] 33.0 ± 3.0 38.0 ± 3.0
DAGMM [Zong et al., 2018] 49.0 ± 4.0 49.0 ± 3.0
DSVDD [Ruff et al., 2018] 73.0 ± 0.0 54.0 ± 1.0
DROCC* [Goyal et al., 2020] 68.7 ± 2.3 32.3 ± 1.8
GOAD [Bergman and Hoshen, 2020] 74.5 ± 1.1 52.0 ± 2.3
NeuTraL AD [Qiu et al., 2021] 76.8 ± 1.9 60.3 ± 1.1
GOCC [Shenkar and Wolf, 2022] 76.8 ± 1.2 61.8 ± 1.8
PLAD 76.6 ± 0.6 71.0 ± 1.7

4.5 Experiment of separating anomaly from multi-class normal data

It should be pointed out that in real applications, the normal data may contain multiple classes without
labels. We need to separate anomalies from these multi-class normal data. In this study, we randomly
select 10,000 samples among the training split of CIFAR-10 or Fashion-MNIST to construct a new
normal training set, namely, the normal data in multiple classes. Subsequently, we randomly select
two samples from the test split of CIFAR-10 or Fashion-MNIST to construct 10,000 anomalous
samples using the means of pair-wise samples at the pixel level. The produced anomalous samples
are merged with the original test split to form a new test set. Compared with the previous two tasks
(Sections 4.3 and 4.4), this one is much more difficult because the decision boundary between the
anomalous samples and the normal samples is very complicated. We run the experiment to compare
our method with four baselines including OCSVM, DAGMM, DSVDD, DROCC and report the
results in Table 6. We see that the proposed PLAD method outperforms the baselines significantly.
For example, the improvement over the runner-up DSVDD are 9.1% and 4.4% on CIFAR-10 and
Fashion-MNIST respectively. The success of PLAD mainly stems from the ability of learning a
decision boundary adaptively without any assumption.

Table 6: AUCs (%) of the experiment of separating anomaly from multi-class normal data.

Data set CIFAR-10 Fashion-MNIST
OCSVM [Schölkopf et al., 2001] 54.9 ± 0.0 64.8 ± 0.0
DAGMM [Zong et al., 2018] 44.3 ± 0.6 49.2 ± 2.6
DSVDD [Ruff et al., 2018] 63.6 ± 1.1 70.9 ± 2.0
DROCC [Goyal et al., 2020] 60.9 ± 5.8 68.1 ± 3.1
PLAD 72.7 ± 1.9 75.3 ± 2.8

4.6 Statistical analysis of the proposed method

To assess whether the results obtained of our method are statistically significantly different compared
to others, we further conduct statistical analysis for them. Student’s t-test is a common scheme for
assessing the significance of differences between two groups of data. Usually, the difference is said
to be significant if the p-value obtained in the t-test is less than 0.05. We compare with three baseline
methods including DSVDD [Ruff et al., 2018], DROCC [Goyal et al., 2020], and HRN [Hu et al.,
2020] on Fashion-MNIST. Note that we perform t-test experimental by using the results obtained
from running their official released codes. Table 7 summarizes the reproduced results and the p-value
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(t-test) of our method against other baseline methods. We can see that the reproduced results are
close to that reported in the related papers [Hu et al., 2020; Goyal et al., 2020], and the t-test results
of our methods are statistically significantly different (p < 0.01) from other comparative methods in
most cases except for the comparison with HRN on the “Trouser” and “Dress” classes.

Table 7: The reproduced results (with *), reported results, and t-test results of the one-class anomaly
detection task on Fashion-MNIST.

Reproduce T-shirt Trouser Pullover Dress Coat Sandal Shirt Sneaker Bag Ankle boot

DSVDD [Ruff et al., 2018] 79.1 94.0 83.0 82.9 87.0 80.3 74.9 94.2 79.1 93.2
DSVDD* [Ruff et al., 2018] 78.4 ± 3.3 93.6 ± 1.3 80.8 ± 3.4 84.1 ± 2.0 85.9 ± 2.4 82.0 ± 3.0 75.0 ± 3.8 94.5 ± 1.8 80.6 ± 5.9 94.1 ± 1.5
DROCC* [Goyal et al., 2020] 88.1 ± 3.3 97.7 ± 0.7 87.6 ± 1.4 87.7 ± 1.6 87.2 ± 2.2 91.0 ± 1.6 77.1 ± 2.0 95.3 ± 0.7 82.7 ± 2.9 95.9 ± 2.1
HRN [Hu et al., 2020] 92.7 ± 0.0 98.5 ± 0.1 88.5 ± 0.1 93.1 ± 0.1 92.1 ± 0.1 91.3 ± 0.4 79.8 ± 0.1 99.0 ± 0.0 94.6 ± 0.1 98.8 ± 0.0
HRN* [Hu et al., 2020] 88.8 ± 0.1 98.6 ± 0.1 84.8 ± 0.1 93.2 ± 0.1 89.5 ± 0.2 89.6 ± 0.1 74.4 ± 0.1 98.9 ± 0.0 87.2 ± 0.3 97.7 ± 0.1
PLAD (Ours) 93.1 ± 0.5 98.6 ± 0.2 90.2 ± 0.7 93.7 ± 0.6 92.8 ± 0.8 96.0 ± 0.4 82.0 ± 0.6 98.6 ± 0.3 90.9 ± 1.0 99.1 ± 0.1

p-value (t-test) T-shirt Trouser Pullover Dress Coat Sandal Shirt Sneaker Bag Ankle boot

v.s. DSVDD 1.5× 10−7 1.2× 10−6 2.2× 10−5 1.0× 10−7 2.1× 10−5 8.2× 10−8 8.7× 10−4 4.7× 10−5 0.003 2.9× 10−6

v.s. DROCC 9.4× 10−4 0.004 3.3× 10−4 3.4× 10−6 3.0× 10−5 3.1× 10−6 4.4× 10−4 3.4× 10−7 9.9× 10−6 5.1× 10−4

v.s. HRN 4.0× 10−9 0.614 1.2× 10−7 0.013 5.9× 10−6 3.0× 10−10 1.5× 10−9 5.4× 10−4 2.2× 10−5 1.7× 10−10

4.7 Extension of PLAD to time-series anomaly detection

We further conduct experiment to demonstrate the effectiveness of PLAD on the time-series anomaly
detection task, the details refer to Table 8 in Appendix G due to the limitation of the paper length.

5 Conclusion

We have presented a novel method PLAD for anomaly detection. Compared with its competitors,
PLAD does not require any assumption about the distribution or structure of the normal data. This is
the major reason that PLAD outperforms its competitors. In addition, PLAD has fewer hyperparame-
ters to determine and has a lower computation cost than many strong baselines such as [Wang et al.,
2019; Goyal et al., 2020; Yan et al., 2021]. Actually, PLAD provides us a framework for anomaly
detection. Different neural networks such as CNN [Krizhevsky et al., 2012], RNN [Mikolov et al.,
2010], GNN [Scarselli et al., 2008], and even transformer Vaswani et al. [2017] can be embedded
into PLAD to accomplish various anomaly detection tasks such as time series anomaly detection.
One limitation of our work is that we haven’t included enough these experiments currently.

Note that in this study, we only considered the additive and multiplicative perturbations, i.e., x̃ =

x� gα
θ̃

(x) + gβ
θ̃

(x), while a more general perturbation can be formulated as x̃ = g′
θ̃

(x). When we

need a very sophisticated perturbator, we may not well approximate g′
θ̃

(x) by x� gα
θ̃

(x) + gβ
θ̃

(x),

because we have to made some restriction for gα
θ̃

and gβ
θ̃

. Therefore, future study may also focus on
determining the φ for (1), to learn g′

θ̃
(x) more effectively.
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