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Abstract

In this work we introduce DivNormEI, a novel bio-inspired convolutional network
that performs divisive normalization, a canonical cortical computation, along with
lateral inhibition and excitation that is tailored for integration into modern Artificial
Neural Networks (ANNs). DivNormEI, an extension of prior computational models
of divisive normalization in the primate primary visual cortex, is implemented
as a modular layer that can be integrated in a straightforward manner into most
commonly used modern ANNs. DivNormEI normalizes incoming activations via
learned non-linear within-feature shunting inhibition along with across-feature
linear lateral inhibition and excitation. In this work, we show how the integration of
DivNormEI within a task-driven self-supervised encoder-decoder architecture en-
courages the emergence of the well-known contrast-invariant tuning property found
to be exhibited by simple cells in the primate primary visual cortex. Additionally,
the integration of DivNormEI into an ANN (VGG-9 network) trained to perform
image classification on ImageNet-100 improves both sample efficiency and top-1
accuracy on a held-out validation set. We believe our findings from the bio-inspired
DivNormEI model that simultaneously explains properties found in primate V1
neurons and outperforms the competing baseline architecture on large-scale object
recognition will promote further investigation of this crucial cortical computation
in the context of modern machine learning tasks and ANNS.

1 Introduction

Past computational models of vision have served the important coupled goals of understanding
biological vision and progressing towards creating machines with powerful visual capability. Hubel
and Wiesel’s seminal work characterizing receptive fields in the cat striate cortex (Hubel & Wiesel,
1968)) inspired Fukushima’s Neocognitron (Fukushima,|1980) (a hierarchical extension of this building
block) and later the LeNet (LeCun et al.l | 1998) model that combined convolutional neural networks
with gradient-based learning, and is the predecessor to most of today’s modern ANNSs that achieve
tremendous success in the field of computer vision.

Following this line of brain-inspired architectures for computer vision, in this work we introduce
DivNormEI, a novel computational model of divisive normalization and lateral interactions that is an
extension of prior computational neuroscience models of normalization and horizontal connections
(Blakeslee & McCourt, |1999; Robinson et al.; Schwartz & Simoncelli, [2001; |Grossberg & Raizada,
2000; |L1,{1998). Divisive normalization has been extensively studied in the fields of neuroscience
and perception; these studies have highlighted the importance of this canonical computation for
several traits of biological vision such as nonlinear response properties, efficient coding, invariance
with respect to specific stimulus dimensions and redundancy reduction. Here, we combine divisive
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normalization with linear lateral interactions to design a single circuit that we call DivNormEIL.
Different from prior models that were fit to explain behavioral/physiological data or used a small
stimulus set, here we explore training DivNormEI’s parameters in a task-driven fashion by optimizing
performance on large-scale supervised object recognition and by optimizing self-supervised objective
functions with gradient-based learning. We demonstrate the emergence of the ubiquitous contrast
invariant tuning property in a self-supervised ANN equipped with DivNormEI. Additionally, we
report our observation of improved large-scale object recognition accuracy on the ImageNet-100
dataset by virtue of the DivNormEI block. Comparing the tuning properties of our model’s simple-
cell equivalent neurons pre- and post-normalization, we observe the crucial role played by lateral
connections and normalization to emergence of contrast invariance. We observed that a VGG-16
network pretrained on the large-scale ImageNet dataset did not show this property of contrast invariant
tuning, further highlighting the specific role of normalization and lateral connections in developing
this particular invariance. We hypothesize that the hierarchical incorporation of our DivNormEI (out
of the scope of this paper) will promote development of invariance to more stimulus dimensions that
shall be advantageous for high-level vision tasks such as image segmentation and object detection.

2 Methods

In this work, we extend prior computational models of divisive normalization and lateral interactions,
and implement them within the framework of modern ANNs. We develop a learnable version of this
nonlinear normalization computation along with linear excitatory and inhibitory lateral connections
in a single module we call DivNormEI explained as follows.

2.1 DivNormkEI layer: Learnable divisive normalization with lateral connections

We begin by defining a typical instantiation of divisive normalization that has been widely studied by
prior art wherein, divisive normalization computes the ratio of an individual neuron’s response to
the summed activity of other neurons in its neighborhood. The following equation summarizes this
well-studied formulation of a neuron 7’s normalization corresponding to an input stimulus drive z:

yi(z) = bi(z)
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where j represents neighboring neurons of ¢ and w, o are learnable free parameters.

We now define our proposed learnable divisive normalization layer with lateral connections called
DivNormEI. Let Y be an intermediate feature map — in response to stimulus drive X — that is
being normalized by DivNormEI s.t. Y € IR"W:¢, ¢ is the number of features present in Y (e.g.
if Y is the convl feature map in a ResNet-50 network, ¢ = 64) while h, and w are the spatial
dimensions of Y. In our model, each neuron in feature map k at spatial location 7, j receive three
kinds of activity modulation from neighboring neurons with ¢, j at their center: (i) divisive (or
shunting) modulation that performs learned upscaling / downscaling (similar to gain control), (ii)
linear excitatory modulation that positively influences activity with a learned additive operation and
(iii) linear inhibitory modulation that negatively influences activity with a subtractive operation.

Once the intermediate feature map Y arrives into the DivNormEI block, the first modulatory influence
described above, i.e., divisive normalization of incoming features is performed as follows:

- Y2
v . k(l') _ ‘ z,j,k(aj)
“d Smawdv Y2 o (2) + o2

m,n,k* m,n,k

2

Per the above equation, divisive normalization of neurons in feature map k is performed using the
weighted summed activity of neighboring neurons (indexed by m, n) with a learnable 2-D depthwise-
convolutional weight matrix wﬁi” € IRhaiv:Waiv that is unique to each feature map. hgy, Waio
represent the spatial extent of divisive normalization. Neurons in feature map k are normalized only
by their spatial neighbors in the same feature map k. This particular design choice ensures that
activations in neighboring spatial locations have reduced redundancy after divisive normalization.

The divisively normalized output f/” i from Eqn. [2|is then modulated by two opposing lateral
interactions: additive excitation and subtractive inhibition. Two learnable weight matrices w*¢ €
IRPeWe:c¢ and winh ¢ IRMWi¢.¢ compute the weighted summed activity of neighboring neurons
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Figure 1: Architecture diagram for DivNormEI described above with spatial divisive normalization
and cross-channel linear excitation and inhibition

from all feature channels for excitation and inhibition as follows (h., w, and h;, w; denote the spatial
extent of excitatory and inhibitory lateral connections):

Eijx(z) = Em,n,owiﬁz,o,k * ?m,n,O(x) 3
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Eqn. 3 and 4 are implemented as 2D convolutions with kernels w®*¢ and w'™" respectively. Linear
excitation and inhibition E' and I are integrated with Y as follows to produce the normalized output:

Zijn(x) =Y ik + B jrl(x) — I jx(z) (5)

k(7) =
Zi jr(x) = v(BN(Z; j1(x))) (6)

In the above Eqn. 6, BN corresponds to batch normalization (loffe & Szegedy, 2015) and ~y represents
the ReLU nonlinearity. In our experiments, we initialize w;, to be a set of ¢ 2-D Gaussian
kernels to build strong local divisive inhibition that prevent redundancies with gradually decreasing
inhibition from far-off neurons. However, it is to be noted that these parameters are also trained with
backpropagation along with w* and w*™” that are initialized randomly. Unless specified otherwise,
all lateral connection weights w* are maintained non-negative at each step of training. In subsequent
sections, we discuss our experiments training ANNs with DivNormEI using self-supervised and
supervised objective functions. In all our experiments, we set hg;, = Wgi = 5, he = we = 9 and
h; = w; = 7 based on hyperparameter optimization w.r.t classification accuracy on a custom dev set
containing a proportion of ImageNet-100 train images.

3 Experiments

3.1 Experiment 1: In-silico electrophysiology with task-driven ANN

Berkeley Segmentation Dataset 500. In this experiment, we explored the self-supervised task
of image super-resolution on natural images from the Berkeley Segmentation Dataset (Arbelaez
et al., | 2010), referred from here onward as BSDS500. For training super-resolution models in this
experiment, we sample random crops of size 48x48 pixels from the training images of BSDS500
(original image size is 321x481 pixels) and use them as the high-resolution ground truth images.
Corresponding low-resolution input images are obtained by down-sampling the ground truth images
by a factor of 4 to size 12x12 pixels.

Encoder-decoder architecture for super-resolution. We implemented an encoder-decoder archi-
tecture for super-resolution. The encoder contains a fixed convolution layer initialized with a Gabor
filter bank and a DivNormEI layer. The Gabor filter bank contains square filters of size 15px and 21px.
At each filter size, we design filters selective to 4 orientations (¢ = 0,7/4, /2,37 /4), 2 spatial
frequencies (2 cycles per degree, 3 cycles per degree) and 4 phase values (¢ = 0, 7/2, 7, 37/2). The



encoder’s output thus contains 64 feature maps. The decoder consists of 3 layers that upsample the
encoder’s output; first two layers are instantiated with transposed convolution (Zeiler & Fergus|[2014)
with 64 filters each followed by batch normalization and ReLU nonlinearity. The last decoder layer is
a 1x1 convolution with tanh nonlinearity that produces the final output in image space.

Lateral connections encourage data-driven emergence of contrast invariant tuning Simple cells
in primary visual cortex of cats and primates maintain contrast-invariant orientation tuning, i.e., the
orientation selective response of neurons remains roughly steady despite varying input stimulus
contrast (Troyer et al.| |1998; Nowak & Baronel |2009). In this paper, we studied whether lateral
connections and data-driven self-supervised learning can contribute to the emergence of this property.
To study this hypothesis, we generated 100 sinusoidal grating stimuli that correspond to 25 grating
orientations obtained at uniform intervals between 0 and 7 at 4 contrast levels (shown in Fig. @E).
For each of the 64 feature maps in our encoder, we computed the neural tuning curves in response to
the above 100 stimuli. Using stimuli at each contrast level, we computed the average of these tuning
curves after ordering them such that each neuron’s response to its preferred orientation stimulus was
at the center of its tuning curve.

The average tuning curves before normalization are shown as a function of stimulus contrast in
Fig[2] A, wherein the orientation selectivity decreases with decreasing stimulus contrast . This is
similar to the average tuning curves of an ImageNet pretrained VGG-16 that we show in Fig. 2]B,
i.e., both the self-supervised pre-normalization encoder neurons and ImageNet-pretrained VGG-16
neurons behave similarly and show a lack of contrast invariance.

On the other hand, the average tuning curve (of the same neurons in Fig[2] A) after normalization
using DivNormEI as shown in Fig[2]C post-normalization is significantly more invariant to stimulus
contrast (orientation selectivity and tuning curve variance is consistent across contrast levels). This
post-normalization behavior shown in Fig. 2]C is similar to the reference behavior of cat primary
visual cortical neurons we show in Fig. |Z|B obtained from (Busse et al., [2009)).
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Figure 2: (A) Average tuning curve of neurons in our self-supervised encoder’s output before
application of DivNormEI layer. (B) Average tuning curve of the convl neurons of the VGG-16
model (Simonyan & Zissermanl 2014). (C) Average tuning curve of our self-supervised encoder’s
output after DivNormEI layer. (D) Reference of the contrast invariant tuning property in cat V1
simple cells. (Busse et al.l 2009) (E) Example sinusoidal grating stimulus at four contrast levels.

3.2 Experiment 2: DivNormEI improves object recognition accuracy on ImageNet-100

In this experiment, we evaluated the utility of our proposed DivNormEI model for the computer
vision task of object recognition on the ImageNet-100 dataset (a subset of the ImageNet dataset with
100 randomly sampled classes which are also present in the validation set, standardized by |Tian et al.
(2020)). For fast prototyping and GPU memory constraints, we created a custom shallower variant
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Figure 3: Image classification performance of Baseline-VGG9 and Divnorm-VGG9Y, error bars
computed over 2 random seeds. The steep accuracy increase at epoch 30 coincides with learning rate
decay for both architectures

of the VGG architecture with 9 layers of processing that we used in this experiment. We compared
the following two architectures on ImageNet-100 classification: (a) Baseline-VGG9 — a 9-layer
ANN with 3x3 convolution layers, max pooling and fully connected layers for classification, and (b)
DivNorm-VGG9 — a 9-layer ANN with the same architecture as Baseline-VGG9, with the addition
of an end-to-end trainable DiviNormEI block at the output of the first convolution layer (output of
DivNormEI block sent to subsequent 8 layers for classification). We trained two initializations of
each of these models wherein the first pair of Baseline-VGG9 and DivNorm-VGG9 were initialized
with the same weights, same as the second pair of Baseline-VGG9 and DivNorm-VGG9 models. We
observed that DivNorm-VGG9 models outperformed Baseline-VGG9 models on the ImageNet-
100 validation set. DivNorm-VGG9 had better sample efficiency than Baseline-VGG9, and was more
accurate in classification by 1.8% (Top-1 validation accuracy of Baseline-VGG9: 73.3%, DivNorm-
VGG9: 75.12%) . This observation suggests that DivNormEI is also relevant to improving the
discriminative power of modern ANNSs and can be integrated into further computer vision solutions
like image segmentation and detection that rely on object semantics and discriminability.

4 Related work

Computational models of divisive normalization and lateral connections have been studied previously
by the neuroscience and vision science communities. Of these models, we find|Schwartz & Simoncelli
(2001)’s model to be most relevant to our divisive normalization computation, where the authors
developed a simple yet neurally plausible circuit for divisive normalization optimized to maximize
independence of filter responses. Our model is also related toRobinson et al.’s model that performs
orientation- and spatial-frequency dependent normalization of filter responses with model parameters
fit to best explain a suite of brightness illusions. Our work is also related to prior computational
models of lateral interactions in the primary visual cortex such as|Li| (1998)); Grossberg & Raizada
(2000). Our proposed model is an extension of these sophisticated yet small-scale models (in terms
of size and stimulus exposure) to integration within large-scale gradient-trained ANNSs.

We find our work to be related to Ballé et al.| (2015) where a deep network integrated with learnable
Generalized Divisive Normalization modules (albeit without lateral connections that are present in
our model) is trained to perform the task of image density modeling and compression. Our proposed
work is also related to[Burg et al.|(2021) where the authors develop an end-to-end trainable model of
divisive normalization similar to ours. Key differences between our work and the above work are: (i)
our model performs linear lateral inhibition and excitation on top of learnable divisive normalization,
(ii) parameters of our model are estimated with computer vision tasks such as super-resolution and
image recognition, whereas [Burg et al.| (2021)) train their model to predict V1 neuronal responses
recorded from macaque primary visual cortex.



5 Discussion

We developed DivNormEl, a novel computational model of divisive normalization and lateral in-
teractions — both canonical computations that are ubiquitously found in biological visual neurons
associated with diverse functions such as contrast normalization, redundancy reduction, and non-
linear neuronal response properties. We conducted two experiments to address (1) the emergent
biological similarity from data-driven training of our model and (2) its utility in modern ANNs
trained on computer vision problems. We computed the orientation tuning curves of neurons post
normalization by DivNormEI and observed their response to be invariant to input stimulus contrast.
This property of contrast invariant tuning is similar to that of primary visual cortical neurons. We
also tested the specific role of divisive normalization in developing contrast invariant tuning; i.e., an
ImageNet-pretrained VGG-16 model exposed to a million natural images still does not possess this
property. We also compared two pairs of identical convolutional architectures with the difference
that one network among each pair contained a DivNormEI layer after its first convolution layer
on large-scale object recognition from images in the ImageNet-100 dataset. We observed that the
architectures with DivNormEI blocks possessed higher sample efficiency and classification accuracy
compared to their identical baseline architectures without DivNormEI. We find this superior perfor-
mance of DivNorm-architectures suggestive of the role of DivNormEI (and similar brain-inspired
computations) in improving performance on computer vision tasks like image segmentation, where
object discriminability is key. The studies in this paper were limited to specific forms of lateral
interaction and by application to smaller-sized deep networks due to time-limited computational
constraints. However, we believe that our promising initial findings encourage further investigation of
the role and implementation of divisive normalization and other relevant lateral and recurrent cortical
computations in modern ANN architectures.
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