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ABSTRACT

Humans are capable of reasoning about physical phenomena by inferring laws of
physics from a very limited set of observations. The inferred laws can potentially
depend on unobserved properties, such as mass, texture, charge, etc. This sample-
efficient physical reasoning is considered a core domain of human common-sense
knowledge and hints at the existence of a physics engine in the head. In this paper,
we propose a Bayesian symbolic framework for learning sample-efficient models
of physical reasoning and prediction, which are of special interests in the field of
intuitive physics. In our framework, the environment is represented by a top-down
generative model with a collection of entities with some known and unknown
properties as latent variables to capture uncertainty. The physics engine depends
on physical laws which are modeled as interpretable symbolic expressions and are
assumed to be functions of the latent properties of the entities interacting under
simple Newtonian physics. As such, learning the laws is then reduced to symbolic
regression and Bayesian inference methods are used to obtain the distribution of
unobserved properties. These inference and regression steps are performed in
an iterative manner following the expectation–maximization algorithm to infer
the unknown properties and use them to learn the laws from a very small set of
observations. We demonstrate that on three physics learning tasks that compared
to the existing methods of learning physics, our proposed framework is more data-
efficient, accurate and makes joint reasoning and learning possible.

1 INTRODUCTION

Imagine a ball rolling down a ramp. If asked to predict the trajectory of the ball, most of us will find
it fairly easy to make a reasonable prediction. Not only that, simply by observing a single trajectory
people can make reasonable guesses about the material and weight of the ball and the ramp. It is
astonishing that while the exact answers to any of these prediction and reasoning tasks requires an in-
depth knowledge of Newtonian mechanics and solving of some intricate equations, yet an average
human can perform such tasks without any formal training in physics. Even from an early age,
humans demonstrate an innate ability to quickly learn and discover the laws of physical interactions
with very limited supervision. This allows them to efficiently reason and plan action about common-
sense tasks even in absence of complete information (Spelke, 2000; Battaglia et al., 2013). Recent
studies suggest that this ability of efficient physical reasoning with limited supervision is driven by
a noisy model of the exact Newtonian dynamics, referred as the intuitive physics engine (IPE; Bates
et al., 2015; Gerstenberg et al., 2015; Sanborn et al., 2013; Lake et al., 2017; Battaglia et al., 2013).

As sample-efficient physical reasoning is recognized as a core domain of human common-sense
knowledge (Spelke & Kinzler, 2007); therefore an important problem in artificial intelligence is to
develop agents that not only learn faster but also generalize beyond the training data. This has lead
to a surge in works aimed at developing agents with an IPE or a model of the environment dynamics
(Amos et al., 2018; Chang et al., 2016; Grzeszczuk & Animator, 1998; Fragkiadaki et al., 2015;
Watters et al., 2017; Battaglia et al., 2016; Sanchez-Gonzalez et al., 2019; Ehrhardt et al., 2017;
Kipf et al., 2018; Seo et al., 2019; Baradel et al., 2020). Among these, neural-network based learned
models of physics (Breen et al., 2019; Battaglia et al., 2016; Sanchez-Gonzalez et al., 2019) tend to
have good predictive accuracy but poor sample efficiency for learning. On the other hand, symbolic
models (Ullman et al., 2018; Smith et al., 2019; Sanborn et al., 2013; Bramley et al., 2018) are
sample efficient but fail to adapt or accommodate any deviation from their fixed physics engine.
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Figure 1: From left to right are rule-based to purely data-driven models of physics. Examples for
each column are (1) (Smith et al., 2019), (2) (Ullman et al., 2018), (3) BSP (Ours), (4) OGN &
HOGN (Sanchez-Gonzalez et al., 2019), (5) IN (Battaglia et al., 2016) and (6) (Breen et al., 2019).

Inspired by humans’ highly data-efficient ability of learning and reasoning about their environment,
we present Bayesian-symbolic physics (BSP), the first fully Bayesian approach to symbolic intu-
itive physics that, by combining symbolic learning of physical force laws and statistical learning
of unobserved properties of objects, enjoys the sample efficiency of symbolic methods with the ac-
curacy and generalization of data-driven learned approaches. In BSP, we pose the evolution of the
environment dynamics over time as a generative program of its objects interacting under Newtonian
mechanics using forces, as shown in figure 2. Being a fully Bayesian model, we treat objects and
their properties such as mass, charge, etc. as random variables. As force laws are simply functions of
these properties under the Newtonian assumption, in BSP we replace data-hungry neural networks
(NN) with symbolic regression (SR) to learn explicit force laws (in symbolic form) and then evolve
them deterministically using equations of motion. But a naive SR implementation is not enough:
a vanilla grammar that does not constrain the search space of the force-laws can potentially have
far worse sample efficiency and accuracy than a neural network. Therefore, we also introduce a
grammar of Newtonian physics that leverages dimensional analysis to induce a physical unit system
over the search space and then imposes physics-based constraints on the production rules, which
help prune away any physically meaningless laws, thus drastically speeding up SR.

Our main contributions are threefold:

• We introduce a fully differentiable, top-down, Bayesian model for physical dynamics and
an expectation-maximization (EM) based algorithm, which combines Markov chain Monte
Carlo (MCMC) and SR, for maximum likelihood fitting of the model.

• We introduce a grammar of Newtonian physics that appropriately constrains SR to allow
data-efficient physics learning.

• Through empirical evaluations, we demonstrate that the BSP approach reaches human-like
sample efficiency, often just requiring 1 to 5 observations to learn the exact force laws –
usually more than 10x fewer than that of the closest neural alternatives.

2 RELATED WORK

At a high level, the logic of physics engines can be decomposed into a dynamics module and a
model of how the entities interact with each other depending on their mutual properties. These
modules can be further divided into more components depending on how the module is realized.
Using this break-down, we can categorize different models of physics based on what components
of the model are learned. In figure 1, we compare some of the recent models of physics that are of
closely related to our work. Starting on the right end, we have fully learned, deep neural-network
approach used by Breen et al. (2019) that do not use any prior knowledge about physics and therefore
learn to predict dynamics completely in purely data-driven way. In the middle are hybrid models
that introduce some prior knowledge about physical interaction or dynamics in their deep network
based prection model. These include interaction networks (INs; Battaglia et al., 2016), ODE graph
networks (OGNs) and Hamiltonian ODE graph networks (HOGNs; Sanchez-Gonzalez et al., 2019).
Since these approaches employ deep networks to learn, they tend to have very good predictive
accuracy but extremely bad sample efficiency and therefore require orders of magnitude more data
to train than humans (Ullman et al., 2018; Battaglia et al., 2016; Sanchez-Gonzalez et al., 2019). On
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the other end of the spectrum (left) are the fully symbolic, rule-based physics models and engines
(Smith et al., 2019; Allen et al., 2019; Wu et al., 2015; Ullman et al., 2018). While these methods are
suitable for reasoning tasks, they lack the flexibility of the data-driven, learned models as they cannot
generalize or adapt to any changes in the environment that their fixed physics engine simulates. For
example, in such fixed models, inference can fail on physically implausible scenes and may require
additional tricks to resolve such issues (Smith et al., 2019).

Symbolic regression has been used for general physics learning in many prior works ranging from
Schmidt & Lipson (2009) that used SR to discover force laws from experimental data to the more
recent work of Cranmer et al. (2020) on distilling symbolic forces from INs using genetic algorithms.
Even more recently, Udrescu & Tegmark (2020) proposed an interesting framework AI Feynman,
which recursively simplifies the SR problem using dimensional analysis and symmetries discovered
by neural networks to discover the underlying physics equation that generated the data. The focus
of these prior work has been to discover the underlying physical equations that directly leads to
the observed data but unlike our approach, they do not target to allow for reasoning in physical
environments, that is common task of interest in intuitive physics studies.

3 BAYESIAN-SYMBOLIC PHYSICS

Our framework, Bayesian-symbolic physics, combines symbolic learning of physical force laws
with Bayesian statistical learning of object properties such as mass and charge. The environment is
modelled by a probabilistic generative model governed by Newtonian dynamics. Physical laws are
learnable symbolic expressions that determine the force exerted on each object, based on the position
and properties of other objects. These properties might not be observed, so they are treated as latent
variables and learned in a Bayesian fashion. The physical laws themselves have a prior distribution
to organize the search space and discourage the model from learning physically meaningless laws;
we call this distribution a grammar of Newtonian physics.

To learn with incomplete data, we are inspired by results from Ullman et al. (2018), humans are
able to simultaneously predict the trajectory and update their inference about the properties of the
object under new observation. This motivates an EM-based learning and inference method to fit
BSP models. In the E-step, we obtain the distribution of entity properties by sampling from their
posterior distribution using the current guess of force laws, and in the M-step, we use the samples
from the E-step to perform SR to update the force functions. This enables BSP models to learn and
reason in environment with incomplete information.

3.1 GENERATIVE MODEL OF THE ENVIRONMENT

We represent each entity i ∈ {1 . . . N} by a vector of properties zi, such as mass, charge, coefficient
of friction, and shape, some of which may be unobserved. At each time step t, a state vector
sit = (pit,v

i
t) is associated with each entity i, where pit ∈ Rd and vit ∈ Rd are position and velocity

vectors respectively and d is the dimensionality of the environment, typically 2 or 3. Let {τ i}Ni=1,
where τ i = pi1:T := (pi1, . . . ,p

i
T ), be the set of observed trajectories from an environment with

N entities. Together with a prior on z, the generative process of BSP defines a joint probability
distribution p(D, z;F ) over the observed trajectory data D and latent properties z given the force
function F .1 An example of the generative process of a three-body problem is shown in figure 2.

The state transition of an entity in a Newtonian system depends not only on its properties and current
state but also on its interaction with other entities in the environment. Therefore, we define a pairwise
interaction function F (zi, si, zj , sj), where i, j ∈ {1 . . . N}; we interpret F as the force applied to
i due to its interaction with j. Then, the trajectory τi of each entity is generated by a transition
function T that consumes the current state and all of its interactions as

sit+1 = T
(
sit, F (zi, sit, z

1, s1t ), . . . , F (zi, sit, z
N , sNt )

)
. (1)

As forces are additive, forces on entity i can be easily summed to get the total force applied as
f it =

∑N
j=1 F (zi, sit, z

j , sjt ). Similar to Sanchez-Gonzalez et al. (2019), we use numerical inte-
gration to simulate the Newtonian dynamics, updating s with the acceleration obtained from f it .

1As physical dynamics are typically sensitive to initial states, we assume the noise-free initial states are
given either as part of the data D or as a point-mass prior over the initial state, thus are omitted in the notation.
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Figure 2: The generation of an observed trajectory: a three-body example with unknown mass. Cir-
cles are the learnable force function, rectangles are fixed functions, rounded rectangles are random
variables and others are deterministic variables.

Constant → c1 | c2 | c3
Unitless → µ1 | µ2 | µ1 − µ2

| µ1 − µ2 | µ1 + µ2

Kg → mi | mj

| mi −mj | mj +mi

KgSq → mi ×mj | (Kg)2

MeterVec → pi − pj
| pi − c | pj − c

MeterSecVec → vi | vj | vi − vj
Meter → ‖MeterVec‖2

MeterSq → (Meter)2

MeterSec → ‖MeterSecVec‖2
MeterSecSq → (MeterSec)2

RefInvVec → MeterVec | MeterSecVec

UnitlessVec → normalize(RefInvVec) | MeterVec ÷Meter

| MeterSecVec ÷MeterSec

Meter → project(MeterVec,UnitlessVec)

MeterSec → project(MeterSecVec,UnitlessVec)

BaseCoeff → Unitless | Kg | KgSq | KgSq ÷Kg | Meter | MeterSq

| Meter −Meter | Meter + Meter | MeterSec | MeterSecSq

| MeterSecSq + MeterSecSq | MeterSecSq −MeterSecSq

Coeff → BaseCoeff | BaseCoeff × BaseCoeff

| BaseCoeff ÷ BaseCoeff

BaseForce → Constant × Coeff ×UnitlessVec

Bool → isOn(pi, si,pj , sj) | doesCollide(pi, si,pj , sj)

Force → BaseForce | BaseForce × Bool | Force + BaseForce

Figure 3: A grammar of expressions of Newtonian physical laws

Specifically, we choose the Euler integrator since its update rules correspond to the basic relations
between position, velocity and acceleration. With these specifications, equation 1 becomes

ait = f it/m
i, vit+1 = vit + at∆t, pit+1 = pit + vit+1∆t, (2)

where mi is the mass of the recipient of the force f it and ∆t is the step size of the Euler integrator.
Finally, we add Gaussian noise to each trajectory {τ i}Ni=1, that is, D := {τ̃ i}Ni=1 where τ̃ i :=
(p̃i1, . . . , p̃

i
T ), p̃it ∼ N (pit, σ

2) and σ is the noise level. For clarity, Appendix A provides the
complete generative process represented by a probabilistic program.

3.2 A GRAMMAR OF NEWTONIAN PHYSICS

In order attain sample efficiency, we chose to learn F (zi, si, zj , sj) using symbolic search, but this
approach can be inefficient if the search space of possible functions is too large, or inaccurate if the
search space is too small. Therefore, we constrain the function F to be a members of a context-free
language called the grammar of Newtonian physics, G, which we now describe.

We consider the following terminal nodes in G: learnable constants c1, c2, c3, masses mi,mj , fric-
tion coefficients µi, µj , shapes si, sj , positions pi,pj , velocities vi,vj and the contact point c for
a pair of entities.2 and the following arithmetic expressions: (·)2 (square), +, −, ×, ÷, ‖·‖2 (L2-
norm), normalise(·) and project(·, ·) (project a vector to an unit vector). However, naively support-
ing all possible arithmetic expressions for any combination of terminal nodes would make SR highly
inefficient and even lead to physically meaningless force laws. Therefore, in order to constrain ex-
pression search further, we introduce physics-inspired production rules, along with preterminals and
nonterminals nodes, as shown in Figure 3. We now discuss the design choice of our grammar.

Motivated by dimensional analysis in natural sciences, in which the relations between different units
of measurement are tracked (Brescia, 2012), we build the concept of units of measurement into the
nonterminals of G. That is, mass has the unit kilogram (Kg), unit meter (Meter ) for distance and
meter per second (MeterSec) for speed. With this unit system in place, we only allow addition

2In cases of no contact, c is set as the middle position of the two objects, i.e. c = (pi + pj) /2.
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Algorithm 1: Robust expectation–maximization for Bayesian-symbolic physics
initialize the force function F0 as constantly zero ;
for i = 1, . . . ,m do

simulate k + k′ chains from p(z | D;Fi−1) using HMC ; // E-step starts
compute ESS for each chain and remove k′ chains with the smallest ESS ;
select the last sample from each chain as {z1, . . . , zk} ;
get current loss function Li(e, c) =

∑k
i=1 L(e, c; zi,D) ; // M-step starts

get candidates C = {(t∗1, c∗1), . . . , (t∗r , c
∗
r)} by Algorithm 2 with Li for r repetitions ;

find (t∗, c∗) from C with the best loss and set Fi = getF(t∗, c∗,G) ; // Update force
end
return F = Fm and {z1, . . . , zk} ∼ p(z | D;Fm) ;

and subtraction of symbols with the same units, therefore pruning away physically meaningless
expressions, e.g. Kg −Meter . Importantly, this leads to forces laws that have the unit of Newton.

We also forbid the direct use of absolute positions pi, pj and c and only allow their differences.3
This ensures that all force laws are reference-invariant, that is, independent on the choice of the
reference frame. To be consistent with the unit system, we call vectors obtained from operations
on positions vectors, meter vector (MeterVec) and those on velocities as meter per second vec-
tor (MeterSecVec). These variables are all vectors thus we call them reference-invariant vectors
(RefInvVec). When such vectors are normalised, or divided by their corresponding “scalar vari-
ables”, they becomes unit-less vectors (UnitlessVec) that can be used to describe a direction.

The start symbol of the grammar is Force . We allow forces to be summed by right-branching or
be conditioned on a Boolean expression. In order to support conditional forces, which are forces
that only apply when a condition is true, such as collision force and friction. Since the goal of our
work is not perceptual learning, we provide perceptual primitives (collision detection as a function
doesCollide and isOn to check if a disc is on a mat) in the grammar. Collision is then handled by
applying an extra force to the entity when doesCollide is true; the force must still be learned.

Finally, some care is needed to ensure the grammar is unambiguous. For example, if we used a rule
like Coeff → Coeff × Coeff , then the grammar could generate many expressions that redundantly
represent the same function. This would make search much more expansive. Instead, we represent
this rule in a right-branching way by the introduction of BaseCoeff and BaseForce as nonterminals.
Although the grammar puts basic constraints on plausible physical laws, it is still expressive. For
example, there are more than 6 million possible trees of depth 6.

3.3 LEARNING ALGORITHM

Following the EM approach, our learning method (Algorithm 1) alternates between an E-step, where
object properties are estimated given the current forces (Section 3.3.2), and an M-step step, where
forces are learned given object properties (Section 3.3.1). See Appendix B.1 for hyperparameters.

3.3.1 SYMBOLIC REGRESSION WITH LEARNABLE CONSTANTS

Symbolic regression is function approximation that searches over the space of mathematical ex-
pressions that are specified by a user-provided context-free grammar (CFG; Koza, 1994). A CFG
consists a start symbol, sets of nonterminal, preterminal and terminal symbols and a set of production
rules. If each production rule in the grammar is specified with a probability (with the probabilities
for all rules summed to 1), such a grammar is called probabilistic context-free grammars (PCFGs),
which effectively defines a distribution over possible expression trees. As such, one can sample
from a PCFG and/or evaluate the probability of a given tree. In our work, we use the cross-entropy
method for SR. The method starts with PCFG of a given grammar that has equal probabilities of all
production rules. At each iteration, it samples n number of trees (up-to a specified depth d) from the
current PCFG and evaluates their fitness by a loss function L. After this, trees with the top-k fitness
are seleted and used to fit a PCFG, which will be used in the next iteration, via maximal likelihood.

3This is in fact consistent with how such variables are pre-processed in the neural network approaches.
Usually the mean of a pair of positions are subtracted from the pair to make them reference-invariant.
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Algorithm 2: Cross-entropy method with learnable constants
initialize a PCFG P0 for G uniformaly ;
for i = 1, . . . ,m do

initialize an empty candidate set C ;
for j = 1, . . . , n do

sample an expression ej ∼ Pi−1, ei−1 with a maximum depth of d ;
solve c∗j = arg minc L(ej , c) by L-BFGS ; // Lower-level optimization
compute the loss of the sampled tree `j = L(ej , c

∗
j ) and add (ej , `j) to C ;

end
if i < m then

fit a PCFG Pi on trees from C with the top-k fitness via maximum-likelihood ;
end
return the best expression tree e∗ from C and the corresponding constant as c∗ ;

To learn the force laws, we need to find an expression e ∈ G and a setting for the learnable constants
c = [c1, c2, c3] that define the force function Fe,c. The loss used by the cross-entropy method in-
volves computing the log-likelihood of the generative model. As the observed trajectory is generated
sequentially given an initial state, the computation of the log-likelihood term cannot be parallelized
and can be computationally expensive in practice. Following the loss form of (Battaglia et al., 2016;
Sanchez-Gonzalez et al., 2019), we use a teacher-forced or vectorized version of the log-likelihood

LL(e, c; z,D) =

N∑
i=1

T−1∑
t=1

logN (p̃it+1;T
(
s̃it, Fe,c(z

i, s̃it, z
1, s̃1t ), . . . , Fe,c(z

i, s̃it, z
N , s̃Nt )

)
, σ) (3)

where T follows equation 2 and s̃it := (p̃it, ṽ
i
t). As such, we assume velocity is also available in

the dataset D. Clearly, equation 3 differs from the sequential version, as the input for the integrator
contains noise at each step. However, similar to previous works, we found it is not an issue when
learning forces by regression and allows a speed-up of 10x in terms of computing the log-likelihood.

In order to favor simpler trees, we add a regularization term, a weighted log-probability under a
uniform PCFG prior of G, to the negative log-likelihood; our final loss per trajectory

L(e, c; z,D) = −LL(e, c; z,D) + λ logP0(e). (4)

Here P0 is the uniform PCFG of G and λ is a hyper-parameter that controls the regularization.
The loss for multiple trajectories is just a summation of L over individual trajectories. Optimizing
equation 4 can be seen as maximum a posterior (MAP) estimation.

When using the cross-entropy method for symbolic regression, the continuous constants c =
[c1, c2, c3] require care as they can take any value. To handle this, we use bilevel optimization,
where the upper-level is the original symbolic regression problem and the inner-level is an extra
optimization for constants. Specifically, we use an L-BFGS step to optimize the constants before
computing the loss of each candidate tree within the cross-entropy iterations. For cases where the
constants are very small, e.g. the gravitational constant G = 6.67× 10−11, we parameterize the
constants as c×10−9 to avoid numerical issues in the inner-level optimization. Traditionally, if such
strategy is not used, constants are either randomly generated from a predefined, fixed integer set or a
continuous interval, or for evolutionary algorithms, they can be mutated and combined during evo-
lution to produce constants that fit better; such constants are often referred as ephemeral constants
(Davidson et al., 2001). Compared to these methods, the benefit of our formulation is that the evalu-
ation of each tree candidate depends on the symbolic form only as the constants are optimized-away,
making the search more efficiently. Note that although the literature has not explicitly considered
our way of constant learning as bilevel optimization, such strategy is not new and is similar in spirit
to (Cerny et al., 2008; Kommenda et al., 2013; Quade et al., 2016). In contrast to recent use of bilevel
optimization in meta-learning, e.g. (Finn et al., 2017), our method is simpler: As our upper-level
optimization is gradient-free, we do not need to pass gradient from the lower-level to the upper-level.

In practice, as the cross-entropy method itself is sensitive to random initializations, in order to ro-
bustify the M-step, we repeat it for r runs and pick the best optimizer. We provide a complete
description of cross-entropy method with learnable constants in Algorithm 2.
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(a) NBODY (b) BOUNCE (c) MAT

Figure 4: Example scenes for the datasets used for evaluation. Entities in gray are static.
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(c) MAT

Figure 5: Predictive error (RMSE) per frame on the held-out set with a varying number of scenes
for training. The line plots are mean values out of five experiments with different shuffling of the
training set and the error bars are minimum and maximum values.

3.3.2 REASONING ABOUT UNKNOWN PROPERTIES

With a force function F given, reasoning of unknown properties is reduced to posterior inference on
z in the generative model specified in Section 3.1. Since for a fixed F , the model in our framework
is end-to-end, piecewise differentiable with respect to properties, we perform inference by sampling
using Hamiltonian Monte Carlo (HMC; Duane et al., 1987; Neal et al., 2011). Other particle-based
alternatives like importance sampling and sequential Monte Carlo are possible but are less efficient.

In order to draw k samples from the posterior robustly in the E-step, we first run k+ k′ independent
HMC chains by the no-U-turn sampler (NUTS; Hoffman & Gelman, 2011) for a reasonably large
number of iterations, where k′ is also a hyper-parameter to choose. After this, we remove k′ chains
with the smallest effective sample size (ESS). This reduces the chance of using samples from chains
that mixed poorly or got stuck in bad region due to random initialization. Finally, we pick the last
sample from each chain as the samples returned by the E-step {z1, . . . , zk}.

4 EXPERIMENTS

In this section, we present a battery of empirical evaluations of the symbolic M-step and demonstrate
how our complete EM algorithm is capable of joint reasoning and learning.

Datasets. We consider three simulated datasets for our evaluation. These three datasets, if combined
together, correspond to the dataset used in Ullman et al. (2018) for assessing physics learning and
reasoning in humans. The first dataset, NBODY (n-body simulation with 4 bodies), is populated
by placing a heavy body with large mass and no velocity at [0, 0] and three other bodies at random
positions with random velocities such that, they would orbit the heavy body in the middle in the
absence of the other two bodies. The gravitational constant is set such that the system is stable within
the duration of the simulation. The ground truth force to learn is the gravitational force between the
bodies. The second dataset, BOUNCE, is generated by simulating elastic collision between a set of
discs and the box that they are contained within. The gravitational constant is set small such that the
gravitational force is ignorable and the ground truth force to learn is the collision resolution force.
The last dataset, MAT, simulates the friction-based interaction of discs and a mat. We populate
this data by rolling discs with different initial states over mats with random sizes and positions and
applying friction when they come in contact. The ground truth force to learn is this friction. Each
dataset consists of 100 scenes, 20 of which are held-out for testing. All scenes are simulated using
a physics engine with a discretization of 0.02, for 50 frames; see figure 4 for an example of each
dataset and Appendix B.2 for the ground truth force expressions under our grammar.
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(a) Condition 1 (true) (b) Condition 1 (learned) (c) Condition 2 (true) (d) Condition 2 (learned)

Figure 6: Generalization of the approximate bounce law in a vertical world with downward gravity.

Baselines Being most closely related to our work, we use a specific instantiation of the OGN
model (Sanchez-Gonzalez et al., 2019) as the neural baseline. The original OGN model does not
assume any particular Hamiltonian dynamics and thus outputs the partial derivatives of both position
and momentum variables to integrate the dynamics. In our specific realization, we only make it to
output the partial derivative of the velocity variable since under the Newtonian dynamics, the partial
derivative of the position variable is analytically known as the velocity. Since OGN (and other neural
methods, such as IN) is designed to learn with all properties given, we assume all the properties are
fully observed and compare our symbolic force model against OGN. See Appendix B.3 for details
of the neural architecture, training and parameterization setup for OGN.

4.1 DATA-EFFICIENCY: SYMBOLIC VS NEURAL

We now compare the symbolic M-step of BSP against the OGN-based neural baselines in terms of
data-efficiency. Specifically, we check how accurate the per-frame predictions of these models are on
held-out data, and how their accuracies change with the amount of training data. We use a noise-free
version of the trajectory in this evaluation and provide all the properties as observed data since the
neural baselines cannot be trained if the properties are not fully observed. For each dataset, holding
out 20 scenes for evaluation, we randomly shuffle the remaining 80 scenes for training and use the
first k scenes to fit the model. Because an average human can perform such learning tasks with about
5 scenes (Ullman et al., 2018), we only vary k from 1 to 10 in our experiments. We use the root mean
squared error (RMSE) per frame as the performance metric, repeat each of the experiments five times
with different training set and finally report the mean, maximum and minimum performance for all
the methods, as shown in figure 5. As reference, we include the performance of F = 0, a zero-force
baseline, corresponding to the constant velocity baseline in (Battaglia et al., 2016). We also include
the performance of the ground truth force F ∗, which has an RMSE per frame of 0. As it can be
seen, the symbolic M-step is more sample-efficient than the neural baseline for all datasets within
this limited data regime. For NBODY and MAT, BSP can find the ground truth force function with
1 scene and 4 scenes respectively. For BOUNCE, the neural baseline cannot reach the performance
of F = 0 even after 10 scenes for training. This is a known issue with neural network approaches
when learning collision as the inherently sparse nature of the collision interaction does not provide
enough training signal (Battaglia et al., 2016). As BOUNCE is the only case where our method
fails to find the true law within 10 scenes, we include the typical inferred law in Appendix C as well
the predicated trajectories of some selected scenes for inspection.

4.2 GENERALIZATION

It is worth checking how the laws learned in Section 4.1 generalize to new scenes beyond the train-
ing data. In cases where the true law is successfully recovered, the expression will generalize to
novel scenes undoubtedly. Therefore, it is more interesting to inspect the generalization ability of an
approximate law, that is a law which is not completely equivalent to the true law but is close. The
emerged law for the BOUNCE dataset is such an example as mentioned earlier. It has an expression
of F † = c ‖vi − vj‖2 pi−c

‖pi−c‖2 doesCollide(pi, si,pj , sj); see figure 10 in Appendix C for the
actual tree. Although it is not identical to the true law, it is still a good approximation: it takes into
accounts the velocity difference into consideration and finds the correct force direction. We now
consider applying this law to a completely new scene: a vertical-view world where the gravity is
pointing in downward direction. figure 6 shows the predicted trajectory with true and the approxi-
mate law with two different initial conditions. As it can be seen, the approximate law successfully
generalize this novel world. For the first condition, the projection is very close to the true one, while
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Figure 7: Results of the EM algorithm on NBODY. figure 7a to figure 7c shows the posterior of
mass for Entity 1 in Scene 1 with the corresponding force function during EM. In figure 7b, the
force function F † = 239.99

mimj

‖pi−pj‖2
pi−pj

‖pi−pj‖2 . The constant in figure 7d is c = 2.04× 103.
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Figure 8: Results of the EM algorithm on MAT. figure 8a to figure 8c shows the posterior of friction
coefficient in Scene 2 with the corresponding force function during EM. In figure 8b, the force
function F † = −22.99 µj

vi

‖vi‖2 isOn(pi, si,pj , sj). The constant in figure 8d is c = −8.605.

for the second condition, the concept of bounce is also correctly transferred. The corresponding
animations for these plots can also be found in the supplementary material for further inspections.

4.3 LEARNING WITH UNOBSERVED PROPERTIES

Now, we demonstrate how the joint learning and reasoning in the BSP method (Algorithm 1) can
recover the true force law when some properties are unobserved. As the first experiment, we use
three scenes from the (noisy) NBODY dataset (with four entities per scene), such that if the true
masses are given, the M-step can successfully learn the true force law. Next, we assume that the
masses of the three light entities are unknown with a uniform prior U(0.02, 9) and the mass of the
heavy entity is known. We use Algorithm 1 to fit the same generative model that simulates the data
using BSP. figure 7 shows the posterior distribution over mass and the force function at initializa-
tion (figure 7a), middle (figure 7b) and convergence (figure 7c). In this run, after 3 iterations, our
algorithm successfully recovers the true force function. We repeat this experiment ten times with
randomly sampled scenes and for eight of them, BSP successfully recovers the true force law. Note
that because the intermediate learned force law F † is incorrect, the variance of the posterior (in
figure 7b) is larger than the one from the true force law (in figure 7c). Compared the expression at
convergence in figure 8d with the true law, the algorithm replaces pi − pj with pi − c and a scaled
constant. This is valid as the contact point is defined as c = (pi + pj) /2 when there is no contact.

For the second experiment, we use five scenes from the (noisy) MAT dataset. We assume
that the only unknown is the friction coefficient of the mat with a truncated Gaussian prior
T runcated(N (µ0, 2

2), 0, 5) (truncated between 0 and 5), where µ0 is the true coefficient, Note that
the variance 22 is large enough to be uncertain, justifying a fair choice of the prior. Similarly, we
use Algorithm 1 to fit the same generative model that simulates the data using BSP. figure 8 shows
the posterior distribution over mass and the force function at initialization (8a), middle (8b) and
convergence (8c) of the algorithm. Compared the expression at convergence with the true law, the
algorithm learns vi − vj instead of vi as the mat velocity is zero, i.e. vj = 0, in all scenes,

5 DISCUSSION AND CONCLUSION

We present BSP, the first fully Bayesian approach to symbolic intuitive physics by combining sym-
bolic learning of physical force laws and statistical learning of unobserved properties. Our work
paves the way for using learnable, data-efficient IPEs in intuitive physics by providing a computa-
tional framework to study how humans’ iterative reasoning-learning is mentally performed.
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Muldal, Tom Erez, Yuval Tassa, Nando de Freitas, and Misha Denil. Learning awareness models.
arXiv preprint arXiv:1804.06318, 2018.

Fabien Baradel, Natalia Neverova, Julien Mille, Greg Mori, and Christian Wolf. Cophy: Counter-
factual learning of physical dynamics. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=SkeyppEFvS.

Christopher Bates, Peter W Battaglia, Ilker Yildirim, and Joshua B Tenenbaum. Humans predict
liquid dynamics using probabilistic simulation. In CogSci, 2015.

Peter W Battaglia, Jessica B Hamrick, and Joshua B Tenenbaum. Simulation as an engine of physical
scene understanding. Proceedings of the National Academy of Sciences, 110(45):18327–18332,
2013.

Peter W. Battaglia, Razvan Pascanu, Matthew Lai, Danilo Rezende, and Koray Kavukcuoglu. In-
teraction networks for learning about objects, relations and physics. arXiv:1612.00222 [cs], De-
cember 2016.

Neil R Bramley, Tobias Gerstenberg, Joshua B Tenenbaum, and Todd M Gureckis. Intuitive experi-
mentation in the physical world. Cognitive psychology, 105:9–38, 2018.

Philip G. Breen, Christopher N. Foley, Tjarda Boekholt, and Simon Portegies Zwart. Newton vs the
machine: solving the chaotic three-body problem using deep neural networks. arXiv:1910.07291
[astro-ph, physics:physics], October 2019.

Frank Brescia. Fundamentals of Chemistry: A Modern Introduction (1966). Elsevier, 2012.

Brian M. Cerny, Peter C. Nelson, and Chi Zhou. Using differential evolution for symbolic regression
and numerical constant creation. In Proceedings of the 10th annual conference on Genetic and
evolutionary computation, GECCO ’08, pp. 1195–1202, Atlanta, GA, USA, July 2008. Associa-
tion for Computing Machinery. ISBN 978-1-60558-130-9. doi: 10.1145/1389095.1389331.

Michael B Chang, Tomer Ullman, Antonio Torralba, and Joshua B Tenenbaum. A compositional
object-based approach to learning physical dynamics. arXiv preprint arXiv:1612.00341, 2016.

Miles Cranmer, Alvaro Sanchez-Gonzalez, Peter Battaglia, Rui Xu, Kyle Cranmer, David Spergel,
and Shirley Ho. Discovering symbolic models from deep learning with inductive biases.
arXiv:2006.11287 [astro-ph, physics:physics, stat], June 2020.

J. W. Davidson, D. A. Savic, and G. A. Walters. Symbolic and numerical regression: Experiments
and applications. In Robert John and Ralph Birkenhead (eds.), Developments in Soft Computing,
Advances in Soft Computing, pp. 175–182, Heidelberg, 2001. Physica-Verlag HD. ISBN 978-3-
7908-1829-1. doi: 10.1007/978-3-7908-1829-1 21.

Simon Duane, Anthony D Kennedy, Brian J Pendleton, and Duncan Roweth. Hybrid Monte Carlo.
Physics letters B, 195(2):216–222, 1987.

Sebastien Ehrhardt, Aron Monszpart, Niloy J Mitra, and Andrea Vedaldi. Learning a physical long-
term predictor. arXiv preprint arXiv:1703.00247, 2017.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. arXiv:1703.03400 [cs], July 2017.

Katerina Fragkiadaki, Pulkit Agrawal, Sergey Levine, and Jitendra Malik. Learning visual predictive
models of physics for playing billiards. arXiv preprint arXiv:1511.07404, 2015.

Tobias Gerstenberg, Noah D Goodman, David A Lagnado, and Joshua B Tenenbaum. How, whether,
why: Causal judgments as counterfactual contrasts. In CogSci, 2015.

10

https://openreview.net/forum?id=SkeyppEFvS


Under review as a conference paper at ICLR 2021

NeuroAnimator Grzeszczuk and Terzopoulos D Hinton G Neuro Animator. Fast neural network
emulation and control of physics-based models. Proc. ACM SIGGRAPH ‘98 (New York, 1998).–
ACM Press, pp. 9–20, 1998.

Matthew D. Hoffman and Andrew Gelman. The no-u-turn sampler: Adaptively setting path lengths
in hamiltonian monte carlo. arXiv:1111.4246 [cs, stat], November 2011.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural relational
inference for interacting systems. arXiv preprint arXiv:1802.04687, 2018.

Michael Kommenda, Gabriel Kronberger, Stephan Winkler, Michael Affenzeller, and Stefan Wag-
ner. Effects of constant optimization by nonlinear least squares minimization in symbolic regres-
sion. In Proceedings of the 15th annual conference companion on Genetic and evolutionary com-
putation, GECCO ’13 Companion, pp. 1121–1128, Amsterdam, The Netherlands, July 2013. As-
sociation for Computing Machinery. ISBN 978-1-4503-1964-5. doi: 10.1145/2464576.2482691.

John R. Koza. Genetic programming as a means for programming computers by natural selection.
Statistics and Computing, 4(2):87–112, June 1994. ISSN 1573-1375. doi: 10.1007/BF00175355.

Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman. Building
machines that learn and think like people. Behavioral and brain sciences, 40, 2017.

Radford M Neal et al. MCMC using Hamiltonian dynamics. Handbook of Markov chain Monte
Carlo, 2(11):2, 2011.

Markus Quade, Markus Abel, Kamran Shafi, Robert K. Niven, and Bernd R. Noack. Prediction of
dynamical systems by symbolic regression. Physical Review E, 94(1):012214, July 2016. ISSN
2470-0045, 2470-0053. doi: 10.1103/PhysRevE.94.012214.

Adam N Sanborn, Vikash K Mansinghka, and Thomas L Griffiths. Reconciling intuitive physics
and newtonian mechanics for colliding objects. Psychological review, 120(2):411, 2013.

Alvaro Sanchez-Gonzalez, Victor Bapst, Kyle Cranmer, and Peter Battaglia. Hamiltonian graph
networks with ode integrators. arXiv:1909.12790 [physics], September 2019.

Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental data. Science,
324(5923):81–85, April 2009. ISSN 0036-8075, 1095-9203. doi: 10.1126/science.1165893.

Sungyong Seo, Chuizheng Meng, and Yan Liu. Physics-aware difference graph networks for
sparsely-observed dynamics. In International Conference on Learning Representations, 2019.

Kevin Smith, Lingjie Mei, Shunyu Yao, Jiajun Wu, Elizabeth Spelke, Josh Tenenbaum, and Tomer
Ullman. Modeling expectation violation in intuitive physics with coarse probabilistic object rep-
resentations. In Advances in Neural Information Processing Systems, pp. 8983–8993, 2019.

Elizabeth S Spelke. Core knowledge. American psychologist, 55(11):1233, 2000.

Elizabeth S Spelke and Katherine D Kinzler. Core knowledge. Developmental science, 10(1):89–96,
2007.

Silviu-Marian Udrescu and Max Tegmark. Ai feynman: A physics-inspired method for symbolic
regression. Science Advances, 6(16):eaay2631, April 2020. ISSN 2375-2548. doi: 10.1126/
sciadv.aay2631.

Tomer D. Ullman, Andreas Stuhlmüller, Noah D. Goodman, and Joshua B. Tenenbaum. Learning
physical parameters from dynamic scenes. Cognitive Psychology, 104:57–82, August 2018. ISSN
0010-0285. doi: 10.1016/j.cogpsych.2017.05.006.

Nicholas Watters, Daniel Zoran, Theophane Weber, Peter Battaglia, Razvan Pascanu, and Andrea
Tacchetti. Visual interaction networks: Learning a physics simulator from video. In Advances in
neural information processing systems, pp. 4539–4547, 2017.

11



Under review as a conference paper at ICLR 2021

Frank Wood, Jan Willem Meent, and Vikash Mansinghka. A new approach to probabilistic pro-
gramming inference. In Artificial Intelligence and Statistics, pp. 1024–1032, 2014.

Jiajun Wu, Ilker Yildirim, Joseph J Lim, Bill Freeman, and Josh Tenenbaum. Galileo: Perceiving
physical object properties by integrating a physics engine with deep learning. In Advances in
neural information processing systems, pp. 127–135, 2015.

12



Under review as a conference paper at ICLR 2021

Algorithm 3: Complete generative process given force laws
// Sample latent variables
for i = 1, . . . , N do

ASSUME zi from prior for entity i ;
if initial state is not given then

ASSUME pi0 from prior for entity i ;
ASSUME vi0 from prior for entity i ;

set si0 = (pi0,v
i
0) ;

end
for t = 1, . . . , T do

for i = 1, . . . , N do
// Compute force and acceleration
for j = 1, . . . , N do

compute f i,jt = F (zi, sit−1, z
j , sit−1) ;

end
compute f it =

∑N
j=1 f

i,j
t ;

compute ait = f it/m
i ;

// Euler’s integration
update vit = vit−1 + at∆t ;
update pit = pit−1 + vit∆t ;
set sit = (pit,v

i
t) ;

// Sample observations
OBSERVE p̃it from N (pit, σ

2) ;
end

end

A COMPLETE GENERATIVE PROCESS

Section 3 describes the top-down generative model piece by piece, to improve the clarity of the EM
framework, we provide the complete generative process of the observation given force function F ,
which corresponds to the E-step in our method, as a probabilistic program in Algorithm 3. In this
probabilistic program, we use the keyword ASSUME and OBSERVE for sampling latent variables and
observations separately, following the notations from Wood et al. (2014).

B EXPERIMENTAL DETAILS

B.1 HYPER-PARAMETERS FOR ALGORITHM 1

For the E-step, we use k = 3 and k′ = 2 and the hyper-parameters for NUTS are: 150 adaptation
steps, 150 HMC iterations, a maximum tree depth of 4 and a target acceptance ratio of 0.75. For
the M-step, we repeat r = 2 runs and the hyper-parameters for the cross-entropy method are: 1, 000
total populations, 500 selected populations, 4 iterations and a maximum depth of 8. The weighting
parameter for the PCFG prior are 1 for the NBODY and BOUNCE datasets and 1× 10−4 for the
MAT dataset.

B.2 GROUND TRUTH FORCES

The symbolic tress of ground truth forces that are used to generated the datasets used in Section 4
are given in figure 9.

B.3 TRAINING SETUP OF OGNS

For the OGN baseline, we use a multilayer perceptron (MLP) of din → 50→ 50 where the activation
function is the rectified linear unit (ReLU) for the node model and use a MLP of (50 + 50) →
50 → 50 → 50 → dout as the edge model. For training, we use the ADAM optimizer (Kingma
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& Ba, 2014) with a learning rate of 5× 10−3 for a total number of 10,000 passes of scenes for
the NBODY and MAT datasets and a total number of 20,000 passes of scenes for the BOUNCE
dataset. For example, if 5 scenes are used, the total number of pass of the dataset would be 10000/5,
for the NBODY dataset. This makes sure that the training time for all experiments are fixed.

In addition, we found that we need provide additional prior knowledge on how forces are related to
the mass and acceleration by parameterzing them as Fe(·) = maθ(·), where θ is NN parameters,
otherwise they fail to learn. This parameterization is fact consistent with (Sanchez-Gonzalez et al.,
2019) in which NNs output partial derivatives of the Hamiltonian system.

C THE LEARNED BOUNCE LAW

As mentioned in Section 4.1 and discussed in Section 4.2, the only case in which BSP fails to infer
the true law (within 10 scenes) is of special interest for further inspection. A typical approximate
law learned in Section 4.1 is shown in figure 10; see Section 4.2 for discussion on how this law
differs from the true one. To highlight, there are basically two mismatches between the true law and
the learned law. First, there is no projection operation that correctly calculates the effect of speed.
Second, the mass-based coefficient is missing. To assist inspection, we also provide some visual-
izations in figure 11 using initial conditions from the training set for inspection. The corresponding
animations can be found in the supplementary material.
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Figure 9: Expression trees (under G) of true force laws that generates the datasets used in Section 4.
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Figure 10: Approximate bounce law learned by BSP under our grammar; c = 130.22

(a) Scene 1 (true) (b) Scene 1 (learned) (c) Scene 2 (true) (d) Scene 2 (learned)

(e) Scene 3 (true) (f) Scene 3 (learned) (g) Scene 4 (true) (h) Scene 4 (learned)

Figure 11: Predicated trajectories of the true bounce law and the learned bounce law.
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