
You are caught stealing my winning lottery ticket!
Making a lottery ticket claim its ownership

Xuxi Chen1*, Tianlong Chen1*, Zhenyu Zhang2, Zhangyang Wang1

1University of Texas at Austin, 2University of Science and Technology of China
{xxchen,tianlong.chen,atlaswang}@utexas.edu,zzy19969@mail.ustc.edu.cn

Abstract

Despite tremendous success in many application scenarios, the training and in-
ference costs of using deep learning are also rapidly increasing over time. The
lottery ticket hypothesis (LTH) emerges as a promising framework to leverage a
special sparse subnetwork (i.e., winning ticket) instead of a full model for both
training and inference, that can lower both costs without sacrificing the perfor-
mance. The main resource bottleneck of LTH is however the extraordinary cost to
find the sparse mask of the winning ticket. That makes the found winning ticket
become a valuable asset to the owners, highlighting the necessity of protecting its
copyright. Our setting adds a new dimension to the recently soaring interest in
protecting against the intellectual property (IP) infringement of deep models and
verifying their ownerships, since they take owners’ massive/unique resources to
develop or train. While existing methods explored encrypted weights or predic-
tions, we investigate a unique way to leverage sparse topological information to
perform lottery verification, by developing several graph-based signatures that can
be embedded as credentials. By further combining trigger set-based methods, our
proposal can work in both white-box and black-box verification scenarios. Through
extensive experiments, we demonstrate the effectiveness of lottery verification in
diverse models (ResNet-20, ResNet-18, ResNet-50) on CIFAR-10 and CIFAR-100.
Specifically, our verification is shown to be robust to removal attacks such as
model fine-tuning and pruning, as well as several ambiguity attacks. Our codes are
available at https://github.com/VITA-Group/NO-stealing-LTH.

1 Introduction
Deep neural networks (DNNs) have dramatically raised the state-of-the-art performance in various
fields. However, the over-parameterization of DNNs becomes a non-negligible problem. The amount
of parameters now is often on the billion scale, which significantly increases the inference cost when
using these models. An emerging field of lottery ticket hypothesis (LTH) explores a new scheme
for pruning the model without sacrificing performance. The core idea is to identify the sparsity
pattern ahead of training (or in its early stage) and train a sparse network from scratch. It has been
hypothesized [1] that DNNs contain sparse networks named winning tickets that can be trained to
match the test accuracy of the full model. These winning tickets hence have comparable or even
better inference performance while potentially reducing the computational footprints.

However, finding winning tickets is a non-trivial task: it involves the training-prune-retraining cycle
for several times [1], which is burdensome and computation-consuming. Although other works [2–4]
have shown that sparsity might emerge at the initialization or at the early stage of training, the iterative
magnitude pruning (IMP) still outperforms these alternatives by clear margins [5]. Yet, the powerful
IMP method requires multiple rounds of train-prune-train process on the original training set, which

*Equal Contribution.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

https://github.com/VITA-Group/NO-stealing-LTH

is even much more expensive than training a dense network. That makes a found winning ticket a
valuable asset to the owners, highlighting the necessity of protecting the winning tickets’ copyright.

Embed

Original Mask Mask w. Signature

Figure 1: Illustration of embedding signa-
tures into the original sparse mask. These
visualizations are projected from 4D tensors.
Dark entries are pruned elements. Note that
the actual sparsity of the subnetwork is un-
changed after encoding credentials.

Previous works [6–9] have shown that deep networks
are vulnerable to intellectual property (IP) infringement.
For example, one can use transfer learning to adapt a
trained model onto a new task or use model compres-
sion techniques to create a new sparse model based on
the target model. Fortunately, in recent years the own-
ership verification problem has been addressed with a
number of solutions proposed. The key idea is to embed
verifiable information, or called signatures, into models’
weights [6, 10, 11] or predictions [7] without visibly affect-
ing the original performance. By extracting the embedded
information from models, one can verify the ownership
of models and hence protect their IPs. For the methods
that embed information in weights, additional weights reg-
ularizers are often used to enforce certain patterns, such as signs. As for the prediction methods, a
special training set, which is often called a trigger set, is used as additional training data. The model
trained upon both the original data and the trigger set can generate desired prediction labels for the
privately-held trigger set, while preserving the performance on the original training set. However,
those general methods did not take any structural property(e.g., sparsity) into account, leaving chance
for improving their gains in the winning ticket mask protection.

On protecting the IP of winning tickets, we investigate a novel way to leverage sparse structural
information for ownership verification (Fig. 1). This structural information embedded in winning
tickets is a good "credential" for ownership verification since the winning ticket at extreme sparsity is
naturally robust to fine-tuning and (further) pruning attacks. The winning ticket at extreme sparsity
cannot be pruned further; otherwise, the inference performance will drop (hence losing its "value").
Meanwhile, fine-tuning the winning tickets can only tune the weights, but the sparsity pattern will not
be changed. However, there remain some key questions to answer: How to formulate the ownership
verification process under the context of the lottery ticket hypothesis? What kind of structural
information should be used? How to inject user-specific information into the structure of winning
tickets? We present answers to these questions in this paper. We summarize our findings as follows:

• We formulate the lottery verification problem and define two different protection scenarios. We
show that even without specific protection, the extremely sparse winning ticket can partly claim its
ownership because of the critical role of its sparse structure in the final inference performance.

• We further propose a new mask embedding method that is capable of embedding ownership
“signatures" in the subnetwork’s sparse structural connectivity (Fig. 1), without much affecting its
performance. The signature is robust, e.g., it can be extracted and decoded even after pruning or
fine-tuning attacks. Combined further with the trigger set-based method, our mask embedding
method can work under both white-box and black-box verification frameworks.

• We investigate several verification schemes, i.e., separate masks, embedding signatures, and
embedding signatures with the trigger set. We show that these schemes are robust to the common
removal and ambiguity attacks, as well as a new type of “add-on" attacks. Extensive experiment
results demonstrate their competence on protecting the winning tickets. For example, on ResNet-20,
our verification framework can defend fine-tuning attacks intrinsically, as well as pruning attacks
and as add-on attack under all levels of pruning ratios.

2 Related Work
Pruning and Lottery Ticket Hypothesis. Pruning algorithms can be roughly classified into two
types: pruning after training and pruning before training. Conventional pruning after algorithms
assign scores to individual weights and remove weights with the lowest scores [12]. There are
a large number of scoring algorithms of this kind, including weights magnitude [13, 14], Taylor
coefficients [15–18], and other variants [19, 20]. Pruning-before-training methods also play important
roles in the community [1]. However, it requires multiple cycles of training and pruning process [12],
making it sometimes tedious in practical use. Pruning-at-initialization methods alleviate such cost by

2

pruning initial weights such as observing initial gradients of weights [2, 3], but the quality of sparse
networks found by these methods are mediocre in return.

A representative pruning-before-training method is the lottery ticket hypothesis [1], which hypoth-
esizes the existence of a sparse network in dense networks that can be trained to match the test
accuracy of dense networks in isolation. It was later verified that the original hypothesis was too
strong, and early rewind techniques [21] help scale up the original version. Later on, the lottery ticket
hypothesis and its variants have been explored and extended to various fields [22–30] such as image
generation [31, 27, 32] and natural language processing [22, 24]. However, it is currently non-trivial
to find winning tickets, especially at high sparsity since multiple train-prune-train processes are
required, which suggests the practical value of protecting the found sparse networks.

Ownership Verification. Ownership verification has drawn attention from both the industry and
academia. Many works have been proposed to address IP protection. One most popular way is
to use watermarking algorithm: [6] proposed to embed watermarks in the form of bits into deep
networks’ weights by an additional regularization term. [10] embedded information into model
weights by regularizing on the signs of weights. Besides watermarking on weights, [7, 33] embedded
watermarks in the labels of certain examples in a trigger set, which makes it possible to extract
watermarks through a service interface without directly accessing the models’ weights (black-box
setting). Following somehow different pathways, [34] proposed a passport-based approach that
encodes signatures with special passport layers. [11] presented passport-embedded normalization
whose parameters are associated with signatures. However, none of these methods leverages structural
information for ownership verification besides assuming general dense networks. For sparse networks,
the sparse mask patterns represent the key information and can vary across models and tasks.

3 The Lottery Ticket Claims its Ownership

3.1 The Lottery Ticket Hypothesis

¶ Sparse Masks, Subnetworks and Winning Tickets. We define a neural network parameterized
by W as N[W](·). With a slight abuse of notion, we define a subnetwork of N[W] as N[W,M] :=
N[W �M](·) where M is a sparse mask whose shape is the same as W but the value of each
entry in which can only be either 0 or 1. Given W0 the initialization of N, if N[W0,M] can be re-
trained to match the test performance of the dense model training from N[W0], we call N[W0,M]
a winning ticket. The term re-train above is used to distinguish between the training process to
find the winning ticket. The criterion for matching can be set as, e.g., no lower than 1% than dense
models’ performance. · Sparsity Comparison. The sparsity of a sparse mask M can be defined
as spar(M) := ‖M‖0/‖M + 1‖0 where ‖ · ‖0 represents the non-zero values of the input matrix,
and the relative sparsity can be defined as rspar(M1,M2) := spar(M1)/(spar(M2) + ε). We call a
sparse mask M1 is sparser than M if and only if ‖M1‖0 < ‖M‖0. A sub-mask M2 is a mask that
has the same shape as M satisfying that all the elements in M−M2 are non-negative. ¸ Extremely
Sparse Condition. Given a sparsity difference threshold t, we call N[W0,Me] an extremely sparse
winning ticket (or referred to as an extreme ticket hereinafter for conciseness) if N[W0,Me] can
match the performance of N[W0], but pruning the model (i.e., increase the sparsity of Me) t× 100%
further cannot produce a winning ticket. In our experiments, we set t to be 0.01.

3.2 Verification Framework for Extremely Sparse Winning Tickets

A ownership verification framework for extremely sparse winning tickets can be formulated as a
tuple V = (ME,WE,F, V, I), each item of which is a process:

• A mask embedding process ME(M0, s) (optionally) for sparse masks. s is an optional string that
can be encoded into masks. The output of this process is a new mask M. M can either be a mask
with s embedded or contains other structural information that is useful for ownership verification.
We call the verification method with ME(M0, s) enabled a “mask-based” method.

• A weight embedding process WE(Dtr, T, s, N[·],L, W0, M), which is a learning process for the
lottery ticket model. Dtr = {x, y} is the training dataset, T = {Tx,Ty} is an optional trigger
set provided to the training process, s is an optional signature for the weights embedding process.
L is the loss function for model training (usually the cross-entropy loss), N [·] defines the model
structure, W0 is the initialization of weights, and M is the sparse mask for the model. The output
of E is a model N with sparse weights W �M where W represents the trained weights. The

3

trigger set T (or/and) the signature s are embedded in W�M after this process and can be verified
with the verification process introduced next.

• A fidelity evaluation process F (N[·],W,M,Dte,Af , εf) is to evaluate whether the performance
discrepancy of model N[·] is less than a pre-defined threshold εf , i.e., |A(N[W,M],Dtr)−Af | <
εf , in whichA(·, ·) is the inference performance on the test dataset Dte, andAf is a target inference
performance associated with the model.

• A verification process V (N[·],W,M,T, s, εs) checks whether the sparse mask M or the trigger
set T can be successfully verified for a given model N[·]. For the mask-based methods, the process
is to check if M and s matches by evaluating N [·,M] on Dte to see if the performance gap is
smaller than a pre-defined threshold εs, and(or) extract information in M and compare it with s.
For the trigger set-based methods, an inference is first executed on the trigger set images Tx, and
then the prediction will be compared with trigger set labels Ty to see if the false detection rate is
lesser than a threshold εs [34].

• An invert process I(N [W,M],T, s) exists and will enable a successful ambiguity attack [34] if:
a) a set of new trigger set T′, a new signature s′, or a new mask M′ can be reverse-engineered for
the given mask M and weights W. b) the forged T′, s′, M′ can be verified with respect to M and
W. c) the fidelity evaluation outcome F (N[·],W,M′,Dte,At, εf) remains True.

The high-level definitions above are general and can work with any concrete implementation. We
will introduce several methods that use sparse structural information in the next following sections.

3.3 Structural Information As Signatures
Our motivation is originated from the nature of winning tickets that the sparse structure of winning
tickets is critical to their performance. As the sparse masks found by IMP outperform other pruning
methods by clear margins [5], incorrect masks will lead to degraded test accuracy. In the next few
sections, we demonstrate how to use the sparse structure of extreme tickets, i.e., both the sparse
masks and weights, to perform ownership verification under different verification schemes. The
ownership verification can be performed in two different scenarios: (a) protecting the sparse masks of
the extremely sparse winning tickets; and (b) protecting the trained extremely sparse winning tickets.

3.3.1 Protecting the Sparse Masks: Splitting Signature from Sparse Model

Such sparse masks play a crucial role in achieved outstanding generalization [1] and transferability [24,
25], and thus draws our attention to prevent them from being illegal distributed or used. Given a fixed
initialization, correct masks are essential for training the extremely sparse winning tickets to match
the performance of the dense network. If we split the sparse masks into two parts, neither part is
intact and correct so neither can be trained to match the performance of the dense model with the
given initialization. Recall the mechanism of one lock can be unlocked by one key generally, we
adopt the concept of keys and locks and propose a new ownership verification method for the masks
of extremely sparse winning tickets.

Denote the sparse mask of extremely sparse winning ticket by {Ml}Nl=1 and the weights by {Wl}Nl=1,
where N is the number of layers. To sparsify a model, {Ml}Nl=1is applied to the model’s weight
{Wl}Nl=1 by conducting an element-wise product ({Wl �Ml}Nl=1). Our goal is to find key masks
i.e., sub-masks {Ms

l }Nl=1 that contain as few elements as possible while the performance of the sparse
network with the locked masks, i.e., the remaining masks, degrade as much as possible. Meanwhile,
fewer elements in key masks reduce the cost of storing, distributing, and using the key masks.

We next describe the algorithms needed to discover key masks. An algorithm is used to split the
masks of extremely sparse winning tickets ({Ml}Nl=1) into key masks {Ms

l }Nl=1 and locked masks
under the constraint of rspar({Ms

l }Nl=1, {Ml}Nl=1) < ns. ns is a hyper-parameter controlling the
relative sparsity of the key masks. Score functions are used to decide which part should be split into
the key masks. The pipeline is described in Algorithm 1.

We study several score functions in our experiments: 1) One-Shot Magnitude (OMP): the absolute
values of each weight; 2) Edge-Weight-Product (EWP) [35] which measures the importance of paths
from models’ input to output. The EWP score is defined as the multiplication of weights along the
paths; 3) Edge betweenness centrality (Betweenness). The edge betweenness centrality measures the
importance of each edge inside a graph. For convolutional layers, we define the weight of each “edge”
to be the summation of absolute values of each element; and 4) random scoring.

4

Algorithm 1: Splitting Key Masks

input :A sets of masks M = {Ml}Nl=1, initialization weights W = {Wl}Nl=1, number of
non-zero elements n, and a function score(·) for scoring.

output :Key masks {Ms
l }Nl=1 and locked masks {Ml −Ms

l }Nl=1

1 Derive the score matrices by applying score(·) over {Wl �Ml}Nl=1 and get {Sl}Nl=1

2 Set the values of entries in {Sl}Nl=1 to negative infinity if the corresponding entries at the same
position in {Wl �Ml}Nl=1 is zero (i.e., already pruned).

3 Calculate the nth largest number across the score matrix {Sl}Nl=1 and record it as T .
4 Set Ms

l ← IMl>T and let the key masks be {Ms
l }Nl=1. The comparison between Ml and T

(Ml > T) is performed element-wise.

3.3.2 Protecting the Trained Tickets: Embedding Signature into Sparsity Masks

Another scenario is to protect the trained extremely sparse winning ticket since a superior performance
on certain large-scale datasets usually comes with a huge economic and ecological cost. Although
directly splitting the masks provides a solution to the ownership verification problem, it has some
drawbacks. It delivers extra cost to users since they need to recover the masks. Such a method is
also intrusive and requires additional responsibility from the users’ side for storing the key masks
safely. To render the extreme tickets capable of self-verification and free of key masks , we propose a
novel pruning method that is able to “absorb” secret information (e.g., signatures) into models’ sparse
masks. The core concept is to enforce the sparsity masks to follow certain “0-1” patterns, which can
be extracted from masks and further decoded back to the original form of information.

A function encode(·) is used to transform a string s into a matrix Ms ∈ {0, 1}d1×d2 which we call
signature mask. Our goal is to embed encode(s) into the sparsity masks {Ml}Nl=1. One critical
question is where to embed the signature mask Ms. Empirically, low-level convolutional layers are
less sparser, which means they are more unlikely to be pruned. Therefore, information embedded in
the low-level convolutional layers is more difficult to be removed if using the pruning method. Based
on such observation, we decide to embed Ms in low-level convolutional layers. To minimize mask
changes, we first find a region in {Ml} with the highest similarity with Ms and tune the sub-mask of
that region. For masks that have a dimension of two, we directly replace the region with Ms; for
masks that have a dimension of more than two, we raise their dimension by using random connections.
Our detailed workflow is shown in Algorithm 2.

The choices of function encode(·) are various but there is one common choice in our daily life: QR
code [36]. QR code has multiple advantages: 1) QR code is naturally seen as a pattern with only zeros
and ones; 2) QR code has the ability to correct the error if the code is dirty or damaged. For example,
the H correction level can tolerate up to 30% of error [36]; 3) QR codes can be small in size which
can be easily fit into sparse masks. The size of the QR code generated can be as small as 21 × 21
while the numbers of channels in convolutional kernels in deep learning models are typically greater
than 21, showing an abundant space for fitting the QR code in inside models’ sparsity masks; and 4)
The QR code without the finder, alignment and version patterns are imperceptible when fitted into
sparse masks since there are no “regular” patterns left. Based on these merits, we choose encode(·)
to be the QR code generation function. Specifically, the encode function we use will return a QR
code without finder, alignment, and version patterns. When extracting the code, the above patterns
will be added back for decoding the credential information behind the QR code.

Algorithm 2: Embed Signature Into Sparse Masks

input :A set of masks M = {Ml}Nl=1, a signature s
output :A set of masks with signature embedded {Me

l }Nl=1
1 Calculate Ms ← encode(s).
2 Squeeze each Ml into a two-dimensional matrix Mf

l by setting (Mf
l)ij = I‖(Ml)ij‖0>0.

3 Calculate the similarity (percentage of matched 0-1 patterns) between each Mf
l and Ms and

name the one with the largest similarity Mf
max.

4 Change the dimension of Ms and fit it into Mf
max to the region where the similarity is the largest.

5

3.4 Ownership Verification with Sparse Structural Information
Next, we propose three different verification schemes based on sparse structural information, as
summarized in Table A9. Under our unique context, we further introduce a new Add-on Attacks
which aims to create ambiguity against lottery verification by “recovering" several pruned weights
and manipulating the sparsity patterns. More details can be found in Appendix A1.

Scheme V1: Distribute the extreme tickets with key masks. Scheme V1 is designed to protect
the sparsity masks. We separate the sparsity mask M into two parts: Ml and Ms, where l/s subscripts
denote “large”/“small”, respectively. The small mask is sparser than the large one, which is used as
the key mask while the large counterpart is the locked mask. We apply these two masks on weights
and get two separate parts (W �Ml,W �Ms). Before re-training, legitimate users should merge
the two weights by adding them up to recover the original sparse weights W �M. The ownership
can be automatically verified by the inference performance since an incorrect provided mask-weight
pair will deteriorate accuracies after re-training.

Scheme V2: Embed signatures in sparse masks. We apply the signature mask embedding method
to embed credentials into the extreme ticket. Then we train the model and dispatch it to legitimate
users. No further action is required at the users’ side. For the verification process, one can use extract
the signature from the sparse model and validate the ownership of the extreme tickets. Compared with
Scheme V1, Scheme V2 is more user-friendly since no extra action is performed at the users’ side.
The application scenarios of Scheme V1 and V2 are also different: the latter focuses on protecting the
trained weights. It also shows great defense ability towards removal and ambiguity attacks. However,
this scheme works under the white-box verification setting only, which means that access to models’
weights has to be assumed. To overcome that assumption, we combine Scheme V2 with a trigger
set-based method and propose Scheme V3 in the next section.

Scheme V3: Combining trigger set-based methods. Scheme V3 is more sophisticated than
Scheme V2 as a set of trigger images and labels are used during the (re-)training process. With
the help of this trigger set, Scheme V3 is now capable of black-box verification. By using remote
calls of service APIs, the owner can first probe and claim the ownership in a black-box regime and
further request a white-box verification if the black-box mode has raised a red flag. The white-box
verification part for Scheme V3 remains the same as Scheme V2.

4 Experiments

In this section, we will list the details of our experiments and show the results to prove the effectiveness
of our ownership verification methods, as well as the robustness to removal attacks (e.g., model
pruning, fine-tuning, and add-on attacks) and ambiguity attacks (e.g., fake paths, fake code).
General Settings. We use three networks architectures (ResNet-20, ResNet-18 and ResNet-50)
and two benchmarks (CIFAR-10 [37] and CIFAR-100 [37]) in our experiments. For all experiments,
we follow the same (re-)training and testing protocol. The optimizer we use is an SGD optimizer
with a momentum factor of 0.9 and a weight decay factor of 1e-4 for ResNet-20 and ResNet-18,
and 5e-4 for ResNet-50. We train the model for 182 epochs with an initial learning rate of 0.1, and
we decay the learning rate at 91st and 136th epoch by 0.1. We use a late rewinding technique that
rewinds the weight to the 3rd checkpoint. More results on ResNet-50 are deferred to Appendix A2.
Our experiments are run with 16 pieces of NVIDIA RTX GeForce 2080 Ti.
Types of Attacks and Trigger Set. We study two types of attacks: 1) removal attacks. This type
of attack aims at removing the embedded watermarks from the model’s weights or data. Available
methods for removal attacks include pruning, which removes a proportion of parameters of the model,
and fine-tuning, which performs training on new data for a few steps. Both methods can modify the
weights and potentially make the watermark undetectable. 2) ambiguity attacks. This type of attack
aims at confusing the verification schemes, i.e., no one can tell which is the real watermark/signatures.
This type of attack needs techniques like reverse engineering and does not have a certain form. We
explore several attack methods in our paper.

The trigger set we use is the same as the trigger set used in [7], which contains abstract images that
are different than the training images.
New type of attack: Add-on Attacks. Although the extremely sparse winning tickets are naturally
robust to fine-tuning and pruning attacks due to their unique properties, the verification schemes based
on the sparse structure will potentially suffer from another kind of attacks, i.e., trying to “recover”

6

some pruned weights and change the sparse structure of the extremely sparse winning tickets. We
name it add-on attacks. Such a new attack type targets mask-based verification schemes and aims at
creating ambiguity against verification.

We propose a pipeline defending against such attacks. We can first prune weights whose magnitudes
are smaller than t. t is known to the owner of the model since the owner has the authentic sparse
masks. This can detect any noise with magnitude smaller than t, that the attackers add to the mask.
For noises of moderate level, their magnitudes become comparable to with the benign weights, hence
the prediction quality will be significantly degraded as the noise increases.

4.1 Finding Extreme Tickets

Table 1: Performance of dense models and extremely
sparse winning tickets, and the pruning specification.
The performance are expressed in terms of the test ac-
curacy of the dense model and the extremely sparse
winning ticket. The pruning specification includes the
proportion of remaining weight as well as the number of
pruning with four different pruning ratios (in brackets).

Model Dataset Performance Pruning Specification

ResNet-20 CIFAR-10 91.67%,91.66% 19.369% (5,1,8,1)
ResNet-20 CIFAR-100 66.36%,66.39% 19.901% (6,0,4,7)

ResNet-18 CIFAR-10 93.67%,93.60% 1.236% (18,3,0,6)
ResNet-18 CIFAR-100 72.44%,72.59% 2.251% (17,0,0,0)

To find extreme tickets, multiple rounds of
the train-prune-retrain process are usually re-
quired. Once the test performance of the cur-
rently trained model cannot match the perfor-
mance of the dense model, we revert the prun-
ing process back for one time and reduce the
pruning ratio. The choices of pruning ratio of
weights are [0.2, 0.1, 0.05, 0.1]. The results are
shown in Table 1. We also report the prun-
ing specification, which includes the remaining
weights of the extreme tickets, as well as the
pruning times for each pruning rate we choose.

Notice that ResNet-20 needs at least 15 times of pruning before we identify the extreme tickets, and
for ResNet-18, such number increases to 17. Numerous pruning rounds exemplify the effort to find
the extreme tickets and emphasizes the importance of protecting them.

4.2 Effectiveness of Different Schemes
Scheme V1 To verify that extreme tickets without correct key masks will have degraded performance
after retraining, we conduct experiments that directly re-train the models without the key masks on
ResNet-20 and ResNet-18. Fig. 2 show the performance of extreme tickets after retraining. It can
be seen that more “1”s in key masks can increase the performance divergence. Different splitting
functions do not make an essential difference, showing that the choice of score functions is flexible.

86

88

90

0 5 10 15 20
Res20s, CIFAR−10

Te
st

 A
cc

ur
ac

y

Type

Betweenness
EWP
OMP
Random 57.5

60.0

62.5

65.0

0 5 10 15 20
Res20s, CIFAR−100

Type

Betweenness
EWP
OMP
Random

84

86

88

90

92

94

0 5 10 15 20
Res18, CIFAR−10

Type

Betweenness
EWP
OMP
Random

62.5

65.0

67.5

70.0

72.5

0.0 2.5 5.0 7.5 10.0
Res18, CIFAR−100

Type

Betweenness
EWP
OMP
Random

Figure 2: Effectiveness of Scheme V1: Re-training without key masks generated by four methods: Betweenness,
EWP, OMP, Random (Paths). The x-axis is the relative sparsity w.r.t the extreme ticket.

Scheme V2 To show that our proposal can embed information into models’ sparse structures without
significantly harming their performance, we conduct experiments to compare the performance before
and after a signature string is embedded. Table 2 shows the test accuracy of two different models.
We can see from the table that the performance of extreme tickets with the string embedded is only
slightly lower than the original one, which proves that using Scheme V2 endows owners the ability to
embed information at a little cost of performance.

Scheme V3 We use a set of trigger images during the re-training of extremely sparse winning tickets
under Scheme V3. The inference performance on the original task (i.e., CIFAR-10 or CIFAR-100)
should not be greatly affected with trigger sets enabled. Table 3 shows the inference performance on
both the original images and the trigger set. We can see that the performance only drops 0.2% on
CIFAR-10 and 0.97% on CIFAR-100 for ResNet-20, while the detection rates of the trigger set images
are high (91.0% on CIFAR-10 and 90.0% on CIFAR-100). At the same time, the extreme tickets
trained from CIFAR-10 and CIFAR-100 without a trigger set can only have trigger set accuracies of

7

Table 2: Effectiveness of Scheme V2: performance
of extreme tickets after embedding QR codes. We
study two different models and compare their infer-
ence performance. The performance after embedding
and the performance drop are reported (in brackets).

Model Accuracy after embedding

CIFAR-10 CIFAR-100

ResNet-20 91.37% (↓ 0.29%) 66.14% (↓ 0.25%)
ResNet-18 93.56% (↓ 0.11%) 72.35% (↓ 0.24%)

Table 3: Effectiveness of Scheme V3: ResNet-20
on CIFAR-10 and CIFAR-100. ESWT is the abbre-
viation of Extremely Sparse Winning Tickets. We
re-train the two extremely sparse winning tickets
with QR code embedded found with the trigger set
enabled.

Model Test Accuracy

CIFAR-10 CIFAR-100
ESWT 91.66% (16.0%) 66.36% (0.0%)

ESWT + Ms + T 91.46% (91.0%) 65.39% (90.0%)

16.0% and 0.0%, respectively. This suggests the Scheme V3 can work as expected, i.e., perform well
on the trigger set while not significantly harming the performance on the original dataset.

4.3 Robustness Against Removal Attacks

Fine-tuning Attacks Fine-tuning the model can only change the values of weights while not
changing the sparse structure of extreme tickets. As a consequence, Scheme V2 and V3 is resistant to
fine-tuning attacks under the white-box verification setting.

For Scheme V1, users are required to provide the key masks to recover the correct masks and then
re-train the extreme tickets. One key property we need to verify is that attackers cannot bypass the
requirement of key masks by fine-tuning the model on a new dataset. To this end, we conduct transfer
experiments described as follows: on CIFAR-100, we train the model with the locked mask generated
on the extreme tickets identified on CIFAR-10; on CIFAR-10, we conduct a similar experiment with
the locked mask from CIFAR-100. The results are shown in Table 4. From the table, we can see that
even transferring the sparse mask cannot bypass the requirement of key masks. The performance
gaps between the transferred model and the extreme tickets found on each set are greater than 3% on
both datasets, much higher than the 1% criterion we set for matching performance. Such big gaps
prove that the model after fine-tuning attacks is not useful in practice.

Table 4: Fine-tuning Attacks on Scheme V1: Trans-
ferring extreme tickets of ResNet-20 found on CIFAR-
10/100. 10→100 means transferring from CIFAR-10
to CIFAR-100 and vice versa. The percentage inside
brackets denotes the relative sparsity of the key mask
w.r.t the extremely sparse winning ticket.

Model Test Accuracy

10→100 100→10
OMP (5%) 59.80% 87.66%
EWP (5%) 60.27% 88.21%

Betweenness (5%) 59.61% 87.22%

Table 5: Pruning Attacks on Scheme V3: Perfor-
mance of ResNet-20 on CIFAR-10/100 after prun-
ing with different pruning ratios. The accuracy on
CIFAR-10/100 are shown outside the brackets and the
accuracy on trigger images are inside the brackets.

Model Accuracy

CIFAR-10 CIFAR-100
Original model 91.46% (91.0%) 65.39% (90.0%)

Pruning 5% 91.33% (89.0%) 64.78% (91.0%)
Pruning 10% 90.66% (90.0%) 62.96% (73.0%)
Pruning 20% 87.86% (81.0%) 50.14% (16.0%)
Pruning 50% 33.04% (18.0%) 8.56% (0.00%)

We also have conducted experiments to study if Scheme V3 can resist fine-tuning attacks under
black-box verification. We first retrain the extreme tickets under Scheme V3 on CIFAR-10/-100,
and continue to fine-tune it on CIFAR-100/-10. The extreme tickets trained on CIFAR-10 can only
achieve 61.59% test accuracy on CIFAR-100, and the extreme tickets on CIFAR-100 can only achieve
88.21% test accuracy on CIFAR-10. The strong bond between sparse structure (masks of extreme
tickets) and datasets on which the extreme tickets we found brings performance drop when fine-tuning
them on a new dataset, which devalues such attack and also highlight the robustness of the Scheme
V3 against fine-tuning attacks.

Model pruning Pruning the model under Scheme V1 is meaningless since pruning cannot recover
the full masks. So we focus on Scheme V2 and V3 for model pruning attacks. Pruning the trained
model leaves more “0” in the trained model, which might change the extracted QR code and makes it
unable to decode. To study if our model can resist the pruning attack, we conduct experiments with
different pruning methods (one-shot magnitude and random pruning) and different pruning ratios
(5%, 10%, 20%, 30%, 50%).

We first examine our proposal for black-box verification (Scheme V3). In Table 5 we show the results
of Scheme V3 against pruning attacks. The accuracy on trigger set images drops after the accuracy
on the original dataset (CIFAR-10/CIFAR-100) has decreased considerably, which means that the

8

user-specific information cannot be removed without sacrificing its performance and demonstrates its
resilience against pruning attack.

We then test our proposal for white-box verification (Scheme V2). In Table 6 we show the inference
performance on original datasets after pruning, and also show the QR codes extracted from masks in
Figure 3. We can see that the performance of the pruned model will degrade dramatically after 20%
percent of one-shot magnitude pruning and 5% percent of random pruning. On the contrary, the QR
code extracted from the ResNet-20 can be decoded even after 20% percent of one-shot magnitude
pruning. Figure 4 shows the QR code extracted from ResNet-18. At the 5% pruning ratio, the string
can be easily decoded into a readable string. At the 10% pruning ratio, the string can still be partly
decoded, although the readability has been reduced. For the pruning ratio greater than 10%, the
inference performance has significantly dropped, making it meaningless to conduct such attack.

Table 6: Inference performance of extremely sparse
winning tickets on ResNet-20 and ResNet-18 after
model pruning attacks under different pruning meth-
ods and pruning ratios. OMP stands for one-shot
magnitude pruning. The numbers in brackets stand
for the pruning ratios.

Method (Percent) Performance

CIFAR-10 CIFAR-100
Scheme V2 91.37% 72.35%

OMP (5%) 91.25% 72.27%
OMP (10%) 90.72% 71.42%
OMP (20%) 88.03% 69.51%
OMP (30%) 80.08% 60.31%
OMP (50%) 36.62% 9.24%

Random Pruning (5%) 60.87% 58.23%
Random Pruning (10%) 30.49% 22.67%
Random Pruning (20%) 11.95% 3.23%
Random Pruning (30%) 12.05% 1.0%
Random Pruning (50%) 10.00% 1.0%

Table 7: Summary of different types of ambiguity
attacks. We show the specification of each attack,
i.e., the accessibility of each component to attackers,
the attack methods, and the targeted schemes.

Attack name Attackers can access How to attack Attack Scheme

fake1 W �Ml Forge W �Ms Scheme V1
fake2 W �M Add noise Wnoise �Mnoise Scheme V2 and V3
fake3 W �M and encode(·) Replace Ms Scheme V2 and V3

Table 8: Test accuracy and remaining weights after
add-on attacks under different rates on ResNet-20,
with the matching condition and the decode-ability
of the QR code extracted from the masks.

Add-on Rate Test Accuracy (% rremain) Decode-able? Match?
0% 91.53% (19.369%) 3 3

0.5% 91.04% (19.789%) 3 3
1% 90.23% (20.179%) 3 7
2% 86.64% (21.009%) 7 7
5% 79.49% (23.386%) 7 7

10% 71.06% (27.402%) 7 7

Original Prune 5% Prune 10% Prune 20% Prune 30% Prune 50%

Figure 3: QR code extracted from ResNet-20 under pruning attacks with different ratios. The codes extracted
under 5% and 10% pruning ratio can be easily decoded into readable strings “signature”, and the code under
20% pruning ratio can be decoded into “sigiature” with tools at https://github.com/merricx/qrazybox/.

Original Prune 5% Prune 10% Prune 20% Prune 30% Prune 50%

Figure 4: QR code extracted from ResNet-18 under pruning attacks with different ratios. The code extracted
under 5% can be easily decoded into a readable string “signature”, and the code under 10% pruning ratio can be
decoded into “simçi@5re” with tools at https://github.com/merricx/qrazybox/.

4.4 Resilience Against Ambiguity Attacks
In this section, we will evaluate the robustness against ambiguity attacks summarized in Table 7.

Scheme V1 (fake1: Attackers can access W �Ml only) The goal of fake1 is to forge a new key
mask M′s with new underlying weights W′. As the attacker has no prior information on (W�Ms),
the forging process can only be performed randomly. From Figure 5 we can see that such an attack
method is not practical as the performance gap is much greater than εf (= 1%) after using random key
masks. For example, if we adopt OMP as the scoring function to construct the key masks, we only
need a key mask of around 10% relatively sparsity to make the model resistant to random attacks.

9

https://github.com/merricx/qrazybox/
https://github.com/merricx/qrazybox/

86

88

90

0 5 10 15 20
Res20s, CIFAR−10

Te
st

 A
cc

ur
ac

y
Type

Betweenness
EWP
OMP
Random 57.5

60.0

62.5

65.0

0 5 10 15 20
Res20s, CIFAR−100

Type

Betweenness
EWP
OMP
Random

84

86

88

90

92

94

0 5 10 15 20
Res18, CIFAR−10

Type

Betweenness
EWP
OMP
Random

62.5

65.0

67.5

70.0

72.5

0.0 2.5 5.0 7.5 10.0
Res18, CIFAR−100

Type

Betweenness
EWP
OMP
Random

Figure 5: Random attacks on Scheme V1. The x-axis is the relative sparsity of the key masks. The solid/dashed
lines represent the performance before/after random attacks.

Scheme V2 and V3 (fake2: Attackers can access W �M but not knowing encode(·)) One might
use add-on attacks and try to “contaminate” the information we embed in the sparse mask. Specifically,
we randomly add noises to the position where the weights are pruned. We test with add-on rates
ranging from 0% to 10% since a 10% efficiency gap will diminish the value of attacking the model.
The results are shown in Table 8 and Figure 6. From the table, we can see that introducing 1% of
noise to the trained model will un-match the attacked model (i.e., the performance gap becomes
greater than 1%). For the add-on rates smaller than 1%, the QR code embedded in the sparse mask
can be normally decoded into a normal string. Such results prove that both Scheme V2 and V3 are
resistant to attack fake2.

Original Add 0.5% Add 1% Add 2% Add 5% Add 10%

Figure 6: Visualization of QR code extracted and processed under different add-on rates.

(fake3: Attackers can access W�M and encode(·)) If the attacker knows about the encode function
for generating the Ms, a similar but fake signature mask M′s which contains a different signature
can be generated in the same way. However, as shown in Figure 1, without the finder, alignment,
and version patterns, one can hardly tell which part belongs to a QR code. Even if the attacker
knows the position where the code is embedded (namely an insider attack [34]), directly replacing
the embedded region with a new signature mask M′s and W′ (noise) will also considerably degrade
the performance of the attacked model since a large amount of “incorrect” weights are introduced.
For example, for ResNet-20 on CIFAR-10, the test accuracy of the attacked model will drop from
91.37% to 57.00%, which is nearly a 50% degradation in performance. Such a big loss shows that it
is infeasible to perform the insider attack.

5 Conclusion and Discussion of Broad Impact
LTH offers superior sparse models through burdensome explorations, serving as an intriguing yet
expansive solution for resource-constrained applications. It motivates the necessity of protecting the
copyright of these precious winning tickets. We investigate a brand new verification technique by
leveraging the sparse structural information, which embeds signatures into lottery tickets’ typologies.
Extensive results verify our proposal’s effectiveness and robustness against diverse malicious attacks.

This work is scientific in nature and should bring positive societal impacts. Note that every second,
giant and start-up companies have invested billions of dollars to identify superior yet light-weight
compact deep neural networks virtually. We believe our new lottery verification mechanism can assist
both industry and academia in defending their interests from illegal distribution or usage.

References
[1] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable

neural networks. In International Conference on Learning Representations, 2018.

[2] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network
pruning based on connection sensitivity. arXiv preprint arXiv:1810.02340, 2018.

10

[3] Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. In International Conference on Learning Representations, 2019.

[4] Haoran You, Chaojian Li, Pengfei Xu, Yonggan Fu, Yue Wang, Xiaohan Chen, Richard G.
Baraniuk, Zhangyang Wang, and Yingyan Lin. Drawing early-bird tickets: Toward more efficient
training of deep networks. In 8th International Conference on Learning Representations, 2020.

[5] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin. Pruning neu-
ral networks at initialization: Why are we missing the mark? arXiv preprint arXiv:2009.08576,
2020.

[6] Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi Satoh. Embedding watermarks
into deep neural networks. In Proceedings of the 2017 ACM on International Conference on
Multimedia Retrieval, pages 269–277, 2017.

[7] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet. Turning
your weakness into a strength: Watermarking deep neural networks by backdooring. In 27th
{USENIX} Security Symposium ({USENIX} Security 18), pages 1615–1631, 2018.

[8] Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, Marc Ph Stoecklin, Heqing Huang, and
Ian Molloy. Protecting intellectual property of deep neural networks with watermarking. In
Proceedings of the 2018 on Asia Conference on Computer and Communications Security, pages
159–172, 2018.

[9] Haoyu Ma, Tianlong Chen, Ting-Kuei Hu, Chenyu You, Xiaohui Xie, and Zhangyang
Wang. Undistillable: Making a nasty teacher that cannot teach students. arXiv preprint
arXiv:2105.07381, 2021.

[10] Bita Darvish Rouhani, Huili Chen, and Farinaz Koushanfar. Deepsigns: An end-to-end water-
marking framework for ownership protection of deep neural networks. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 485–497, 2019.

[11] Jie Zhang, Dongdong Chen, Jing Liao, Weiming Zhang, Gang Hua, and Nenghai Yu. Passport-
aware normalization for deep model protection. Advances in Neural Information Processing
Systems, 33, 2020.

[12] Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. Advances in Neural Information
Processing Systems, 33, 2020.

[13] Steven A Janowsky. Pruning versus clipping in neural networks. Physical Review A, 39(12):6600,
1989.

[14] Song Han, Jeff Pool, John Tran, and William J Dally. Learning both weights and connections
for efficient neural network. In NIPS, 2015.

[15] Michael C Mozer and Paul Smolensky. Skeletonization: A technique for trimming the fat from
a network via relevance assessment. In Advances in neural information processing systems,
pages 107–115, 1989.

[16] Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in neural
information processing systems, pages 598–605, 1990.

[17] Babak Hassibi and David G Stork. Second order derivatives for network pruning: Optimal
brain surgeon. Morgan Kaufmann, 1993.

[18] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. arXiv preprint arXiv:1611.06440, 2016.

[19] Xin Dong, Shangyu Chen, and Sinno Jialin Pan. Learning to prune deep neural networks via
layer-wise optimal brain surgeon. arXiv preprint arXiv:1705.07565, 2017.

11

[20] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I Morariu, Xintong Han, Mingfei
Gao, Ching-Yung Lin, and Larry S Davis. Nisp: Pruning networks using neuron importance
score propagation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 9194–9203, 2018.

[21] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode
connectivity and the lottery ticket hypothesis. In International Conference on Machine Learning,
pages 3259–3269. PMLR, 2020.

[22] Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv,
abs/1902.09574, 2019.

[23] Zhenyu Zhang, Xuxi Chen, Tianlong Chen, and Zhangyang Wang. Efficient lottery ticket
finding: Less data is more. In Marina Meila and Tong Zhang, editors, Proceedings of the
38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pages 12380–12390. PMLR, 18–24 Jul 2021.

[24] Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Zhangyang Wang, and
Michael Carbin. The lottery ticket hypothesis for pre-trained bert networks, 2020.

[25] Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Michael Carbin, and
Zhangyang Wang. The lottery tickets hypothesis for supervised and self-supervised pre-training
in computer vision models. arXiv preprint arXiv:2012.06908, 2020.

[26] Haonan Yu, Sergey Edunov, Yuandong Tian, and Ari S. Morcos. Playing the lottery with
rewards and multiple languages: lottery tickets in rl and nlp. In 8th International Conference on
Learning Representations, 2020.

[27] Xuxi Chen, Zhenyu Zhang, Yongduo Sui, and Tianlong Chen. {GAN}s can play lottery tickets
too. In International Conference on Learning Representations, 2021.

[28] Haoyu Ma, Tianlong Chen, Ting-Kuei Hu, Chenyu You, Xiaohui Xie, and Zhangyang Wang.
Good students play big lottery better. arXiv preprint arXiv:2101.03255, 2021.

[29] Zhe Gan, Yen-Chun Chen, Linjie Li, Tianlong Chen, Yu Cheng, Shuohang Wang, and Jingjing
Liu. Playing lottery tickets with vision and language. arXiv preprint arXiv:2104.11832, 2021.

[30] Tianlong Chen, Yongduo Sui, Xuxi Chen, Aston Zhang, and Zhangyang Wang. A unified lottery
ticket hypothesis for graph neural networks. arXiv preprint arXiv:2102.06790, 2021.

[31] Neha Mukund Kalibhat, Yogesh Balaji, and Soheil Feizi. Winning lottery tickets in deep
generative models, 2021.

[32] Tianlong Chen, Yu Cheng, Zhe Gan, Jingjing Liu, and Zhangyang Wang. Ultra-data-efficient gan
training: Drawing a lottery ticket first, then training it toughly. arXiv preprint arXiv:2103.00397,
2021.

[33] Erwan Le Merrer, Patrick Perez, and Gilles Trédan. Adversarial frontier stitching for remote
neural network watermarking. Neural Computing and Applications, 32(13):9233–9244, 2020.

[34] Lixin Fan, Kam Woh Ng, and Chee Seng Chan. Rethinking deep neural network ownership
verification: Embedding passports to defeat ambiguity attacks. 2019.

[35] Shreyas Malakarjun Patil and Constantine Dovrolis. Phew: Paths with higher edge-weights give
"winning tickets" without training data, 2020.

[36] Tan Jin Soon. Qr code. Synthesis Journal, 2008:59–78, 2008.

[37] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

12

	Introduction
	Related Work
	The Lottery Ticket Claims its Ownership
	The Lottery Ticket Hypothesis
	Verification Framework for Extremely Sparse Winning Tickets
	Structural Information As Signatures
	Protecting the Sparse Masks: Splitting Signature from Sparse Model
	Protecting the Trained Tickets: Embedding Signature into Sparsity Masks

	Ownership Verification with Sparse Structural Information

	Experiments
	Finding Extreme Tickets
	Effectiveness of Different Schemes
	Robustness Against Removal Attacks
	Resilience Against Ambiguity Attacks

	Conclusion and Discussion of Broad Impact

