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ABSTRACT

Human languages enable robust generalization, letting us leverage our prior ex-
perience to communicate about novel meanings. This is partly due to language
being compositional, where the meaning of a whole expression is a function of
its parts. Natural languages also exhibit extensive variation, encoding meaning
predictably enough to enable generalization without limiting speakers to one and
only one way of expressing something. Previous work looking at the languages that
emerge between neural networks in a communicative task has shown languages
that enable robust communication and generalization reliably emerge. Despite this
those languages score poorly on existing measures of compositionality leading to
claims that a language’s degree of compositionality has little bearing on how well
it can generalise. We argue that the languages that emerge between networks are in
fact straightforwardly compositional, but with a degree of natural language-like
variation that can obscure their compositionality from existing measures. We intro-
duce 4 measures of linguistic variation and show that early in training measures
of variation correlate with generalization performance, but that this effect goes
away over time as the languages that emerge become regular enough to generalize
robustly. Like natural languages, emergent languages appear able to support a high
degree of variation while retaining the generalizability we expect from composi-
tionality. In an effort to decrease the variability of emergent languages we show
how reducing a model’s capacity results in greater regularity, in line with claims
about factors shaping the emergence of regularity in human language.'

1 INTRODUCTION

Compositionality is a defining feature of natural language; the meaning of a phrase is composed from
the meaning of its parts and the way they’re combined (Cann, 1993). This underpins the powerful
generalization abilities of the average speaker allowing us to readily interpret novel sentences and
express novel concepts.

Robust generalization like this is a core goal of machine-learning: central to how we evaluate our
models is seeing how well they generalize to examples that were withheld during training (Bishop,
2006). Deep neural networks show remarkable aptitude for generalization in-distribution (Dong &
Lapata, 2016; Vaswani et al., 2017), but a growing body of work questions whether or not these
networks are generalizing compositionally (Kim & Linzen, 2020; Lake & Baroni, 2018), highlighting
contexts where models consistently fail to generalize (e.g. in cases of distributional shift; Keysers
et al., 2020).

Recent work has looked at whether compositional representations emerge between neural networks
placed in conditions analogous to those that gave rise to human language (e.g. Kottur et al., 2017;
Choi et al., 2018). In these simulations, multiple separate networks need to learn to communicate
with one another about concepts, environmental information, instructions, or goals via discrete signals
- like sequences of letters - but are given no prior information about how to do so. A common setup is

'Code and Data can be found at: github.com/hcoxec/variable_compositionality
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Figure 1: A depiction of the probability tensor built with equation 1 where » = Object. Green
indicates high probability and red low. (Left:) A perfectly regular language, Elsa is always encoded
by ‘AA’ in the final two positions, Kirsty by ‘BB’ etc. (Right:) The same cube is shown (object labels
removed) for a language with basic synonymy (Elsa can be encoded by ‘A’ or ‘B’) and homonymy
(Jenny and Simon are both encoded by ‘E’). We quantify the degree of synonymy by taking the
entropy of each column (equation 2) and the degree of homonymy by taking the entropy of each row
(equation 3)

a ‘reconstruction game’ modelled after a Lewisian signalling game (Lewis, 1970), where a sender
network describes a meaning using a signal, and a receiver network needs to reconstruct that meaning
given the signal alone. The resulting set of mappings from meanings to signals can be thought of as a
language.

Previous work has shown that in this setup models reliably develop a language that succeeds not only
in describing the examples seen during training but also successfully generalizes to a held-out test
set, allowing accurate communication about novel meanings. Despite this capacity to generalize,
which is a product of compositionality in natural languages, existing analyses of those emergent
languages provide little evidence of reliable compositional structure (see Lazaridou & Baroni, 2020,
for a review), leading some to suggest that compositionality is not required in order to generalise
robustly (Andreas, 2019; Chaabouni et al., 2020; Kharitonov & Baroni, 2020).

If not compositional, then what? This interpretation leaves us with a major puzzle: if the languages
that emerge in these models are non-compositional, how do they allow successful communication
about thousands of unseen examples (e.g. Lazaridou et al., 2018; Havrylov & Titov, 2017)? If the
meaning of a form is arbitrary rather than being in some way composed from its parts there should be
no reliable way to use such a mapping to generalize to novel examples (Brighton, 2002). Here we
provide an answer to this question showing that emergent languages are characterised by variation,
which masks their compositionality from many of the measures used in the existing literature. Existing
measures take regularity as the defining feature of a compositional system, assuming that in order to
be compositional separate semantic roles need to be represented separately in the signal (Chaabouni
et al., 2020), or that symbols in the signal must have the same meaning regardless of the context they
occur in (Kottur et al., 2017; Resnick et al., 2020). Alternately they expect that each part of meaning
will be encoded in only one way, or that the resulting languages will have a strict canonical word
order (Brighton & Kirby (2006) used in Lazaridou et al. (2018)). However, natural languages exhibit
rich patterns of variation (Weinreich et al., 1968; Goldberg, 2006), frequently violating these four
properties: forms often encode multiple elements of meaning (e.g. fusional inflection of person and
number or gender and case), language is rife with homonymy (where the meaning of a form depends
on context) and synonymy (where there are many ways of encoding a meaning in form), and many
natural languages exhibit relatively free word order.
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Figure 2: Plots showing the max from the distribution over characters for each atom in each position,
with a plot for each separate role (object, subject, verb). x axis: positions, y axis: id for each
atom; € A,. Shown to the left are these plots for the synthetic ideally regular compositional
language (with SVO order), and the maximally variable random mapping. The large plot shows data
from the run of the small model with the highest variation This run’s variation scores: freedom =
0.57, entanglement = 0.61, homonymy = 0.61, synonymy = 0.51, topsim = 0.28, posdis =
0.26

This offers us a different explanation of previous results: compositional systems may emerge, just
with variation. If so that doesn’t necessarily undermine a their compositionality, natural languages
show us that systems can have considerable variation while retaining the generalizability that makes
compositionality so desirable. We focus on explicitly assessing variation independent of composition-
ality and illustrate how emergent languages can generalize robustly even with substantial variation.
Our core contributions are as follows:

* We introduce 4 measures of natural language-like variation

* We show that the languages which emerge tend to exhibit a high degree of variation which
explains why previous metrics would classify them as non-compositional.

* We find that a language’s degree of regularity correlates strongly with generalization early
in training, but as the emergent language becomes regular enough to generalize reliably this
correlation goes away.

* We reduce the capacity of our models by reducing the size of the hidden layers, and show
that lower capacity models develop more regular languages, as predicted by accounts linking
cognitive capacity and regularity in natural language

2  VARIATION, REGULARITY, & COMPOSITIONALITY

Variation and compositionality in language are related but distinct. We look at them separately, taking
a language’s generalization performance as an indication of whether or not it is compositional (in
line with Brighton, 2002; Kottur et al., 2017). Linguistic regularity - the absence of variation - has
been studied in broad array of contexts (see Ferdinand et al., 2019, for discussion). At a high-level it
describes how predictable a mapping from meaning to form is; if there’s only one way of encoding a
meaning that mapping is highly-regular (Smith & Wonnacott, 2010). Conversely if there’s a variety of
different ways of encoding a meaning that mapping likely has high variation (low regularity). In our
context - mapping meanings to discrete signals - regularity is maximized by a language of one-to-one
mappings. For example where each position in the signal encodes one part of the meaning — position
1 — Subject — and each character in that position refers to only one possible subject — A in position 1
— Subject: Ollie — and is the only character ever used to refer to that subject. A maximally regular
language encodes the same (part of) meaning with the same (part of) form every time, rather than
affording a speaker a variety of ways to encode a meaning.
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Model i.i.d. ace 0.0.d. acc synonymy 1 freedom ho) y variation topsim posdis
ideal 0.00 0.00 0.00 0.12 0.03 0.62 1.00
random 0.99 1.00 0.99 0.99 0.99 0.00 0.00

small 97.54 1040 72.86 :707r 0.46 002 0.54 :00s 0.49 so00s 0.53 :0.03 0.50 003 0.21 001 0.24 o0.03
A best 0.0.d. —0.20  +003  —0.42 004  —0.19 1003 —0.18 so03 =025 w003 012 soo1 022 o003
medium 97.73 iose 82.13 ise2 0.52  :o.05 0.60  -o.07 0.54  :o.05 0.58 +o.05 0.56 :0.05 0.19 zo.02 0.19 :o.05
A best 0.0.d. —0.13 005  —0.35 =zo07 —0.12 1005 —0.13 1005 —0.20 =zo0.0s 0.10 =zo002 0.17 +0.04
large 97.53 ios2 81.33 303 0.63 002 0.80 :00a 0.66 w002 0.69 :0.02 0.69 002 0.14 001 0.08 :o0.02
A best o.0.d. —0.01  +o0s —0.13 2005 —0.01 +003 —0.03 +o02 —0.08 =002 0.03 =002 0.05 =002

Table 1: Mean accuracy and variation with 95% confidence interval across 20 runs, taken from the
epoch with the best 0.0.d. generalization performance, along with the change in measures Abest
between the least regular language that occurs between epochs 1 and 10 and the best generalizing
one. Also included are the variation measures applied to a perfectly regular and a maximally variable
language one as well as an average across all 4 variation measures. Two measures of regularity from
previous work (topsim and posdis) are included in the grey cells.

This kind of maximally regular system is intuitively compostional, given the meaning of a signal
would be composed from the parts of meaning its characters map to and the position they’re in (in line
with Cann, 1993) but it’s by no means the only kind of compositional system. To better characterise
the space of possible languages in section 2.1 we introduce four kinds of variation - drawn from
kinds of variation attested in natural language - and ways of quantifying each of them individually.
Then in section 2.2 we look at some of the most relevant existing measures of ‘compositionality’
and discuss how they could be interpreted in terms of regularity. Results from a standard emergent
communication model in section 4 show that every run results in a highly-generalizing (and therefore
compositional) language but with varying degrees of variation. To better understand the relationship
between variation and generalization we look over the time-course of training and find regularity is a
strong predictor of how well a language generalizes early on but this effect goes away as the models
approach ceiling i.i.d. generalization. We take this as an indication that while a language needs to be
more regular than a random mapping in order to generalize, it doesn’t need to minimize variation in
order to do so — a point made clear by natural languages. At the end of training when the emergent
languages have become sufficiently regular for the task at hand, whether one is more regular than
another doesn’t necessarily correspond to better generalization.

In a final set of experiments we look at how to decrease the amount of variation in an emergent
language. Limitations on humans’ memory and cognitive capacity are thought to be a driving
force in the emergence of compositional structure and regularity in natural language (Kirby, 2001;
Hudson Kam & Chang, 2009; Smith & Wonnacott, 2010). Learners with less memory are believed
to regularize their input because they are more constrained in their ability to store low-frequency
forms (Newport, 1990; Ferdinand et al., 2019). We reduce the capacity of our models by reducing
the size of the hidden layers, and show that lower capacity models develop more regular languages,
as predicted by accounts linking learner capacity and regularity in natural language and in line with
previous work in this area (Resnick et al., 2020).

2.1 QUANTIFYING VARIATION

We introduce four kinds of linguistic variation Synonymy, Entanglement, Word-Order Freedom, &
Homonymy and define measures of each. This is not intended to be an exhaustive list, but offers a
starting point for thinking about linguistic variation in this context. Each of these measures is bounded
between 0 and 1, where 0 indicates a perfectly regular language with no variation, and 1 represents
a maximally variable language. For comparison we generate a maximally regular compositional
language which scores near O across our measures, and maximally irregular non-compositional
language (where each meaning maps to a unique randomly-generated signal) which scores near 1, as
shown in table 1. Our task (described fully in section 3) asks models to map meanings to signals. With
meanings comprised of roles - e.g. Subject, Verb, and Object - and semantic atoms which can occur
in each role (e.g. Subject: Ollie, Isla ... Verb: loves, hates, ...). Prior work in this area sometimes
refers to these as attribute-value pairs (see Lazaridou & Baroni, 2020, for a review including some
mention of attribute-value pairs, p. 11). Similarly signals are comprised of positions (indices), and
the character that occurs in each. We can frame linguistic concepts of variation in terms of how
semantics (roles & atoms) map to signals (positions & characters).
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All four measures start with a tensor that describes the mapping between meanings and signals
probabilistically, in terms of a probability distribution over characters in each signal position given a
semantic atom in a role. This encodes, for example, how likely character ‘A’ is in signal position 1
given that ‘Ollie’ is in the subject role of the signal’s meaning. We can quantify this as a straight-
forward conditional probability using maximum likelihood estimation, shown in equation 1. We
estimate this repeatedly for every atom (Vatom,; € A,) in every role (Vr € R), looking at every
character (Vchar, ; € C) in every position of every signal (Vp € P).

count(chary, j, atom,. ;)

ey

Plchary,;|atomi) = count(atom,. ;)
T,

The resulting tensor describes how often each letter occurs in a position, given a certain atom in a
role in the meaning (like Subject: Ollie)?. This tensor has dimensions semantic roles x semantic
atoms x max signal length x characters®, where the last axis is a probability distribution over all
possible characters in a given position - here denoted by P(char,|atom,. ;).

Synonymy & Homonymy: Synonymy is minimised when each atom in a meaning maps to a
single character in a position. Homonymy is minimised when each character in a position maps to
a single atom (Hurford, 2003). While a perfectly regular compositional language minimises these,
natural language is rife with both synonymy and homonymy (e.g. ‘loves’, ‘adores’, ‘fancies’ all
map to approximately the same concept; the homonymous ‘bank’ maps to a financial institution,
the act of turning a plane, and the land at the side of a river). One-to-many mappings (Synonymy)
aren’t a problem for compositionality, as each different synonym can still be composed with the
rest of a signal. Similarly many-to-one mappings (homonymy) can be used compositionally, with
meaning disambiguated by context. In our setting synonymy is how many different characters
can refer to an atom in a role. For example when r = Subject and atom, ; = Ollie how many
characters have non-zero probability in each signal position? A perfectly regular language where
‘Ollie’ is always encoded by ‘A’ in position 1 would have a probability of 1.0 on ‘A’ in position 1.
A maximally variable language would have a uniform distribution over all characters. We can take
the entropy over characters in a position H(IP(chary|atom, ;)) as a measure of synonymy in that
position (illustrated in figure 1). We take the position with the lowest entropy as a lower-bound
estimate of synonymy for that atom,. ;. In order to bound the value we divide it by the entropy of a
same-sized uniform distribution #,,(P(char,|atom, ;)). The synonymy of an entire language (L) is
obtained by averaging across all atoms in a role, then across all roles. A language with no synonymy
where each atom is encoded by a single character in a position achieving close to 0, and maximal
synonymy where any character can refer to each atom achieving close to 1 (shown empirically in
table 1).

1 |R| 1 |Ar| min{?—l(P(charp\atomr’i)): Vp € P}
Synonymy (L) = Rl ; 4] ; ” (P(charp|atom,.7i)) 2

We can assess homonymy in a similar way, looking at how many semantic atoms a character in a
position can refer to. As depicted in figure 1 this is akin to applying the synonymy measure to a
different axis of the probability tensor P. We estimate P(atom, |char), ;) to get a distribution over
atoms given characters in a position*. To get a lower-bound estimate of language level homonymy
we take the position with the lowest entropy over atoms and divide by the entropy of a same-sized
uniform distribution to bound between 0 and 1, then average across all characters and roles. When
the resulting value is close to 1 each character maps to every atom. Approaching 0 each character
uniquely refers to a single atom.

“Here we use semantic roles given the meanings are sentences, this can be generalised to any analogous
attributes a dataset exhibits.

3For all experiments reported here these values are 3 x 25 x 6 X 26
*For simplicity we re-normalize IP to create a probability distribution over atoms in a role which is equivalent
to directly computing P(atomn,|chary, ;) see appendix for further discussion.
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B lCl min{H(P(atomT|charp7j)>: Vp € P}

1
Homonomy(L) = " Z
r=1

— 3
— |C| = ’Hu(IP’(atomAcharp,j)

Word Order Freedom Word order freedom is minimized when each role in the meaning is always
encoded in the same position(s) in the signal, resulting in a single canonical word order. Looking
at a language like Basque we see that a compositional language can support a number of different
grammatical word orders (Laka Mugarza, 1996), with at least two equivalently valid translations
of ‘Ollie saw Ernest:” Ollie Ernest ikusi zuen, Ollie ikusi zuen Ernest. Even in English which has
relatively strict word order we see processes like topicalization that result in alternate orders that
are equally acceptable Let’s go down to the lake for some fun; For some fun, let’s go down to the
lake, or even more commonly dative alternations (Chomsky, 1957) like Ollie gave Orson a book;
Ollie gave a book to Orson. While many languages have some constraints on word-order, even when
there is maximal word order freedom the resulting language can still be clearly compositional, with
characters encoding the meaning and their order conveying little information. A language with free
word order is equally likely to encode any role € R in any position, while a maximally regular
language always encodes atoms from the same role in the same position(s). If a given atom,. ; is not
encoded in a position we expect its distribution over characters to be roughly uniform. So we can take
the entropy for each position (P(chary|atom,;)) : Vp € P) (also computed as part of equation 2),
and average across all atoms in that role Vi € A,.. If all the atoms in a role are encoded in the same
position the distribution resulting from the mean will be non-uniform, with some positions having
lower mean entropy than others (the appendix includes an illustration of this in figure 4 and some
discussion of why we opt not to directly estimate P(position|char;, atom,.;)).

[Ar|
F(role,) = Vi | Z(H (P(charﬂatomryi)): Vp € P) (4a)
"=

To get a lower-bound estimate of the language-level word-order freedom we take the minimum from
the mean distribution F(role,.) and divide it by the entropy of a uniform distribution over characters
to bound between 0 and 1, then average across all roles:

TRLAAL min (F(role,))

(4b)
|R| —1 Hu (P(charp:datomr’i:o))

Entanglement is minimised when each role is encoded in different positions in the signal. While a
dis-entangled language is likely compositional, consider the English past tense form of ‘go.” “Went’
is irregular, encoding action and tense together, in contrast to the hypothetical regular form ‘goed’
where action and tense are encoded in separate parts of form (Anderson, 1992, p. 55). Despite this
we can go on to use the entangled form ‘went’ compositionally in a sentence: Ollie went down to
the shore (for discussion O’Donnell, 2015, p. 105). While maximal entanglement where every role
is encoded in every position would be non-compositional, the existence of even a high degree of
entanglement does not preclude compositionality, given the entangled forms can be straight-forwardly
recomposed with others. We can quantify this by seeing if two roles are consistently encoded in the
same (or different) positions. We compare the means F(role) from equation 4a for each possible
pair of roles r;,7; € ®C5 by taking the magnitude of their difference, if two roles are encoded in
the same position the result will be close to zero. If the roles are maximally disentangled then the
result will be close to the maz(F(role;), F(role;)) for that position. To get a lower bound estimate
of two roles’ entanglement we take the maximum of the difference and divide by the pre-difference
max. When the resulting value approaches 0 all roles are mapped to different parts of the signal, as it
approaches 1 all roles are encoded in the same positions (illustrated in appendix figure 5).
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1 "Gy max(\F(TOZei) - F(TOZej)‘)

Entanglement(L) =1 (5)

B Cs| rory AT (F(T‘Olei)yw(mlej))

2.2  EXISTING MEASURES

Topographic Similarity (Topsim) (Brighton & Kirby, 2006) has been used as a measure of
compositionality in a wide array of contexts (e.g. Smith et al., 2003; Kirby et al., 2008; Lazaridou
et al., 2018). It assumes that in a compositional system where a whole signal is composed from
reusable parts, similar meanings will map to similar signals. This can be assessed by measuring the
correlation between pairwise meaning-distances and edit distances between their associated signals:
a perfectly regular compositional language without variation achieves a correlation score close to 1,
while a non-compositional (random) mapping between meanings and signals achieves a correlation
close to 0. While languages that score highly are likely to be compositional synonymy and word
order freedom can reduce the score for this measure, as they can result in similar meanings having
dissimilar signals. Synonymy can mean two meanings with the same subject encode it with different
characters. Freedom can mean signals for similar meanings with different word orders have high
edit-distance despite containing many of the same letters.

Posdis & Residual Entropy (Chaabouni et al., 2020) & (Resnick et al., 2020) provide entropy-
based measures of ‘compositionality.” Posdis captures the extent to which each position of the signal
univocally refers to a role in the meaning (e.g. subject, object, verb) and looks for each signal
position to refer to only one role. This is similar to what our entanglement measure assess (though
computed differently). Similarly, residual entropy assesses the degree to which a sub-string of the
signal encodes a single atom in a role (e.g. Ollie in the Subject) and is minimized when a sub-string
refers to only one atom in a role. This requires there to be minimal homonymy and entanglement
in a subset of the signal (across 1 or more positions), with each unique sub-string in those positions
referring to only one atom in a role. As discussed above natural language shows us that even a high
degree of homonymy and entanglement in a language doesn’t preclude its compositionality. We
show empirically in table 1 that a maximally regular language maximizes topsim and posdis while
minimizing residual entropy (for brevity residual entropy results are deferred to appendix A.7). Like
topsim, languages that score highly on these measures are very likely to be compositional - the issue
is that they take some kinds of variation and evidence of non-compositionality.

3 METHODS

Models We implement a reconstruction game with a sender network and receiver network. The
overall architecture used is intentionally similar to Chaabouni et al. (2020); Resnick et al. (2020) and
Guo et al. (2021) to allow comparison of results. The sender network is comprised of an embedding
layer, linear layer, and a GRU (Cho et al., 2014) - the receiver architecture is the inverse. A linear
layer is used as the input is of fixed length, so can be presented at once as a one-hot encoding - while
a GRU spells out the variable-length signal a character at a time. The maximum signal length used
here is 6, with 26 characters available to the model in each position. The sender is optimized using
REINFORCE (Williams, 1992) due to the discrete channel, while the receiver is optimised using
ADAM (Kingma & Ba, 2014). Models are implemented using pytorch (Paszke et al., 2019), and make
use of portions of code from the EGG repository (Kharitonov et al., 2019). Full hyperparameters for
the experiments presented here can be found in appendix A.10.

Data The sender is shown examples drawn from a meaning space of two place predicates (e.g.
Ollie loves Osgood) generated using a context free grammar, with three roles: subject, verb, and
object and 25 atoms per role, resulting in a total of 15625 examples. This is equivalent to the attribute,
value setup used in previous work (Resnick et al., 2020; Chaabouni et al., 2020). Data is divided into
4 splits for training: 60%, validation 10%, i.i.d. testing 10%, and o.0.d. testing 20%.

0.0.D. Evaluation Previous emergent communication work typically evaluates generalization on
an in-distribution held out test-set. In order to better align our findings with the broader literature on
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Small Model Regression: Regularity & Variability vs. O.0.D. Accuracy
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Figure 3: A model is fit to a sliding window of data from 100 epochs at a time across 20 initializations
between o.0.d. accuracy and each measure of variation. Shown are the regression coefficients (b
values) of our four measures of variation, and two previous measures of regularity (topsim and posdis)
with 0.0.d. generalization accuracy for the small model for each window.

compostional generalization in neural networks (e.g. Lake & Baroni, 2018; Kim & Linzen, 2020) we
implement a version of the maximum compound divergence (MCD) algorithm from Keysers et al.
(2020), and report results for both in-distribution generalization, and out-of-distribution generalization
to an MCD split. Additionally we use an O.0.D. split because models often converge to ceiling i.i.d.
performance, which potentially makes it difficult to look for correlations between generalization
performance and attributes of the language, like regularity. For our small model i.i.d. performance
95% confidence intervals are +0.49% while 0.0.d. performance is £7.07%, allowing a broader range
of values with which to look for correlations (we include the same analyses on i.i.d. performance in
appendix A.8 and in practice i.i.d. and o0.0.d. results are very similar).

Capacity We look to see if models with less capacity arrive at more regular languages than their
larger counterparts as predicted by work in natural language (e.g. Hudson Kam & Chang, 2009).
We vary model capacity by varying the size of the hidden layers used by the model reporting and
comparing results of three different model sizes small, medium, and large with hidden layer sizes
250, 500, and 800 respectively.

4 RESULTS AND DISCUSSION

Our results for all model sizes are summarised in table 1. As stated in section 1 a language must be
compositional in order to generalize, in line with previous work in this area (Kottur et al., 2017) and
in linguistics (Brighton & Kirby, 2006). All versions of our model get near ceiling i.i.d generalization
and robust 0.0.d. generalization indicating a compositional system. Compositionality and variation
are related, but distinct; while a system needs to be more regular than a completely random mapping
in order to generalize compositionally it does not need to be perfectly regular. Natural languages
show us that a system can support a high-degree of variation while remaining compositional. In line
with this in all conditions of our model the language that emerges is substantially more regular than
a random mapping, but more variable than a perfectly regular language consisting of one-to-one
mappings.

The relationship between regularity and generalization We use linear mixed effect models to
evaluate the relationship between our four measures of variation and o.0.d. performance, fitting a
model on rolling windows covering the time course of training (implementation details in appendix
A.3). The resulting regression coefficient (b value) for a window indicates how strong a predictor our
measures are of generalization performance over that period of training. As shown in figure 3 early
on a language’s regularity is a strong predictor of how well it generalizes, but later in training this
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effect goes away. This is consistent with the idea that some regularity is needed for generalization,
but maximal regularity is not required. Later in training, as a language emerges that is regular enough
to succeed at the task (achieving ceiling i.i.d. generalization performance), the relationship between
regularity and generalization trends toward non-significance. Supporting this we see languages
become more regular over time with a negative relationship between training step and variation
(b = —0.038,p < le — 10) — in table 1 we also see that in every condition the model decreases
the variation in its language between early training and the best generalizing epoch indicated by a
negative value for A best 0.0.d.. An important limitation of these results is that the language for every
run is still highly-variable (with the lowest mean variation score of any run being 0.43), possibly
because the task here is quite simple in comparison to compositional generalization datasets in other
domains (e.g. Kim & Linzen, 2020). As languages approach maximal regularity, regularity may again
be a strong predictor of generalization performance - but given none of our models approach minimal
variation this remains an open question (further discussion of these results in appendix A.5).

How can a variable language still be compositional? Figure 2 helps us to understand what these
highly variable but robustly generalizing languages look like. It visualizes the word order for the
run of our small model with the highest word order freedom - meaning all other runs of that model
exhibit even stricter word order. It shows that while the language is still much more variable than a
perfectly regular one (this language has freedom = 0.57, a compositional language with fixed word
order has freedom = 0), it nonetheless exhibits a high degree of word order regularity, with verbs
most likely encoded at the start of the signal, subjects in the middle, and objects at the end, but with
each individual atom sometimes being encoded slightly differently. Given compositionality requires
the meaning of a whole to be a function of its parts the pattern seen here where each role is encoded
in part of the signal appears to meet that threshold despite its high variation.

Capacity effects regularity with an increase in the number of trainable parameters resulting in an
increase in variation across all measures with large arriving at significantly more variable languages
than small or medium (p < 0.05). Spearman correlations show model size does not correlate
significantly with 0.0.d. accuracy (p = 0.24) but correlates with synonymy (r = 0.67), word order
freedom (r = 0.69), entanglement (r = 0.68), and homonymy (r = 0.68) indicating larger models
develop more variable languages (all of which are significant p < 0.00001). This result is in line
with work that points to constraints on human cognition as a key driver of regularization in natural
language, suggesting that similar factors shape the regularity of emergent communication in neural
networks. Previous work studying the effect of network capacity on emergent languages (Resnick
et al., 2020) found that while most model sizes could generalize well, larger models could do so using
a ‘non-compositional code’ indicated by a higher residual entropy measure (which has similarities
to our measures of homonymy and entanglement). This is consistent with our results, although we
believe this indicates that larger models develop a language characterised by greater variation rather
than non-compositionality (residual entropy scores for our model can be found in appendix A.7).

Framing prior results in terms of regularity Existing measures (topsim and posdis) correlate
negatively with model size (r = —0.63, r = —0.71) strongly suggesting that rather than tracking
compositionality these measures implicitly track the degree of regularity in a language, especially
given that the magnitude of their correlation coefficient is similar to that of our measures that explicitly
assess variation. This helps us to interpret results suggesting compositionality doesn’t correlate with
generalization: if these measures assess regularity instead we know a wide array of languages can be
regular enough to generalize well without needing to maximize regularity to do so.

5 CONCLUSION

Neural networks reliably arrive at compositional languages when natural language-like variation is
taken into account. Previously these languages’ compositionality has been assessed on the basis of
their regularity, but natural languages show us a system can be rich with variation while retaining the
generalizability that makes compositionality so desirable. Similar to natural language the capacity of
learners is a key driver of the degree of regularity that emerges. By accounting for variation we can
see striking similarities between the structure of the languages that emerge and structures in natural
language.
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A APPENDIX

A.1 WORD ORDER FREEDOM GRAPHIC

o [ @ o/ w [ >

NAAAVANAN

NN N

Figure 4: The figure shows an illustration of the Freedom measure applied to a regular and variable
language. At the top is a reproduction of the perfectly regular language cube from figure 1 where
role = Object where every semantic atom in the object position is encoded by two letters at the end
of the signal. Red indicates low probability, and green high. Directly below it is the entropy of each
column, which reveals the word order freedom (conversley for the entropy plots green corresponds
to low entropy, red to high) this is the operation completed in equation 4a. As the language is
perfectly regular the entropy is low in the last two positions across all semantic atoms in the object
role. As a result when we take the mean of the entropies we get a non-uniform distribution: entropy
is consistently lower in the two final positions. To get a measure between 0 and 1 we divide the
lowest value in the mean distribution by the entropy of a uniform distribution of the same size this is
done in equation 4b. The bottom graphic shows the entropy illustration for an alternate, irregular
language, where different atoms in the object position are most likely to be encoded in a variety of
signal positions. As a result the mean distribution is nearly uniform, so when we take the minimum it
will be closer to the entropy of a uniform distribution resulting in a score close to 1.
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A.2 ENTANGLEMENT GRAPHIC

Figure 5: The figure shows the entanglement measure applied to a perfectly regular language. We
start with the column entropies shown in the uniformity graphic, and which are calculated using
equation 4a. Shown are the column entropies for two different roles, object and verb. The mean of
both are taken and then compared in the lower part of the graphic. We take the absolute value of the
difference of the two averaged entropies. If two roles are encoded in the same part of the signal then
the result will be close to zero: they both have consistently similar in the same parts of the signal.
In the illustration this would look like the final difference bar being entirely red, here it’s green in 3
positions indicating disentanglement there. The maximum of the difference is then divided by the
maximum of the mean entropy for the respective roles before they were subtracted - this bounds the
measure between 0 and 1 and makes the measure a kind of percentage of the overlap between roles
(this operation is shown in equation 5). If the roles are disentangled we end up subtracting a high
entropy value from a low entropy value in each position, meaning the magnitude of the difference will
be substantially greater than zero. We do this for each possible paring of roles, getting entanglement
scores for each pairing, then mean them to get language level entanglement.

A.3 ROLLING MIXED EFFECTS MODEL IMPLEMENTATION

We implement a rolling mixed effects model using the python statsmodels package. We fit a separate
model for each of our 6 independent variables: synonymy, entanglement, freedom, homonymy,
topsim, posids. The dependent variable across all of them is 0.0.d. generalization performance. For
each model we include two random effects, random intercepts based on the seed used to initialize
that run of the model, and random slopes for the epochs of training. This allows the model to account
for variation between different models, given that some initializations outperform others.

The model is fit to a window of 100 epochs of training data at a time, at each step it fits a regression
to 100 epochs of data for 20 initializations of the model. It then moves forward one epoch at a time
(e.g. the first fit of the model is on epochs 0-100, the second on 1-101, the third 2-102, etc.). We plot
the resulting regression coefficient (b value) obtained from each mixed effects model fit to each IV, at
each window of data.
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For reference the corresponding command to run this model with the LMER package in R (a standard
method for fitting these kinds of models) is: Imer(ood_acc ~ IV + (1 + Epoch | Seed)) where IV is
one of the variation measures.

A.4 0.0.D. ACCURACY VS. VARIATION SLICES

In addition to the regression analysis presented in the results section we show relational plots
for two different epochs in training: one from mid way through and one from late in training
near convergence. In line with the regression analysis a more linear relationship between o.0.d.
performance and variation is visible earlier in training before the language becomes regular enough
for the task. Entanglement in particular shows a steep negative relationship in the 100 epoch plot but
is totally scattered by epoch 500. Were we to only assess the relationship between generalization and
variation at the end of training we would could easily conclude in line with previous work that they
were not meaningfully related.

It’s worth noting that the pattern here may not appear as salient as it appears in the rolling mixed
effects model presented earlier, there are two major reasons for this: first the rolling model considers
100 epochs at a time, rather than a single slice with only 20 data points, providing it with 100 times
the data visualized here by which to assess the relationship between variation and generalization.
Secondly the rolling model has a random intercept based on the seed used in each run of the model.
This is important because in line with other work on o0.0.d. generalization we see a substantial effect
of initialization on generalization performance, by including it as a random effect the rolling model
can look at each seed separately to see if each seed’s generalization performance over the run is
related to its language’s variation. So while in the visualizations below we may see some seeds which
appear like outliers, the rolling model accounts for this, fitting a separate intercept for each run.

Epoch 100: O.O.D. Acc vs. Variation
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Figure 6: Plots show each of the variation measures plotted against 0.0.d. accuracy at the 100th epoch
of training.
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Epoch 500: O.0.D. Acc vs. Variation
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Figure 7: Plots show each of the variation measures plotted against 0.0.d. accuracy at the 500th epoch
of training.

A.5 0.0.D. ACCURACY VS. VARIATION DISCUSSION

As noted in section 4 we see a strong relationship between regularity and o.0.d. performance early
in training but this effect goes away as the model converges. We attribute this to each run of the
model decreasing the degree of variation in its language over time, resulting in a language sufficiently
regular to succeed at the task. Where because all languages are sufficiently regular, whether one is
slightly more regular than another doesn’t necessarily result in better generalization performance.
This dovetails with the overarching argument here that as seen in natural language even a high-degree
of variation doesn’t necessarily undermine a language’s ability to generalize.

However it is worth noting that the relationship between regularity and generalization early on could
be driven in part by more regular languages being easier for the listener to learn. Chaabouni et al.
(2020) observes that higher topsim languages are easier to acquire. By taking emergent languages
from the end of training, and separately training a model to map between signals and meanings using
supervised-learning they show higher topsim languages require less training to converge. Here it
could be the case that early in training more regular languages are easier for the listener to learn,
improving generalization performance early on and explaining in part the early correlation between
regularity and generalisation. However, this is an emergent model and languages are not static
throughout training meaning what the listener tries to learn is a ‘moving-target’ changing at each
step. For this reason framing emergent results in terms of results that look at the learnability of
static languages would potentially seem to draw a false equivalency. It’s unclear if the learnability
of a language at timestep n matters at n + 1 when the language has changed. Given this, and the
fact that we see all conditions decrease variation in the emergent language over time, we believe
the best interpretation of our results is that regularity matters for generalization until the language
becomes sufficiently regular for the task. Once sufficient regularity is reached greater regularity
doesn’t necessarily improve generalization performance so we see no correlation. Although it is
possible learnability has some effect - further study of the role learnability plays in an emergent
context, where what is learned changes, is needed to understand the full picture.
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A.6 USE OF EQUATION 1 FOR ALL 4 MEASURES OF VARIATION

We use equation 1 (copied below in simplified notation) to calculate the conditional probabilities
used in all 4 measures of variation:

count(char, position, atom, role)

P(char|position, atom, role) =

6)

count(position, atom, role)

This gives us a distribution over characters for each position, for each atom, in each role. This
distribution is intuitively useful for estimating synonymy which can be seen as the entropy over
characters in a position.

A.6.1 FREEDOM AND ENTANGLEMENT

However it’s natural to wonder why we use this distribution again when calculating measures of word
order freedom and entanglement. Both of these measures refer to how likely it is that a given role is
encoded in a position in the signal. Freedom looks at how consistently the atoms in a role are encoded
in a position, while entanglement looks at how consistently any two roles are encoded in the same
position. Intuitively we might want to calculate a distribution over positions given roles instead, like:

count(position, char, atom, role
P(position, char, atom|role) = (p )

(N

count(role)

then marginalize over characters and atoms so that we could directly estimate the probability of
a position given a role P(position|role). The problem with this is that every signal has a char-
acter in every position, and every meaning has more than one role (i.e. subject, verb, and object,
rather than just having a subject) meaning that the distribution over positions is always uniform.
If we were to only marginalize over atoms, to get a distribution over characters and positions
P(position, char|role) this is also nearly uniform, because different atoms are encoded using dif-
ferent characters. So marginalizing over atoms combines distinct distributions for each atom into
a near-uniform one. Similarly if we only marginalize over characters to get a distribution over
positions and atoms P(position, atoms|role) because every signal has a character in every position
the resulting distribution is also uniform.

Fundamentally the only relevant probability distribution which is consistently non-uniform is the
one described in equation 1: P(char|position, atom, role). Even though every signal has a charac-
ter in every position every character is not equally likely given a specific position, atom, role
combination. As a result this is the distribution we use to calculate measures of word order
freedom and entanglement. In order to do so we first observe that in signal positions where an
atom, role combination is not encoded P(char|position, atom, role) is uniform as the distribution
is not conditioned by the selected atom and role. Accordingly we take lower conditional entropy
H(P(char|position, atom, role)) (used in equation 2) as an indication that an atom, role combi-
nation is more likely to be encoded in a position. By taking a mean of this conditional entropy
across all atoms in a given role (described in equation 4a) we can see if it is consistently low in the
same position(s) of the signal for all atoms in that role - indicating adherence to a single word order.
Equation 4b then aggregates this across all roles.

Entanglement looks to see if there is consistent encoding of multiple roles in a single position. Seeing
as we take low conditional entropy as an indication that an atom, role combination is encoded in a
given position we compare the mean from equation 4a with means from other roles to see if they are
consistently low in the same parts of the signal.

A.6.2 HOMONYMY

Given that homonymy assesses the probability that a letter in a position encodes each atom in a role,
it is possible to look at this by estimating the distribution P(atom/|char, position, role) directly. The
same distribution can be calculated by instead taking the P(char|position, atom, role) distribution
and re-normalizing it along the atom axis:
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{P(charp7j|at0mr,i) Vi e AT}

H(chary j,1) = (8)

oidi Plchary jlatom;)

We find empirically that this is equivalent to computing H(P(atom|char, position, role)) (see
results in table 2) with the only differences between the two resulting from small rounding errors.
In table 2 we report results for both approaches to computing homonomy across model sizes to
show their equivalency. Note these results are the means of 6 seeds so differ slightly from figures
in the core results. When introducing the measures in section 2.3 of these two approaches we opt
for the re-normalization of P(char|position, atom, role) rather than computing a new probability
distribution because we believe this makes the formulation of the homonymy measure more intuitively
related to the others, and makes the visualizations in figure 1 a direct reflection of how the measures
are computed while producing equivalent results.

epoch ideal random small medium large

homonymy 0.12  0.99 0.56+0.14 0.62£0.15 0.724+0.05
direct homonymy 0.12  0.99 0.56+0.14 0.62£0.15 0.7240.05

Table 2: Homonymy refers to the method of computing homonymy used in the core results
and described in equation 8 while direct homonymy instead directly estimates the distribution
P(atom|char, position, role). Results are the mean of 6 initializations at the best generalizing
epoch, so values differ slightly from those in the main results which are the mean of 20.

A.7 RESIDUAL ENTROPY

In addition to topsim and posdis reported in the main results we also report results from one other
measure from previous work, residual entropy (Resnick et al., 2020). The results here follow the same
pattern as the other measures of variation with larger models arriving and more irregular languages.
Additionally all conditions increase the regularity of the emergent language over the course of training.
Also shown is the correlation analysis between Residual entropy and O.0.D. performance, showing
like other measures of variation residual entropy is a strong predictor early in training but that this
effect goes away later on.

epoch ideal random  small medium large
best 0.0610 0.6250  0.2990+0.16  0.3780+0.12  0.4650=£0.08
A o.o0.d. 0.5230+0.05 0.4460+0.08 0.237040.20

Table 3: Residual entropy scores at the best generalizing epoch and the difference between the best
generalizing epoch and one drawn from early in training. Results are the mean of 6 initializations.

A.8 I1.I.D. CORRELATION RESULTS

We also include the correlation results between the measures of variation and in-distribution gen-
eralization. The results follow a similar pattern with degree of regularity being a strong predictor
of generalization performance early in training but this effect goes away as the emergent language
becomes regular enough to generalize well. Interestingly in-distribution and out-of-distribution
correlations align almost exactly. This is reassuring in that it shows degree of regularity is important
for generalization in general whether it is in or out of distribution.
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Small Model Regression: Residual Entropy vs. O.O.D. Accuracy

variable
residual_entropy

regression coef (b value) with 0.0.d. Accuracy

0 50 100 150 200 250 300
epoch (regression window size 100 epochs)

Figure 8: The rolling mixed effects model coefficients between Residual Entropy and o0.0.d. general-
ization accuracy for the small model for each window.

25 Small Model Regression: Regularity & Variability vs. I.1.D. Accuracy
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regression coef (b value) with i..d. Accuracy
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epoch (regression window size 100 epochs)

Figure 9: The model is fit to a window of data from 100 epochs at a time across 20 initializations. The
window slides forward one epoch at a time (i.e. epochs 0-100, 1-101 ...) and fits a different model
between i.i.d. accuracy and each measure of variation for each window. Shown are the regression
coefficients (b values) of our four measures of variation, and two previous measures of regularity
(topsim and posdis) with 0.0.d. generalization accuracy for the small model for each window.

A.9 SIGNIFICANCE TESTING FOR VARIATION DIFFERENCES

params synonymy entanglement freedom  homonomy topsim posdis
250 vs 500  0.0275 0.1049 0.0574 0.0629 0.2565 0.0993
250vs 800 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
500vs 800 0.0001 < 0.0001 0.0002 0.0001 0.0005 0.0001

Table 4: P Values obtained from a t-test comparing variation measures from different sized ini-
tialization. The difference between large and small , and large and medium are significant. Of
differences between small and medium only synonymy and posdis are significant

A.10 HYPERPARAMETERS

¢ Recurrent Unit: GRU
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* Hidden Size: 250, 500, 800

* Entropy Regularization Coefficient: (sender 0.5, receiver 0.0)
* Batch Size: 5000

* Learning Rate: le-3

* Signal Length: 6

* Character Inventory: 26

* Training Epochs: 800

* Embedding Size: 52

* Roles: 3

» Atoms: 25

* Optimizer: (Sender: Reinforce, Receiver: ADAM)
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