
Fast and Accurate Intrinsic Symmetry Detection

Rajendra Nagar[0000−0001−8087−0468] and Shanmuganathan
Raman[0000−0003−2718−7891]

Electrical Engineering, Indian Institute of Technology Gandhinagar, India
{rajendra.nagar,shanmuga}@iitgn.ac.in

Abstract. In computer vision and graphics, various types of symmetries
are extensively studied since symmetry present in objects is a funda-
mental cue for understanding the shape and the structure of objects. In
this work, we detect the intrinsic reflective symmetry in triangle meshes
where we have to find the intrinsically symmetric point for each point
of the shape. We establish correspondences between functions defined
on the shapes by extending the functional map framework and then re-
cover the point-to-point correspondences. Previous approaches using the
functional map for this task find the functional correspondences matrix
by solving a non-linear optimization problem which makes them slow.
In this work, we propose a closed form solution for this matrix which
makes our approach faster. We find the closed-form solution based on
our following results. If the given shape is intrinsically symmetric, then
the shortest length geodesic between two intrinsically symmetric points is
also intrinsically symmetric. If an eigenfunction of the Laplace-Beltrami
operator for the given shape is an even (odd) function, then its restric-
tion on the shortest length geodesic between two intrinsically symmetric
points is also an even (odd) function. The sign of a low-frequency eigen-
function is the same on the neighboring points. Our method is invariant
to the ordering of the eigenfunctions and has the least time complexity.
We achieve the best performance on the SCAPE dataset and comparable
performance with the state-of-the-art methods on the TOSCA dataset.
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1 Introduction

The importance of various types of symmetry is evident while solving prob-
lems such as shape segmentation, mesh repairing, shape matching, retrieving
the normal forms of 3D models [30, 60, 12], inverse procedural modeling [31],
shape recognition [14], shape understanding [34], shape completion [47, 49], and
shape editing [55, 33, 15, 20, 54, 10]. The problem of detecting intrinsic symmetry
is shown to be an NP-hard problem since it amounts to finding an intrinsically
symmetric point for each point [37]. However, correspondences between the in-
trinsically symmetric points completely characterize the intrinsic symmetry of
a shape since the intrinsic symmetry is a non-rigid transformation which can
not be represented a matrix as opposed to the extrinsic symmetry which can be
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represented by a matrix [16]. We exploit the functional map approach that finds
correspondences between functions instead of points [36]. Then, the point-to-
point correspondences can be recovered in O(n log(n)), where n is the number
of vertices. We extend this framework for the detection of intrinsic symmetry.
The functional map framework has already been used for detecting intrinsic sym-
metry in previous works ([24], [52]). The main task in these approaches was to
determine the functional correspondence matrix which transforms a function to
its intrinsic image. Various constraints have been enforced on this matrix. It is
not known yet, how many constraints are sufficient. Further, they solved a non-
linear optimization problem to estimate the functional correspondence matrix
which makes the method slow. For the intrinsic symmetry detection problem,
we show that the functional correspondences matrix is a diagonal matrix and a
diagonal entry is +1 (−1), if the corresponding eigenfunction is an even (odd)
function. This closed-form solution makes our method faster.

We determine if a particular eigenfunction is even or odd based on our fol-
lowing result. An eigenfunction is an even (odd) function if its restriction to the
shortest length geodesic between two intrinsically symmetric points is an even
(odd) function. Therefore, we need to find a few accurate pairs of intrinsically
symmetric points which we find using our following results. If we directly pair
points based on the similarity between their heat kernel signatures [48], we may
get false pairs. For example, a pair of points on the tip of the index finger and
the tip of the ring finger of the same hand of a human model. The reason is that,
if two neighboring points are subjected to the same strength heat sources, then
their heat diffusion processes will also be similar because of the very small sizes
of the fingers with respect to the body size. However, we observer that the sign
of a low-frequency eigenfunction on the neighboring points is the same. Hence,
we put high penalty for pairing two points if signs of first few low-frequency
eigenfunctions are the same for both the points. The models of the benchmark
datasets are obtained by applying an imperfect isometry, so the theory only
holds approximately. Furthermore, some of the triangles may not be Delaunay
triangles. Therefore, we may not get accurate correspondences using the original
eigenfunctions. Hence, we transform the original eigenfunctions to make them
near perfect even or odd functions. Following are our main contributions.

1. We propose a novel approach to find a few accurate pairs of intrinsically
symmetric points based on the following property of eigenfunctions: the signs
of low-frequency eigenfunction on neighboring points are the same.

2. We propose a novel and efficient approach for finding the functional cor-
respondence matrix. We prove that the functional matrix for the intrinsic
symmetry detection problem is a diagonal matrix and a diagonal entry is
+1 (−1) if the corresponding eigenfunction is an even (odd) function.

3. We propose a novel approach to determine the sign of a eigenfunction by
showing that, if a manifold contains intrinsic symmetry and an eigenfunction
is an even (odd) function, then its restriction to the shortest length geodesic
between any two intrinsically symmetric points is an even (odd) function.

4. We transform the eigenfunctions to make themmore invariant to self-isometry.
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2 Related Works

Reflective symmetry detection methods are categorized by the types of the input
data and the reflective symmetry present in the input data. The input data can
be a digital image, point cloud, triangle mesh, etc. The main types of reflective
symmetries are extrinsic and intrinsic. The well known methods for detecting the
extrinsic symmetry are [29, 40, 28, 21, 45, 51, 46, 47, 26] and for detecting the in-
trinsic symmetry are [41, 37, 5, 6, 13, 17, 18, 22, 27, 41, 45, 60, 58, 56, 53, 44, 38, 42].
Furthermore, the intrinsic symmetry can be characterized as global and partial
intrinsic symmetry. Our method finds global and partial intrinsic symmetry in
triangle meshes. We discuss only the relevant works and suggest the readers to
follow the excellent state-of-the-art report in [32] and the survey in [25].

Ovsjanikov et al. detected intrinsic symmetry using the global point signature
(GPS) [37]. The main claim was that the GPS embedding transforms the prob-
lem from intrinsic to extrinsic symmetry detection. They showed that the GPS
embedding was robust to the topological noises. They found pairs of symmetric
points by comparing the GPS of one point to the signed-GPS of the other point.
The time complexity of determining the sign (even or odd) of an eigenfunction
is O(n log(n)) since they compared GPSs of all the possible pairs. Furthermore,
the time complexity of the overall method is O(k3n log(n)) excluding the com-
putation of eigenfunctions, where k is the number of eigenfunctions used. We
propose a more efficient method which takes (O(kn log(n))) for detecting intrin-
sic symmetry. Furthermore, we observe that the approach by [37] is sensitive
to the sign flip and eigenfunction ordering. Whereas, our method is indepen-
dent of sign flip and ordering since we determine the sign of each eigenfunction
independently from the others. Mitra et al. used a voting based approach to
detect intrinsic symmetry and then applied transformation in the voting space
to deform the input model to have perfect extrinsic symmetry [30]. Xu et al.

used a generalized voting scheme to find the partial intrinsic symmetry curve
without explicitly finding the intrinsically symmetric point for each point [57].
Xu et al. efficiently found pairs of intrinsically symmetric points using a voting
based approach [56]. They factored out symmetry based on the scale of sym-
metry. However, they needed to tune a parameter depending on how much the
input shape is distorted [56]. The methods by Zheng et al. ([60], [13]) also used
voting approach. These voting based methods do not utilize spatial coherency.
Therefore, they may produce pairs of intrinsically symmetric points which may
not be spatially continuous. Furthermore, they may have high complexity due
to a large number of possible pairs for the voting.

In [41], the authors proposed a non-convex optimization framework to ac-
curately detect full and partial symmetries of 3D models. However, the initial-
ization severely affects the performance, and the complexity also is very high.
Lipman et al. efficiently found the pairs of intrinsically symmetric points in
point clouds and triangle meshes using the novel symmetry factored embedding
technique [23]. However, their main bottleneck is the time complexity which is
O(n2.5 log(n)). Kim et al. used anti-Möbius transformation to accurately find
intrinsically symmetric pairs of points [16]. They first find a sparse set of pairs
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of intrinsically symmetric points. Then, they transform intrinsic symmetry into
extrinsic symmetry using the Möbius transform. However, they required O(n2)
space for mid-edge flattening and O(|S|4) for finding the anti-Möbius transfor-
mation, where S is the set of symmetry invariant points. Furthermore, false pairs
in the first step may severely affect the overall performance.

3 Intrinsic Symmetry Detection

3.1 Background

Let M be a compact and connected 2-manifold representing the input shape.
Let L2(M) = {f : M → R| 〈f, f〉M =

∫

M f2(x)dx <∞} be the space of square
integrable functions defined on M. The Laplace-Beltrami operator on a shape
M is defined as ∆Mf = −divM(∇Mf) and admits an eigenvalue decomposition
∆Mφi(x) = λiφi(x), ∀x ∈ M. Here, 0 = λ1 ≤ λ2 ≤ . . . are the eigenvalues and
φ1, φ2, . . . are the corresponding eigenfunctions. The eigenfunctions φ1, φ2, . . .
form a basis for the space L2(M). Therefore, any function f ∈ L2(M) can be rep-
resented as f(x) =

∑∞
i=1 〈f, φi〉M φi(x), ∀x ∈ M. The functional map framework

was first proposed in [36] for establishing point-to-point dense correspondence
between two isometric shapes. The main idea was to establish correspondences
between the functions, defined on the shapes, rather than the points. This idea
reduced the time complexity to O(n log n). Let M and N be two shapes. Let
Tf : L

2(N ) → L2(M) be a linear mapping between functions defined on these
shapes. That is, if g : N → R and f : M → R are two corresponding functions
then Tf(g) = f . The mapping Tf is represented by a matrix C ∈ R

k×k such that

b = Ca, where a =
[

a1 a2 . . . ak
]⊤

and b =
[

b1 b2 . . . bk
]⊤

are the represen-
tations of the functions g and f in the truncated bases {φNi }ki=1 and {φMi }ki=1,
respectively. Therefore, the main goal is to find the matrix C which completely
characterizes the dense correspondence between the two shapes.

3.2 Functional Maps for Intrinsic Symmetry Detection

We extend the functional map framework for detecting the intrinsic symmetry
which can be thought of as a shape correspondence problem where we have to find
the correspondences between the points of the same shape rather than the points
on the two different shapes. The functional map framework is applicable for two
isometric shapes also. Therefore, we can use it to detect the intrinsic symmetry
since a symmetric shape is a self-isometric shape [37]. The intrinsic symmetry
Tp : M → M of M is defined as follows. If the points x ∈ M and y ∈ M are
intrinsically symmetric, then Tp(x) = y and Tp(y) = x. We first find the mapping
between the functions and then use it to find the correspondences between the
intrinsically symmetric points. Let us consider the space L2(M) and let T :
L2(M) → L2(M) be a functional map which maps the functions defined on the
same shape. Then, this functional map T completely characterizes the intrinsic
symmetry Tp if T (g) = f and T (f) = g, where f, g ∈ L2(M) are intrinsically
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symmetric functions, i.e. f ◦Tp(x) = g(x), g ◦Tp(x) = f(x), ∀x ∈ M. Therefore,
our goal is to find the matrix C which characterizes the functional mapping
T for the intrinsic symmetry detection problem. For the problem of finding
correspondences between two shapes, various constraints have been imposed on
the matrix C. Then, the matrix C was the optimal solution of an optimization
problem. However, we show that a closed form solution exists for the matrix C

for the problem of detecting the intrinsic symmetry, which we state as follows.

Theorem 1. Let T : L2(M) → L2(M) be a mapping between the functions

defined on a shape M and T characterizes the intrinsic symmetry Tp of M, i.e.

T (g) = f, T (f) = g, ∀f, g ∈ L2(M) such that f ◦ Tp(x) = g(x), g ◦ Tp(x) =
f(x), ∀x ∈ M. Then, the matrix C representing T is a diagonal matrix. Ci,i =
+1, if 〈T (φi), φi〉M = +1, and Ci,i = −1, if 〈T (φi), φi〉M = −1.

Proof. The functions f, g belong to the space L2(M). We can represent f and g
as f(x) =

∑∞
i=1 biφi(x) and g(x) =

∑∞
i=1 aiφi(x). Since T is a linear mapping, we

have T (f) = T (
∑∞

i=1 biφi(x)) =
∑∞

i=1 biT (φi(x)). Since T (φi(x)) is also a func-
tion in the space L2(M), it can be represented in the basis {φi}

∞
i=1 as T (φi(x)) =

∑∞
j=1 cijφj(x), where cij = 〈T (φi), φj〉M. Therefore, we have that T (f) =

∑∞
j=1

∑∞
i=1 cijbiφj(x). Since T (f) = g, it follows that

∑∞
j=1

∑∞
i=1 cijbiφj(x) =

∑∞
j=1 ajφj(x). Therefore, aj =

∑∞
i=1 cijbi. Equivalently, we can write it as

a = Cb, where Ci,j = cij = 〈T (φi), φj〉M. According to [37], the eigenfunctions
(corresponding to the non-repeating eigenvalues) are self-isometry invariant with
sign ambiguity i.e. φi ◦ Tp(x) = ±φi(x), ∀x ∈ M. Furthermore, the functional
map T completely characterizes the intrinsic symmetry. Therefore, T (φi) = +φi,
if φi◦Tp(x) = φi(x), and T (φi) = −φi, if φi◦Tp(x) = −φi(x), ∀x ∈ M. Since the
eigenfunctions φ1, φ2, . . . form an orthogonal basis for the space L2(M), we have
that 〈±φi, φj〉M = 0 if i 6= j. Therefore, Ci,j = 〈T (φi), φj〉M = 〈±φi, φj〉M.
Therefore, Ci,j = 0, if i 6= j. Hence, the matrix C is a diagonal matrix. Further-
more, Ci,i = +1, if 〈T (φi), φi〉M = +1, and Ci,i = −1, if 〈T (φi), φi〉M = −1. ⊓⊔

Therefore, the problem of determining whether Ci,i = +1 or Ci,i = −1 is
equivalent to determining whether φi ◦ Tp(x) = +φi(x) or φi ◦ Tp(x) = −φi(x),
∀x ∈ M. It is observed that if φi ◦ Tp = +φi then φi is a symmetric or an even
function and if φi ◦Tp = −φi, then φi is an anti-symmetric or an odd function in
the intrinsic sense. We can not apply the definition of the vector space here, since
the domain of the eigenfunctions is not a vector space. A function f : R2 → R

is an even function, if f(−x) = f(x), ∀x ∈ R
2. This definition is not valid for

the functions defined on the manifolds, since if x ∈ M, then it may not always
be true that −x ∈ M. However, we generalize the following property of vector
spaces to the manifolds to determine the sign of eigenfunctions. Let f : R2 → R

be a function symmetric on R
2 and ℓ = {x : x = tx1 + (1 − t)x2, t ∈ [0, 1]}

be the line segment joining the mirror symmetric points x1 and x2. Then, it is
trivial to show that the restriction fℓ : ℓ → R of the function f on the set ℓ is
also symmetric. Here, we also observe that the set R2 is symmetric about any of
its coordinate axes and the set ℓ is also symmetric. We formally generalize these
results on manifolds as follows.
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Theorem 2. Let M be a compact and connected 2-manifold. Let there exist

a self-isometry Tp : M → M on M. Let x, y ∈ M be two points which are

intrinsically symmetric, i.e., Tp(x) = y and Tp(y) = x. Let γ(t) : [0, 1] → M be

the shortest length geodesic curve between the points x and y such that γ(0) = x
and γ(1) = y. Then, Tp(γ(t)) = γ(1− t) and Tp(γ(1− t)) = γ(t), ∀t ∈ [0, 1].

Proof. Let β(t) = Tp(γ(t)). We have to show that β(t) = γ(1 − t). Since Tp is
an isometry, according to (Proposition 16.3, [11], Chapter 3, p91 [35]) Tp maps
a shortest length geodesic on M to a shortest length geodesic on M. Therefore,
β(t) is also a shortest length geodesic. Now, we have β(0) = Tp(γ(0)) = Tp(x) =
y and β(1) = Tp(γ(1)) = Tp(y) = x. Therefore, β(t) is the shortest length
geodesic between the points x and y such that β(0) = y and β(1) = x. Since
there can only be a single shortest length geodesic curve between two points
(except continuous symmetry, like sphere), both the geodesics γ(t) and β(t)
trace the same path. However, their start and end points are flipped. Therefore,
β(t) = γ(1 − t) ⇒ Tp(γ(t)) = γ(1 − t). Since the self-isometry is an involution,
i.e. Tp ◦ Tp(x) = x, ∀x ∈ M, we have γ(t) = Tp ◦ Tp(γ(t)) = Tp(Tp(γ(t))) =
Tp(γ(1− t)) ⇒ Tp(γ(1− t)) = γ(t). ⊓⊔

The intuitive is that if a shape is intrinsically symmetric, then the shortest length
geodesic curve between any two intrinsically symmetric points is also intrinsi-
cally symmetric. This result helps us to determine the sign of the eigenfunctions
of the Laplace-Beltrami operator. First, we show that the result φi ◦ Tp(x) =
±φi(x) ∀x ∈ M holds true if we restrict the eigenfunctions on the shortest length
geodesic curve between the intrinsically symmetric points. The restriction of φi
on a curve γ(t) is defined as φi ◦ γ(t) : [0, 1] → R. Since, φi ◦ Tp = ±φi, ∀i such
that i-th eigenvalue is non repeating, each eigenfunction is always either an even
(sign= +1) or an odd (sign= −1) function. Hence, if restriction of the eigen-
function φi on the shortest length geodesic between the intrinsically symmetric
points has sign +1 (−1), then the sign of φi is also +1 (−1).

Proposition 1. Let x, y ∈ M be two intrinsically symmetric points and γ(t) :
[0, 1] → M be the shortest length geodesic curve between the points x and y.
Then, φi ◦ γ(t) = ±φi ◦ γ(1− t), ∀t ∈ [0, 1].

Proof. Using Theorem 2, we proceed as φi(γ(t)) = φi(Tp(γ(1 − t))) = (φi ◦
Tp)(γ(1− t)). We know that φi ◦Tp = ±φi. Hence, φi(γ(t)) = ±φi(γ(1− t)). ⊓⊔

We apply the above result to find whether an eigenfunction is even or odd as
follows. We first determine a set of candidate pairs of intrinsically symmetric
points. Then we find the shortest length geodesic curve between each pair. Then,
for each eigenfunction φi, we determine if the restricted eigenfunction φi ◦ γ(t)
is an even or an odd function for each pair.

3.3 Computation of Eigenfunction of Laplace-Beltrami Operator

Let T = (V,F , E) be a triangle mesh, where V is the set of n vertices, F is the
set of faces, and E is the set of edges. We follow the method in [39] to find the
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eigenvalues and the corresponding eigenvectors of the Laplace-Beltrami operator
in the discrete settings. The discrete Laplace-Beltrami operator is defined by the
matrix L = −A−1M. Both M and A are of size n×n and are defined as follows.

Mj,j′ =











cot(αjj′ )+cot(βjj′ )

2 if (j, j′) ∈ E

−
∑

j′′ 6=j Mj,j′′ if j = j′

0 if (j, j′) /∈ E ,
aj

xj

βjj′

xj′

αjj′

A = diag(a1, a2, . . . , an), and, aj = 1
3

∑

j′,j′′:(j,j′,j′′)∈F ajj′j′′ (the area of the

shaded region in the inset figure). Here, ajj′j′′ is the area of the face (j, j′, j′′). In
the discrete settings, we denote eigenfunctions by φi, i ∈ [k], and are the solutions
of the generalized eigen-problem Mφi = −λiAφi. Here, [k] = {1, 2, . . . , k}. We
denote the value of φi at the j-th point or vertex by φi(xj).

3.4 Detecting Pairs of Intrinsically Symmetric Points

In order to detect the intrinsic symmetry, according to Theorem 1, we need to
find the matrix C defined as Ci,i′ = 0, if i 6= i′, Ci,i = +1, if φi is an even func-
tion, and Ci,i = −1, if φi is an odd function. According to Proposition 1, the
eigenfunction φi is an even function (odd) if its restriction on the shortest length
geodesic between intrinsically symmetric points is also an even function (odd).
Therefore, our first task is to find a few accurate candidate pairs of intrinsically
symmetric points. We find the heat kernel signature (HKS) feature points [48]

(a) (b) (c)

Fig. 1. Direct HKS matching vs. restricted HKS matching. (a)-(b) Pairs of intrinsically
symmetric points using HKS similarity. It suffers from the fact that if two neighboring
points are subjected to a same strength heat source, then their heat diffusions will be
similar. (c) Pairs obtained by restricted HKS matching. We observe that the sign of low
frequency eigenfunctions on two neighboring points is the same. Therefore, we assign
a high cost for pairing two points having the same vectors of signs of eigenfunctions.

on the given mesh T . HKS feature points are the local maxima of the function
∑k

i=1 e
−λithφ2

i (xj) defined on the shape T for all vertices xj , j ∈ [n]. We use
k = 13 for our experiments. Let {xj}j∈I be the set of HKS feature points, where,
I ⊂ [n], and |I| = d. We set th = 4 ln 10

λ2

as defined in [48]. To find the pairs of
intrinsically symmetric points, we do not directly match the HKS descriptors.
The reason is that this strategy may fail very frequently. In Fig.1(a), we show
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the detected HKS feature points and the pairs detected by direct matching of
their HKS descriptors on the Kids model [9]. In Fig.1(b), we show the zoomed
pairs of symmetric points on the feet and the hands for better visualization. We
observe that the tips of two fingers of the same hand got paired. The reason
behind getting such matches is that if two neighboring points are subjected to
a same strength heat source, then their heat diffusion processes will be similar.
Therefore, their HKS descriptors will be similar. Hence, we have to assign a high
cost for pairing two neighboring points. Furthermore, determining if two points
are neighbors requires us to find the geodesic distance between each possible
pair. This can be a costly process since there can be a large number of possible
pairs. We propose a fast approach to determine if two points are neighbors based
on the following observation.
Observation 1. Let xj and xj′ be any two neighboring points in T . Then,

sj = sj′ for low frequency eigenfunctions, i.e., for small k.
Here, sj and sj′ are the j-th and j′-th columns of the matrix S =

[

s1 s2 . . . sd
]

∈
{−1,+1}k×d. The i-th element of the vector sj is the sign of the i-th eigenfunc-
tion on the j-th point of the set {xj}j∈I . We give an intuitive understanding of
this observation based on the nodal domains of the eigenfunctions. The nodal
set of the eigenfunction φi is the set Bi = {x ∈ M : φi(x) = 0}. A nodal domain
is a component in the set M\Bi. The set M\Bi is the collection of components
or segments on the shape which are separated by the set Bi. The value of the
eigenfunction φi in any of its nodal domain is either positive or negative [59,
43]. Therefore, if two points lie in the same nodal domain, then the eigenfunc-
tion φi will have the same sign on both the points. Now, the neighborliness of
two points depends on the size or the area of the nodal domain. According to
the Courant’s nodal domain theorem, the number of nodal domains of φi is less
than i [59]. Therefore, the size of the nodal domains remains significantly large
for low frequency eigenfunctions. Hence, neighboring points remain in the same
nodal domain for all the low frequency eigenfunctions. Therefore, the sign of all
low frequency eigenfunctions remains the same on neighboring points. We choose
eigenfunctions corresponding to the first 13 lowest eigenvalues and corresponding
eigenvectors for our experiment.

Hence, we assign a high cost for pairing the points xj and xj′ , if their sign
vectors sj and sj′ are the same. Let H =

[

h1 h2 . . . hd

]

∈ R
h×d be the heat

kernel signatures matrix of the detected d HKS feature points, where we choose
h = 50 steps. We define the affinity matrix W ∈ R

d×d such that Wj,j′ =
‖hj − hj′‖2 + qψ(‖sj − sj′‖2), ∀(j, j

′) ∈ [d] × [d], j 6= j′ and Wj,j = q, ∀j ∈ [d].
Here ψ(t) = 0, if t > 0 and ψ(t) = 1, if t = 0, and q is any large positive constant.
We now pair these points such that if xj′ is intrinsically symmetric point of the
point xj , then xj should be the intrinsically symmetric point of the point xj′ .
We achieve this by representing the matching by a matrix Π ∈ {0, 1}d×d, where
Πj,j′ = 1 and Πj′,j = 1, if the points xj and xj′ form a pair and 0, otherwise.
Now, we enforce the constraints Π1 = 1 and Π⊤1 = 1 to achieve one-to-one
matching, where 1 is a vector of size d with all elements equal to 1. We get
many points which can not be paired. Therefore, we cap the number of pairs by
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c which we represent by the constraint 1⊤Π1 = 2c. Further, to make it feasible,
we modify the one-to-one matching constraints to Π1 ≤ 1 and Π⊤1 ≤ 1. Now,
we frame the problem of pairing the points in the below optimization problem.

min
Π∈{0,1}d×d

d
∑

j=1

d
∑

j′=1

Πj,j′Wj,j′ , subject to Π1 ≤ 1, Π⊤1 ≤ 1, 1⊤Π1 = 2c. (1)

We note that, problem (1) is equivalent to the below linear assignment problem.

min
π∈{0,1}d2×1

vec(W)⊤π, subject to C1π ≤ 1, C2π ≤ 1, c⊤3 π = 2c. (2)

Here, the vector π = vec(Π), C2 = 1⊤ ⊗ I, c3 is the vector of size d2 × 1 with
all elements equal to 1, and I is the identity matrix of size d × d. The matrix
C1 is d × d2 matrix and defined such that the j-th row is the circular shift,
by jd elements on the right, of the row vector of size 1 × d2 with the first d
elements equal to 1 and the last d2−d elements equal to 0. The time complexity
of this problem is exponential in the number of variables. However, the size of
our problem is very small. In all our experiments d ≤ 25. We use the MATLAB
function intlinprog to solve this problem which takes ≈ 0.03 seconds.

3.5 Determining the Sign of Eigenfunctions

Proposition 1 states that the eigenfunction φi is an even (odd) function, if its
restriction φi ◦ γj(t) : [0, 1] → R on the shortest length geodesic γj(t) between
any two intrinsically symmetric points xj and xj′ is an even (odd) function.
Let {(xj , xj′)}

c
j=1, be the set of detected pairs of intrinsically symmetric points.

We find the shortest length geodesic curve between two intrinsically symmetric
points using [50] with approximate setting (Dijkstra’s algorithm), since the exact
geodesic curve may not pass through the vertices of the mesh which may require
us to perform interpolation for calculating the values of φi ◦ γj(t) for γj(t) /∈ V.
Let pij be the restriction (vector of size equal to the number of vertices in the
geodesic) of the eigenfunction φi on the shortest length geodesic curve between
the intrinsically symmetric points xj and xj′ . Then, the sign si of eigenfunction
φi is equal to +1, if

∑c

j=1 p
⊤
ijpij > 0 and equal to −1, if

∑c

j=1 p
⊤
ijpij < 0. We

do not consider the eigenfunction φi if
∑c

j=1 p
⊤
ijpij = 0. Equivalently, we define

the diagonal entries of the functional correspondence matrix C as Ci,i = si.
In Fig. 2(a) and (c), we show the eigenfunctions φ2 and φ3, respectively, with
the geodesic curves for two pairs of detected intrinsically symmetric points on a
shape from Kids dataset [9]. In Fig. 2(b) and (d), we show the functions φi◦γj(t)
for i = 2, 3 and j = 1, 2. We observe that C2,2 = −1 and C3,3 = +1.

One can directly use the values of an eigenfunction on the intrinsically sym-
metric points to find the sign instead of checking it on the geodesic between these
points. However, this approach could be sensitive to the noise. If the value of an
eigenfunction at the feature point has changed due to noise, then the point-based
method will fail. Whereas, it is less likely that due to the noise the value of an
eigenfunction will be changed at all the points on the geodesic. Our geodesic
based method will detect the sign correctly due to averaging of signs.
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Fig. 2. (a)-(b): The eigenfunction φ
2
on the Kids model which is an even function and

its restrictions φ
2
◦ γj(t), j = 1, 2, shown in red and blue colors (on hands and feet),

which are also even functions. (c)-(d): The eigenfunction φ
3
on the Kids model which

is an odd function and its restrictions φ
3
◦ γj(t), j = 1, 2, shown in purple and orange

colors (on hands and feet), which are also odd functions.

3.6 Correcting the Eigenfunctions

The models of the benchmark datasets are obtained by applying an imperfect
isometry, so the theory only holds approximately. Furthermore, some of the
triangles may not be Delaunay triangles and the eigenfunctions are sensitive to
the change in the triangulation of the mesh. Therefore, all the eigenfunctions may
not be perfectly even or odd which may give the erroneous symmetry detected
in Section 3.7. Consider Fig. 3(a), where the eigenfunction φ10 is not perfectly
even on the legs. We transform the eigenfunctions such that they preserve the
pairs of intrinsically symmetric functions. We extend the framework in [19]. Let
Φ =

[

φ1 φ2 . . . φk

]

∈ R
n×k, and D = diag(λ1, λ2, . . . , λk) ∈ R

k×k. Let ΦR be
the transformed basis obtained by applying the linear operator R on the basis Φ.
Then, we impose the constraints R⊤DR = D and off(R⊤DR) = 0 so that the
new eigenfunctions admit to the original eigenfunction decomposition problem
as proposed in [19], where off(M) =

∑

j

∑

j′:j′ 6=j M
2
j,j′ for any matrix M.

Now, let fj , gj : M → R be two functions such that fj and gj are intrinsic
images of each other. That is, fj ◦ Tp(x) = gj(x) and gj ◦ Tp(x) = fj(x) are
equivalent. Let fj ∈ R

n and gj ∈ R
n be the discrete versions of fj and gj ,

respectively. Let R⊤Φ⊤fj and R⊤Φ⊤gj be the representations of the functions
fj and gj in the transformed basis ΦR, respectively. We want the transformed
basis ΦR such that R⊤Φ⊤fj = CR⊤Φ⊤gj . Let F =

[

f1 . . . fc | g1 . . . gc

]

∈

R
n×2c and G =

[

g1 . . . gc | f1 . . . fc
]

∈ R
n×2c be the matrices representing 2c

(bidirectional) pairs of intrinsically symmetric functions. We formulate the below
optimization framework to find the transformation matrix R.

min
R

off(R⊤DR) + ‖R⊤DR−D‖2F

subject to R⊤Φ⊤F = CR⊤Φ⊤G, R⊤R = I, det(R) = +1,R ∈ R
k×k. (3)

Here, R⊤R = I follows from the fact that the transformed basis ΦR is an or-
thogonal basis. Here, the set {R ∈ R

k×k : R⊤R = I, det(R) = +1} is the special
orthogonal group SO(k). Hence, we solve the below optimization problem.

min
R∈SO(k)

off(R⊤DR) + ‖R⊤DR−D‖2F + µ‖R⊤Φ⊤F−CR⊤Φ⊤G‖2F. (4)
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(a) φ
10

before correction (b) φ
10

after correction

0 0.5 1

-0.01

0

0.01

(c) Restricted eigenfunctions

(d) Symmetry on the geodesic on the legs before (left) and after (right) correction.

Fig. 3. Visualization of the eigenfunction correction.

We use the Riemannian-trust-region method, proposed in [1, 2], to solve this op-
timization problem. We use the manopt toolbox [7] for this purpose. We provide
the Riemannian gradient and Hessian of this cost function in the supplementary
material. We empirically found the optimal µ to be equal to 1 in our experi-
ments. We choose the functions fj and gj such that, fj = 1 at the point xj and 0
everywhere else, and gj = 1 at the point xj′ and 0 everywhere else. Here, xj and
xj′ are intrinsically symmetric points. In Fig. 3(a) and (b), we show the effect
of correction on (φ10). We observe that φ10, which was not perfectly symmetric
on the legs and the belly, becomes more symmetric. The large blue patch on the
belly also got moved to center which was more towards left before correction.
Here, the value of eigenfunction is color encoded, more blue implies more nega-
tive and more yellow implies more positive. In Fig. 3(c), we show the restriction
of φ10 on the geodesic between the two symmetric points which becomes more
symmetric after the correction.

3.7 Dense Intrinsically Symmetric Correspondence

Let fj be the function such that fj = 1 at xj and 0 elsewhere. Similarly, let gj′ be
the function such that gj′ = 1 at xj′ and 0 elsewhere. LetR⊤Φ⊤fj andR⊤Φ⊤gj′

be their basis representation. Then, if the point xj and xj′ are intrinsically
symmetric then R⊤Φ⊤fj = CR⊤Φ⊤gj′ . Which is equivalent to R⊤Φ⊤F =
CR⊤Φ⊤G if we consider all points. Now, if F is equal to the identity matrix of
size n×n, thenGj,j′ = 1, if point xj and xj′ form a pair of intrinsically symmetric
points, and 0 otherwise. Now following [36], the intrinsically symmetric point of
xj is the nearest neighbor of the j-th column of the matrix R⊤Φ⊤ among the
columns of the matrix CR⊤Φ⊤. The obtained correspondences are continuous
as shown in [36]. Our method is invariant to the ordering of the eigenfunction
since the sign of φi and Ci,i only depend on the eigenfunction φi. In Fig. 3(d),
we show the detected symmetry on a geodesic on legs before and after correction.
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Table 1. The total time for computing in-
trinsic symmetry for the methods MT [16],
BIM[17], OFM [24], GRS [52], and the pro-
posed approach on the SCAPE dataset [3].

MT BIM OFM GRS Our

Time (min) - 360 60 24 8

Table 2. The correspondence rates and
mesh rates for the methods MT [16], BIM
[17], OFM [24], GRS [52], and the proposed
approach on the SCAPE dataset [3].

MT BIM OFM GRS Our

Corr rate (%) 82.0 84.8 91.7 94.5 97.5

Mesh rate (%) 71.8 76.1 97.2 98.6 100

Table 3. The correspondence rates and mesh rates for the methods MT [16], BIM [17],
OFM [24], GRP [52], and the proposed approach on the TOSCA dataset [8].

Corr rate (%) Mesh Rate (%)
MT BIM OFM GRS Our MT BIM OFM GRS Our

Cat 66.0 93.7 90.9 96.5 95.6 54.6 90.9 90.9 100 100
Centaur 92.0 100 96.0 92.0 100 100 100 100 100 100
David 82.0 97.4 94.8 92.5 96.2 57.1 100 100 100 100
Dog 91.0 100 93.2 97.4 98.8 88.9 100 88.9 100 100
Horse 92.0 97.1 95.2 99.4 97.3 100 100 87.5 100 100
Michael 87.0 98.9 94.6 91.4 96.5 75 100 100 100 100
Victoria 83.0 98.3 98.7 95.5 96.2 63.6 100 100 100 100
Wolf 100 100 100 100 100 100 100 100 100 100

Gorilla - 98.9 98.9 100 100 - 100 100 100 100

Average 85.0 98.0 95.1 94.5 97.8 76 98.7 92.6 100 100

4 Results and Evaluation

4.1 Time Complexity

Let n be the number of vertices and k be the number of eigenfunctions used.
The feature points are the local maximums of

∑k

i=1 e
−λithφ2

i (xj). It requires us
to find 2-ring neighborhoods of each vertex. We use the half-edge data structure
which requires O(1) time. Hence, the overall time for finding the feature points
is O(n). The optimization problem in Eq. (4) takes O(nk2) when solved using
Riemannian trust region method. We use the ANN library [4] to find the nearest
neighbor for each column of the matrix R⊤Φ⊤ ∈ R

k×n among the columns of
the matrix CR⊤Φ⊤ ∈ R

k×n which takes time O(kn log(n)). Hence, the time
complexity is O(kn log(n)) + O(n) + O(nk2) ≈ O(kn log(n)), since k << n. In
our experiments k = 13 (empirical) and n ≈ 15000. The time complexity of com-
puting the k smallest eigenvalues and corresponding eigenvectors of symmetric
matrix is O(n2k) which is common to all spectral decomposition based methods.

4.2 Comparison

Evaluation Metrics. We use the following evaluation metrics to compare the
results of our method to that of the state-of-the-art methods as defined in [16].
Correspondence rate: Let (xj , x

g
j′) be the ground truth correspondence and
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Fig. 4. Results of our approach on the TOSCA [8](first row) and the SCAPE [3] (second
row) datasets. Detected correspondences (sparse) are shown in blue color. Correspon-
dences in red color are the ones detected in Section 3.4.

(xj , x
e
j′) be the estimated correspondence, then the correspondence (xj , x

e
j′) is

called true positive if the geodesic distance between the points xgj′ and xej′ is

less than
√

area(T )/20π as used in [16]. The correspondence rate is the fraction
of true positive correspondences in the total estimated correspondences. Mesh

rate: The mesh rate is the fraction of shapes for which the correspondence rate
is more than 75% in the total shapes as used in [16]. Time Complexity: To-
tal time required for computing symmetry for each shape in the given dataset.
Datasets. We evaluate our approach on the SCAPE [3] and TOSCA [8] datasets.
The SCAPE dataset contains 71 models. Each model in SCAPE dataset contains
12500 vertices and 24998 faces. The TOSCA dataset contains 80 models. On an
average 20 ground truth intrinsically symmetric correspondences provided for
each model in the datasets SCAPE and TOSCA. In the Fig.4, we show a few
results of the proposed approach on both the datasets. We have only shown the
sparsely detected correspondences for better visualization.
Comparison Methods.We compare the results of our approach on the datasets
SCAPE and TOSCA with the four methods Möbius transformation voting (MT)
[16], Blended Intrinsic Maps (BIM) [17], Properly Constrained Orthogonal Func-
tional Map (OFM) [24], and Group Representation of Symmetries (GRS) [52].
Discussions on the comparison. In Table 1, we present the total time re-
quired for detecting the intrinsic symmetry in all the models of the TOSCA
dataset for all the methods. We observe that our method is the fastest method
on the TOSCA dataset. Our method takes around 6 seconds for each model
whereas the method BIM takes around 270 seconds, the method OFM takes
around 45 seconds, and the method GRS takes around 18 seconds. Our method
takes 4.2 minutes to compute intrinsic symmetry in all the models of the SCAPE
dataset. The possible reasons for our faster computation include finding the cor-
respondence matrix using a closed form solution and determining the sign of
eigenfunctions by computing the approximate shortest length geodesic curves
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Fig. 5. Partial intrinsic symmetry detection results on the dataset SHREC16 [9].

between two intrinsically symmetric points. In Tables 2 and 3, we present the
correspondence rate (Corr rate) and the mesh rate for all the methods for all
the models of the SCAPE and the TOSCA datasets, respectively. The mesh
rate for our method is equal to 100% and the correspondence rate is equal to
97.8% which is very close to the state-of-the-art correspondence rate 98% of the
method [17]. However, the average computation time for each mesh is around
270 seconds for the method [17], whereas it is around 6 seconds for our method.
We achieve the state-of-the-art performance on the SCAPE dataset.
Effect of holes. In Fig. 5, we show the detected intrinsic symmetry in the par-
tial model from the SHREC16 [9] dataset. Here, the partial shape is obtained by
making holes in the original shape such that it contains 90% area of the main
shape. We observe that our method is invariant to significant holes.

5 Conclusions

We have presented a fast and an accurate algorithm for detecting intrinsic sym-
metry in triangle meshes. We showed that the functional correspondence matrix
is diagonal and a diagonal entry is +1 (−1) if the corresponding eigenfunction is
even (odd). We showed that the restriction of an even (odd) eigenfunction on the
shortest length geodesic between any two intrinsically symmetric points also is
an even (odd) function. This result has helped us to derive a closed form solution
to find diagonal entries of this matrix. We achieved state-of-the-art performance
on the SCAPE dataset and second best on the TOSCA dataset. We achieved
the best time complexity. Furthermore, our approach is invariant to the order-
ing of eigenfunctions and robust to the presence of holes in the input mesh. Our
method is limited to the intrinsic reflective symmetry. It can not find the other
types of symmetries such as rotational symmetry. We would like to extend our
approach to more general symmetries. Our approach may fail to detect intrinsic
symmetry in non-connected manifolds. As future work, we would like to extend
the functional map to detect intrinsic symmetries in non-connected manifolds.
Acknowledgment: R. Nagar was supported by the TCS research Scholarship.
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