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Abstract

k-nearest-neighbor machine translation (kNN-001
MT), proposed by Khandelwal et al. (2021),002
has achieved many state-of-the-art results in003
machine translation tasks. Although effective,004
kNN-MT requires conducting kNN searches005
through the large datastore for each decoding006
step during inference, prohibitively increasing007
the decoding cost and thus leading to the dif-008
ficulty for the deployment in real-world appli-009
cations. In this paper, we propose to move010
the time-consuming kNN search forward to011
the preprocessing phase, and then introduce012
k Nearest Neighbor Knowledge Distillation013
(kNN-KD) that trains the base NMT model to014
directly learn the knowledge of kNN. Distilling015
knowledge retrieved by kNN can encourage016
the NMT model to take more reasonable tar-017
get tokens into consideration, thus addressing018
the overcorrection problem. Extensive experi-019
mental results show that, the proposed method020
achieves consistent improvement over the state-021
of-the-art baselines including kNN-MT, while022
maintaining the same training and decoding023
speed as the standard NMT model1.024

1 Introduction025

Neural machine translation (NMT) has shown im-026

pressive progress with the prevalence of deep neu-027

ral networks (Vaswani et al., 2017; Zhang et al.,028

2019; Chen et al., 2020). Recently, Khandelwal029

et al. (2021) have proposed k-nearest-neighbor ma-030

chine translation (kNN-MT) that first stores context031

representations and target tokens into a large data-032

store, and then retrieves k possible target tokens033

by conducting nearest search from the datastore to034

help with the final next-token decision. The results035

show that kNN-MT can significantly improve the036

performance over the base NMT model.037

Despite the outstanding performance, kNN-MT038

will drastically increase the testing runtime since039

each decoding step needs to conduct kNN searches040

1We will release the source code upon acceptance

(Meng et al., 2021). How to speed up the decoding 041

of kNN-MT without degrading performance still 042

remains an open question. Several recent works 043

(Meng et al., 2021; Wang et al., 2021b) introduce 044

some elaborate strategies to compress the datastore 045

in which kNN searches are conducted, thus improv- 046

ing decoding efficiency to some extent. However, 047

we argue that, where there is a time-consuming 048

kNN search in the decoding phase, there is the pro- 049

hibitive decoding cost, which makes it hard to be 050

deployed on real-world applications. 051

In order to address the aforementioned issue 052

more thoroughly, it is necessary to figure out why 053

kNN-MT performs so well. The standard NMT 054

models are typically trained with cross-entropy 055

(CE) loss with teacher forcing technique, which 056

requires a strict word-by-word matching between 057

the model prediction and the ground-truth. In nat- 058

ural language, a sentence usually has more than 059

one expression. However, even when the model 060

predicts a word that is reasonable but deviates from 061

the ground-truth, the CE loss will treat it as an er- 062

ror and punish the model. This phenomenon is 063

called overcorrection (Zhang et al., 2019), which 064

often seriously harms the generalizability of NMT 065

models. We conclude that kNN-MT can alleviate 066

the problem of overcorrection by retrieving more 067

reasonable target tokens in the decoding phase. 068

One natural question can be raised: can we train 069

the model to directly learn the knowledge of kNN 070

in the training phase, thus maintaining the standard 071

decoding process without any additional decoding 072

cost? To answer this question, we propose k Near- 073

est Neighbor Knowledge Distillation (kNN-KD) to 074

distill the knowledge of the non-parametric model, 075

i.e., kNN, into the base NMT model in the training 076

phase. In detail, we first construct the datastore and 077

then conduct kNN searches immediately. These 078

two steps can be done offline in the preprocessing 079

phase. During training, a teacher distribution pTkNN 080

can be easily computed using the pre-stored results 081
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of kNN searches to train the NMT model to directly082

learn the knowledge of kNN. At inference time,083

kNN searches are not required, so the decoding084

speed is as fast as the base NMT model. Therefore,085

kNN-KD can achieve two desirable goals simulta-086

neously: preventing overcorrection (effectiveness)087

and reducing decoding cost (efficiency).088

We conduct experiments on two widely acknowl-089

edged NMT benchmarks: IWSLT’14 German-090

English and IWSLT’15 English-Vietnamese. Ex-091

perimental results show that our kNN-KD main-092

tains the same training and decoding speed as the093

standard NMT model, while it outperforms vanilla094

kNN-MT and all the other KD methods, and yields095

an improvement of +2.14 and +1.51 BLEU points096

over the Transformer baseline. We further verify097

that kNN-KD can be adapted to diverse domains098

by performing experiments on multi-domains trans-099

lation datasets (Aharoni and Goldberg, 2020) and100

achieving 2.56 BLEU improvement over vanilla101

kNN-MT on average.102

In summary, the contributions of our work are as103

follows:104

• We propose kNN-KD that considers the kNN105

distribution as a teacher to guide the training106

of the base NMT model (Section 3.1).107

• We prove that our proposed kNN-KD can help108

to address the overcorrection issue with theo-109

retical analysis (Section 3.2).110

• Quantitative and qualitative results on differ-111

ent translation tasks validate the effectiveness112

and efficiency of our method (Section 4).113

2 Background114

2.1 Neural Machine Translation115

The goal of the standard NMT model is to learn the116

conditional probability pMT (y | x) for translating117

a sentence x = {x1, · · · , xm} in source language118

to a sentence y = {y1, · · · , yn} in target language.119

Translation is usually performed in a autoregres-120

sive manner, and its probability can be factored as121

pMT (y | x) = Πn
i=1p (yi | x,y<i). When predict-122

ing i-th token in the target sentence given (x,y<i)123

as the translation context, the NMT model encodes124

the translation context into a hidden state hi−1, and125

outputs a probability distribution over vocabulary126

V as follows:127

pMT (yi | x,y<i) =
exp(o⊤yihi−1)∑
w∈V exp(o⊤whi−1)

, (1)128

where oy is the output embedding for w ∈ V . 129

We denote the ground-truth target sentence as 130

y⋆ = {y⋆1, · · · , y⋆n}, and for each y⋆i in the training 131

set, the CE loss is usually used for optimizing NMT 132

models: 133

LCE = −
∑
yi∈V

1yi=y∗i
log pMT (yi | x,y⋆

<i) , (2) 134

where 1 is the indicator function, and the ground- 135

truth target sequence y⋆
<i is used in the conditions 136

of pMT due to the teacher forcing technique. 137

2.2 Nearest Neighbor Machine Translation 138

kNN-MT applies the nearest neighbor retrieval 139

mechanism to the decoding phase of a NMT model, 140

which allows the model direct access to a large- 141

scale datastore for better inference. Specifically, 142

kNN-MT includes two following steps: 143

Datastore Building Given a bilingual sentence 144

pair in the training set (x,y⋆) ∈ (X ,Y⋆), kNN- 145

MT first constructs a datastore D as follows: 146

(K,V) =
⋃

(x,y⋆)∈(X ,Y⋆)

{(f (x,y⋆
<i) , y

⋆
i ) , ∀y⋆

i ∈ y⋆} ,

(3) 147

where the keys are the mapping representations of 148

all the translation contexts in the training set using 149

the projection f(·), and the values are correspond- 150

ing ground-truth tokens. 151

Decoding During inference, kNN-MT aims to 152

interpolate the base NMT model’s probability in 153

Equation 1 with a kNN model. At each decoding 154

step i, kNN-MT maps the current translation con- 155

text to a representation f (x,y<i), which is used 156

to query the datastore for k nearest neighbors ac- 157

cording to the l2 distances. Denote the retrieved 158

neighbors as N i = {(kj , vj) , j ∈ {1, 2, . . . , k}}, 159

and then a kNN distribution over vocabulary V can 160

be computed as: 161

pkNN(yi | x,y<i) ∝∑
(kj ,vj)∈N i

1yi=vj exp

(
−d (kj , f (x,y<i))

τ

)
,

(4) 162

where τ is the temperature, and d(·, ·) is the l2 163

distance function. The final probability for the 164

next token in kNN-MT is the interpolation of 165

pMT (yi | x,y<i) and pkNN (yi | x,y<i) with a 166

tunable weight λ: 167

p (yi | x,y<i) = (1− λ)pMT (yi | x,y<i)

+ λpkNN (yi | x,y<i) .
(5) 168
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Temperature
𝑑𝑑𝑗𝑗′ = 𝑑𝑑𝑗𝑗/𝜏𝜏

Figure 1: Illustration of kNN-KD. In the preprocessing phase, we finish the datastore building in Step 1, and conduct
kNN search in advance in Step 2. These two steps can be done offline before training and inference. During training,
we compute the kNN distribution as a teacher to train the base NMT model in Step 3. During inference, the model
performs Step 4 to decode text in the standard Seq2Seq manner, which is omitted in this figure.

Note that each decoding step of each beam re-169

quires a kNN search over the whole datastore D,170

whose time complexity is O(|D|Bn) where B is171

the beam size, and n is the target length. The pro-172

hibitive decoding cost makes it hard for kNN-MT173

to be deployed on real-world applications.174

2.3 Knowledge Distillation175

Knowledge Distillation (KD) (Hinton et al., 2015b)176

refers to the transfer of knowledge from one neu-177

ral network T (called “teacher model”) to another178

network S (called “student model”).179

For convenience, we introduce the details of KD180

from the perspective of machine translation. Let181

z ∈ R|V| denote the logits over V . Student model182

S outputs the probability:183

pS (yi | x,y<i) =
exp (zyi)∑
w∈V exp (zw)

, (6)184

where zw is the logit for token w. Correspondingly,185

teacher model T also predicts the probability in186

the same way, and a temperature factor τ can be187

introduced to soften the teacher’s outputs as:188

pT (yi | x,y<i) =
exp (zyi/τ)∑
w∈V exp (zw/τ)

. (7)189

When τ → ∞, pT degenerates into a uniform dis-190

tribution, and when τ → 0, pT becomes an one-hot191

vector. Specifically, KD defines the objective as:192

LKD =−
∑
yi∈V

pT (yi | x,y⋆
<i)

× log pS (yi | x,y⋆
<i) .

(8)193

When we apply KD to improve the performance194

of machine translation, student model S is usually195

the NMT model that will be used for testing. And196

then, the overall training procedure is to minimize 197

the summation of Equation 2 and Equation 8: 198

L = (1− α)LCE + αLKD, (9) 199

where α is a weight to balance two losses. 200

3 Methodology 201

The core idea of our work is to enhance the NMT 202

model with a nearest neighbor retrieval mechanism 203

in a training manner, and thus quantitatively evalu- 204

ated, the model can perform as well or better than 205

vanilla kNN-NMT without any additional decoding 206

cost. In Section 3.1, we first introduce k Nearest 207

Neighbor Knowledge Distillation (kNN-KD) to dis- 208

till the knowledge of kNN into a base NMT model. 209

And then, we provide the theoretical analysis in 210

Section 3.2 to support that our method can help to 211

address the overcorrection issue. 212

3.1 Nearest Neighbor Knowledge Distillation 213

When we apply vanilla kNN-MT for testing us- 214

ing beam search with B, the time complexity of it 215

is O(|D|Bn). Compared with the standard beam 216

search whose time complexity is O(|V|Bn), the 217

decoding speed of vanilla kNN-MT is prohibitively 218

slow. This is mainly because vanilla kNN-MT has 219

to conduct a kNN search over an extremely large 220

datastore D for each decoding step of each beam. 221

We propose to move this time-consuming search 222

process forward to the preprocessing phase which 223

can be done offline before training and inference. 224

As shown in Figure 1, our proposed kNN-KD can 225

be described as follows: 226

Step 1: Datastore Building We build the datas- 227

tore D in the same way as vanilla kNN-MT (Khan- 228

delwal et al., 2021) which has been described in 229

Section 2.2, so we omit it here. 230
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Step 2: kNN Search in Advance For all the231

translation contexts (x,y⋆
<i) in the training set,232

we conduct a kNN search using f
(
x,y⋆

<i

)
as a233

query to search through the datastore D built in234

Step 1, and then we obtain the retrieved results235

N i = {(kj , vj) , j ∈ {1, 2, . . . , k}}. Note that we236

are performing kNN search for training set trans-237

lation contexts on the datastore built with the train-238

ing set, which is equivalent to extending the train-239

ing data by adding k reasonable target tokens for240

every translation context. Formally, by conducting241

kNN search in advance, we extend the target sen-242

tence in the training set from y⋆ = {y⋆1, · · · , y⋆n}243

to y⋆ =
{(

y⋆1,K1
)
, · · · , (y⋆n,Kn)

}
, where Ki =244 {(

d
(
kj , f

(
x,y⋆

<i

))
, vj

)
, j ∈ {1, 2, . . . , k}

}
.245

Step 3: kNN as a Teacher In the training phase,246

a kNN distribution can be formulated as:247

pTkNN (yi | x,y⋆
<i) ∝∑

(dj ,vj)∈Ki

1yi=vj exp

(
−dj
τ

)
, (10)248

We then use pTkNN as a teacher to train the base249

NMT model, and the knowledge distillation objec-250

tive in Equation 8 can be rewritten as:251

LkNN−KD =−
∑
yi∈V

pTkNN (yi | x,y⋆
<i)

× log pMT (yi | x,y⋆
<i) .

(11)252

And the final training objective in Equation 9 can253

be rewritten as:254

L = (1− α)LCE + αLkNN−KD, (12)255

where LCE can be calculated as Equation 2.256

Step 4: Decoding During inference, our model257

remains in the standard Seq2Seq manner (Vaswani258

et al., 2017), so we omit it here.259

3.2 Theoretical Analysis260

In this section, we show that our proposed kNN-261

KD can help address the overcorrection issue from262

the perspective of gradients. The gradient of the263

final objective in Equation 12 with respect to the264

logit zyi , yi ∈ V is:265

∂L
∂zyi

= (1− α)
(
p(yi)− 1yi=y∗

i

)
+ α

(
p(yi)− pT(yi)

)

=


p(yi)− αpT(yi), if yi ̸= y⋆

i and yi ∈ Ki

p(yi), if yi ̸= y⋆
i and yi /∈ Ki

p(yi)−
(
1− α+ αpT(yi)

)
, if yi = y⋆

i

(13)266

where we abbreviate pMT

(
yi | x,y⋆

<i

)
to p(yi) 267

and pTkNN

(
yi | x,y⋆

<i

)
to pT(yi). 268

For every gradient update in the training phase, 269

the model is trained to decrease the gradient norm 270

to 0 to reach a local minimum (Lin et al., 2021). 271

Therefore, for the tokens that are reasonable but 272

not ground-truth (i.e., yi ̸= y⋆i and yi ∈ Ki), the 273

model has to learn to increase the probability p(yi) 274

by the degree of αpT(yi) so that the gradient norm 275

|p(yi) − αpT(yi)| can reach 0. For the other non- 276

ground-truth token (i.e., yi ̸= y⋆i and yi /∈ Ki), 277

pT(yi) is equal to 0 since yi is not included in the 278

retrieved results of kNN search, and the model will 279

learn to assign much lower probability p(yi) to re- 280

duce |p(yi)|. Besides, since we build the datastore 281

and conduct kNN search on the same training set 282

data, for any translation context, its nearest neigh- 283

bor over the datastore must be itself, which means 284

if yi = y⋆i , then yi ∈ Ki. Then, for the ground- 285

truth token (i.e., yi = y⋆i ), the model is trained 286

to increase the probability p(yi) by the degree of 287(
1− α+ αpT(yi)

)
. Note that, the gradient norm 288

of the standard CE loss is |p(yi)− 1| for yi = y⋆i , 289

and thus that standard CE increases the probability 290

p(yi) by the degree of 1. This demonstrates that 291

our kNN-KD still makes the model learn to predict 292

the ground-truth but with a relatively lower strength 293

than the standard CE. 294

Taking the case in Figure 1 as an example, given 295

the translation context “Vielen Dank für Ihren hil- 296

freichen Vorschlag || Thanks for your”, its ground- 297

truth target token is “useful”, while “helpful” is 298

also reasonable for this translation. Assuming that 299

we have conducted the kNN search with k = 3 in 300

advance as shown in Figure 1, and set τ to 1, we 301

can then compute the kNN teacher distribution as: 302

pT (y4) =


0.378, if y4 is “useful”
0.622, if y4 is “helpful”
0, otherwise

(14) 303

According to Equation 13, the gradient norms 304

are |p(“helpful”)− 0.622α| for “helpful”, and 305

|p(“useful”)− (1− 0.622α)| for “useful”. There- 306

fore, our kNN-KD can train the model to learn 307

from the kNN model to increase the probability of 308

“helpful” that is reasonable but not ground-truth, 309

thus addressing the overcorrection issue. 310
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4 Experiments311

4.1 Datasets312

We conduct experiments on IWSLT’14 German-313

English (De-En, 160k training samples),314

IWSLT’15 English-Vietnamese (En-Vi, 113k315

training samples), and multi-domains translation316

datasets (Aharoni and Goldberg, 2020) (De-En,317

733k training samples). For IWSLT’14 De-En,318

we follow the preprocessing steps provided by319

fairseq2 (Ott et al., 2019) to split the data, and320

process the text into bytepair encoding (BPE)321

(Sennrich et al., 2016). For IWSLT’15 En-Vi,322

we use the pre-processed dataset3 provided by323

Luong and Manning (2015). We use tst2012 as the324

validation set and tst2013 as the test set, which325

contains 1, 553 and 1, 268 sentences respectively.326

For multi-domains translation datasets, we use the327

pre-processed dataset4 provided by Zheng et al.328

(2021), and consider domains including Koran,329

Medical, and Law in our experiments.330

4.2 Competitive Models331

The proposed kNN-KD is an architecture-free332

method that can be applied to arbitrary Seq2Seq333

models, which is orthogonality to previous works334

that design delicate structures to improve perfor-335

mance. Therefore, we mainly compare kNN-KD336

with vanilla kNN-MT and some typical KD meth-337

ods:338

• Word-KD (Hinton et al., 2015b). As de-339

scribed in Section 2.3, Word-KD is the stan-340

dard KD that distills knowledge equally for341

each word.342

• Seq-KD (Kim and Rush, 2016). In this343

method, teacher model T first generates an ex-344

tra dataset by running beam search and taking345

the highest-scoring sequence. Then student346

model S is trained on this teacher-generated347

data, and the training objective can be formu-348

lated as:349

LSeq−KD = −
n∑

i=1

∑
yi∈V

1yi=ŷi

× log pMT (yi | x, ŷ<j) ,

(15)350

2https://github.com/pytorch/fairseq/
blob/main/examples/translation/
prepare-iwslt14.sh

3https://nlp.stanford.edu/projects/
nmt/

4https://github.com/zhengxxn/
adaptive-knn-mt

Datasets |D| k τ

IWSLT’14 De-En 3,949,106 64 100
IWSLT’15 En-Vi 3,581,500 64 100
Koran 524,374 16 100
Medical 6,903,141 4 10
Law 19,062,738 4 10

Table 1: Hyper-parameter settings for different datasets.

where ŷ is the target sequence generated by 351

teacher model, and n is the length of it. 352

• BERT-KD (Chen et al., 2020). This method 353

distills knowledge learned in BERT (Devlin 354

et al., 2019) to the student NMT model to 355

improve translation quality. 356

• Selective-KD (Wang et al., 2021a). This work 357

finds that some of the teacher’s knowledge 358

will hurt the effect of KD, and then address 359

this issue by introducing Selective-KD to se- 360

lect suitable samples for distillation. 361

4.3 Implementation Details 362

All the algorithms are implemented in Pytorch with 363

fairseq toolkit (Ott et al., 2019), and all the experi- 364

ments are conducted on a machine with 8 NVIDIA 365

GTX 1080Ti GPUs. Other details of the experi- 366

mental setup can be seen in Appendix A. 367

Model Configuration We choose Trans- 368

former (Vaswani et al., 2017) as our base NMT 369

model. For IWSLT’14 De-En and IWSLT’15 En- 370

Vi, we use transformer_iwslt_de_en configu- 371

ration, which has 6 layers in both encoder and 372

decoder, embedding size 512, feed-forward size 373

1, 024 and attention heads 4. For multi-domains 374

translation datasets, we follow Khandelwal et al. 375

(2021) to adopt transformer_wmt19_de_en 376

configuration, which has 6 layers in both encoder 377

and decoder, embedding size 1, 024, feed-forward 378

size 8, 192 and attention heads 8. 379

Preprocessing Details When building the data- 380

stores, we use the context vectors input to the fi- 381

nal output layer as keys in the datastore D. For 382

IWSLT datasets, the base NMT model is used 383

to obtain the context vectors, while for multi- 384

domains translation datasets, we follow Khan- 385

delwal et al. (2021) to build datastores by the 386

pre-trained model5. According to the model 387

5https://github.com/pytorch/fairseq/
tree/main/examples/wmt19

5

https://github.com/pytorch/fairseq/blob/main/examples/translation/prepare-iwslt14.sh
https://github.com/pytorch/fairseq/blob/main/examples/translation/prepare-iwslt14.sh
https://github.com/pytorch/fairseq/blob/main/examples/translation/prepare-iwslt14.sh
https://nlp.stanford.edu/projects/nmt/
https://nlp.stanford.edu/projects/nmt/
https://github.com/zhengxxn/adaptive-knn-mt
https://github.com/zhengxxn/adaptive-knn-mt
https://github.com/pytorch/fairseq/tree/main/examples/wmt19
https://github.com/pytorch/fairseq/tree/main/examples/wmt19


Models
De-En En-Vi

BLEU upd/s token/s BLEU upd/s token/s
Transformer 34.11 2.02(1.00×) 3148.10(1.00×) 30.76 2.55(1.00×) 2870.07(1.00×)
Word-KD 34.26 1.77(0.88×) 3291.28(1.06×) 30.98 2.14(0.84×) 2782.53(0.97×)
Seq-KD 34.60 2.14(1.06×) 3409.86(1.08×) 31.20 2.80(1.10×) 2855.77(1.00×)
BERT-KD 35.63 1.70(0.84×) 3275.43(1.04×) 31.51 2.14(0.84×) 2785.69(0.97×)
Selective-KD 34.38 1.72(0.85×) 3365.68(1.07×) 31.48 2.09(0.82×) 3044.68(1.06×)
kNN-MT 36.17 - 920.72(0.29×) 32.08 - 617.88(0.22×)
kNN-KD 36.30 2.14(1.06×) 3321.24(1.05×) 32.27 2.60(1.02×) 2879.68(1.00×)

Table 2: Experimental results on IWSLT’14 De-En and IWSLT’15 En-Vi translation tasks. “-” means “not
applicable” since vanilla kNN-MT can only be adopted in the decoding phase.

Models
Koran Medical Law

BLEU token/s BLEU token/s BLEU token/s
Pre-trained Model 16.26 1038.97(1.00×) 39.91 1765.56(1.00×) 45.71 2404.31(1.00×)
kNN-MT 19.45 246.17(0.24×) 54.35 701.29(0.40×) 61.78 853.66(0.36×)
Transformer 13.84 1297.45(1.25×) 27.51 1073.53(0.61×) 60.77 1689.89(0.70×)
kNN-KD 24.86 1236.23(1.19×) 56.50 1853.58(1.05×) 61.89 2456.62(1.02×)

Table 3: Experimental results on multi-domains translation datasets. We leave out the metric for training efficiency
(upd/s) since it is only applicable for Transformer and kNN-KD, and the training efficiency of these two models are
basically the same.

configuration, the keys are 512-dimensional and388

1024-dimensional for IWSLT datasets and multi-389

domains translation datasets, respectively. We use390

FAISS (Johnson et al., 2017) for the nearest neigh-391

bor search. And we conduct grid searches over392

k ∈ {4, 8, 16, 32, 64, 128, 256, 512, 1024} and393

τ ∈ {1, 10, 50, 100, 200, 500, 1000}, and choose394

the final settings according to the best BLEU score395

on the validation set. The final hyper-parameter396

settings are shown in Table 1.397

Evaluation For all the datasets, we use the beam398

search with beam size 5. We evaluate the transla-399

tion in terms of quality and efficiency.400

• Quality. For IWSLT’14 De-En and401

IWSLT’15 En-Vi, following the common402

practice, we measure case sensitive BLEU403

by multi-bleu.perl6. For multi-domains trans-404

lation datasets, we closely follow Khandelwal405

et al. (2021) to evaluate the results by Sacre-406

BLEU (Post, 2018) for a fair comparison.407

• Efficiency. We evaluate the efficiency of train-408

ing and inference by the training updates per409

second (upd/s) and the generated tokens per410

second (token/s), respectively.411

6https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl

4.4 Main Results 412

Results of IWSLT Datasets We first compare 413

kNN-KD with vanilla kNN-MT and other KD 414

methods on the two IWSLT translation tasks. Note 415

that there are several hyper-parameters in vanilla 416

kNN-MT: tunable weight (λ), number of neigh- 417

bors per query (k), and temperature (τ ). These 418

hyper-parameters have great effects on the trans- 419

lation results. We also conduct grid searches over 420

these hyper-parameters, and find the best settings 421

according to BLEU score on the validation set. 422

As shown in Table 2, kNN-KD outperforms all 423

the other strong baselines on both IWSLT datasets, 424

e.g., an improvement of +2.14 and +1.51 BLEU 425

score over Transformer. Moreover, we observe that 426

our proposed kNN-KD can even perform better 427

than vanilla kNN-MT, while gaining a significant 428

speedup. On the one hand, kNN-KD, like other 429

KD methods, maintains the standard Seq2Seq man- 430

ner at inference time, thus keeping the same de- 431

coding speed as Transformer. On the other hand, 432

kNN-KD also keeps the same training speed as 433

Transformer, and it is more efficient than Word- 434

KD, BERT-KD and Selective-KD. This is because 435

the calculation of the teacher model distribution 436

pTkNN

(
yi | x,y⋆

<i

)
only needs to be performed on 437

a relatively small kNN retrieved set Ki, while word- 438

6
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Models Law→Medical Medical→Law
Transformer 18.73 2.07
kNN-KD 22.31 14.82

Table 4: Generalizability Evaluation. “Law→Medical”
means that we train the model on the Law domain and
directly apply it to Medical domain, and vice versa.

level KD have to compute the teacher distribution439

over the whole vocabulary V .440

Results of Multi-domains Datasets Apart from441

IWSLT datasets, we further compare our kNN-442

KD with kNN-MT on multi-domains translation443

datasets. First, we follow Khandelwal et al. (2021)444

to conduct inference with the pre-trained model and445

vanilla kNN-MT. Then, we train the base NMT446

model using standard CE and kNN-KD on each447

domain’s training data, and report the results in448

Table 3 as a comparison. In all domains, kNN-KD449

again outperforms all the baselines. Most impor-450

tantly, our proposed kNN-KD can achieve a con-451

sistent improvement over vanilla kNN-MT (+2.56452

BLEU score on average) with a significant speedup.453

This further confirms the effectiveness and effi-454

ciency of our method.455

Generalizability To verify the generalizability456

of our method, we further conduct experiments on457

the scenario that we train a NMT model on a spe-458

cific domain and evaluate it on the out-of-domain459

test set. As shown in Table 4, our kNN-KD per-460

forms significantly better than Transformer trained461

by standard CE. It proves the statement in Section 1462

that compared with standard CE, kNN-KD can im-463

prove the generalizability of NMT models.464

4.5 Analysis465

There are two key hyper-parameters in our kNN-466

KD: number of neighbors per query (k), and tem-467

perature (τ ). In this section, we investigate the468

effects of these two hyper-parameters on the vali-469

dation set of IWSLT’14 De-En.470

Effect of k We fix the temperature τ to 100, and471

train the model using kNN-KD with different k.472

As shown in Figure 2, the BLEU score first rises473

with the increase of k, and reaches the best perfor-474

mance peak when k = 64. And then, performance475

deteriorates with a larger k. This suggests that, the476

retrieved results of kNN search can substantially477

improve training when k is relatively small, but it478

will also introduce more noise when k gets larger.479

Effect of τ We train the model using kNN-KD480

with different τ and fixed k (k = 64). As shown481

16 32 64 128 256 512 1024
k

35.4

35.6

35.8

36.0

36.2

36.4

B
LE

U

Figure 2: BLEU scores with different k and fixed τ
(τ = 100) on the validation set of IWSLT’14 De-En
dataset.
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Figure 3: BLEU scores with different τ and fixed k
(k = 64) on the validation set of IWSLT’14 De-En
dataset.

in Figure 3, a temperature of 1 results in a signifi- 482

cantly lower BLEU score than those greater than 483

1. This is because a large temperature value can 484

flatten the kNN teacher distribution in Equation 10 485

to prevent assigning most of the probability mass to 486

a single neighbor. The results show that for k = 64, 487

the optimal temperature is 100. 488

4.6 Case Study 489

In this section, we show how our proposed method 490

works by presenting a real case. There exists an 491

example in the test set of IWSLT’14 De-En that the 492

source sentence is “es gibt eine menge geschichten 493

darüber , warum wir dies getan haben .” and the 494

corresponding target sentence is “there are a lot of 495

stories about why we did this .”. Given the source 496

sentence and target subsequence “there are” as 497

the translation context, “many...”, “lots of...”, and 498

“a lot of...” are all correct translations. We input 499

7



a lots many (others)
Vocabulary
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0.4
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Pr
ob
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0.845

0.034
0.003

0.118

0.592

0.175

0.11 0.123

0.596

0.197

0.095 0.112

Base Model
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Figure 4: Predicted probabilities output from the base
NMT model, kNN-MT and our kNN-KD, given the
translation context “es gibt eine menge geschichten
darüber , warum wir dies getan haben . || there are”

this translation context to the base NMT model,500

kNN-MT, and our model, and observe the predicted501

probabilities over the vocabulary. As shown in Fig-502

ure 4, all the models predict “a” with the maximal503

probability that matches the ground-truth. How-504

ever, since the base model is trained by CE loss505

using one-hot vector as supervision, it suffers from506

a serious overcorrection problem that the model507

assigns an overconfident probability to the token508

“a” and almost none to other reasonable target to-509

kens such as “lots” and “many”. On the contrary,510

both kNN-MT and our kNN-KD increase the prob-511

abilities of the reasonable target tokens, and these512

two models have similar predicted probabilities.513

Note that kNN-MT obtains this probability distri-514

bution by interpolating the base NMT probability515

with a kNN search probability at decoding time,516

while our kNN-KD directly outputs this distribu-517

tion without any additional operations. This fur-518

ther confirms that kNN-KD can train the model to519

learn the knowledge of kNN that prevents the over-520

confidence of the model on the one-hot label, thus521

leading to the better generalizability for inference.522

5 Related Works523

5.1 Neural Machine Translation524

Machine translation has developed rapidly in re-525

cent years. The early models were mainly based526

on statistical machine learning (Brown et al., 1990;527

Och, 2003; Koehn et al., 2007). Then, with the de-528

velopment of deep learning technology, many mod-529

els used RNN(Sutskever et al., 2014; Bahdanau530

et al., 2015), CNN(Gehring et al., 2017), or Trans-531

former(Vaswani et al., 2017) as their backbones. 532

Recently, a few studies have combined k nearest 533

neighbors algorithm closely with NMT models to 534

improve performance. Khandelwal et al. (2021) 535

used a nearest neighbor classifier to predict to- 536

kens on a large datastore of cached examples and 537

proposed kNN-MT. However, Meng et al. (2021) 538

pointed out that kNN-MT is two-order slower 539

than vanilla MT models, which limits the deploy- 540

ment for real-world applications. They proposed 541

Fast kNN-MT to solve this problem. Wang et al. 542

(2021b) also noticed the low-efficiency problem of 543

kNN-MT. Thus, they used a hierarchical clustering 544

strategy and proposed Faster kNN-MT. Although 545

the above studies have made feasible fixes, kNN 546

search is still required in the decoding phase, which 547

dramatically increases the difficulty of practical ap- 548

plications compared to standard MT models. 549

5.2 Knowledge Distillation 550

Knowledge distillation (KD) introduces teacher 551

network and student network to help knowledge 552

transfer and it was widely used in NMT (Hinton 553

et al., 2015a). Kim and Rush (2016) introduced 554

two sequence-level KD methods to improve the 555

performance of NMT. Miceli-Barone et al. (2017) 556

used KD to address the problem of catastrophic 557

forgetting in the fine-tuning stage. Tan et al. (2019) 558

used KD to enable the multilingual model to fit 559

the training data and to match the outputs of the 560

teacher models. Clark et al. (2019) distilled single- 561

task models into one multi-task model. Chen et al. 562

(2020) used BERT as the teacher model after fine- 563

tuning on the target generation tasks to improve 564

the conventional Seq2Seq models. Wang et al. 565

(2021a) proposed batch-level and global-level se- 566

lection strategies to choose appropriate samples for 567

knowledge distillation. We focus on using KD to 568

leverage the knowledge retrieved by kNN search 569

to enhance a base NMT model. 570

6 Conclusion 571

In this paper, we introduce kNN-KD that distills 572

the knowledge retrieved by kNN search to prevent 573

the base NMT model from overcorrection. Ex- 574

periments show that kNN-KD can improve over 575

vanilla kNN-MT and other baselines without any 576

additional cost for training and decoding. In the 577

future, we will apply kNN-KD to many other tasks. 578

We will also explore the effect of kNN-KD on im- 579

proving the diversity of text generation. 580
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A Experimental Setup741

A.1 Datasets742

The dataset statistics for all the datasets are re-743

ported in Table 5. It is worth to mention that744

IWSLT datasets are under the Creative Commons745

Train Valid Test
IWLST‘14 De-En 160,239 7,283 6,750
IWLST‘15 En-Vi 133,166 1,553 1,268

Koran 17,982 2,000 2,000
Medical 248,099 2,000 2,000

Law 467,309 2,000 2,000

Table 5: The number of examples for different datasets.

BY-NC-ND license, and the multi-domains transla- 746

tion datasets are under the BSD license. 747

A.2 Hyper-parameters Setting 748

All the algorithms are implemented in Pytorch with 749

fairseq toolkit (Ott et al., 2019), and all the experi- 750

ments are conducted on a machine with 8 NVIDIA 751

GTX 1080Ti GPUs with the hyperparameters re- 752

ported in Table 6.

Hyperparameters IWSLT Multi-domains
Max tokens 8192 1280
Learning rate 5e-4 5e-4
LR scheduler Inverse sqrt Inverse sqrt
Minimal LR 1e-9 1e-9
Warm-up LR 1e-7 1e-7
Warm-up steps 4000 4000
Gradient clipping 0.0 0.0
Weight decay 0.0 0.0001
Droupout 0.3 0.2
Attention dropout 0.0 0.1
Activation dropout 0.0 0.1
α in Equation 12 0.5 0.5
Optimizer Adam Adam

-β1 0.9 0.9
-β2 0.98 0.98
-ϵ 1e-8 1e-8

Table 6: Hyperparameter settings for different datasets.

753

Note that during training, we are using the dy- 754

namic batching provided by fairseq, and choose the 755

max tokens according to the GPU memory con- 756

straint. We train the model for 200 epochs on 757

IWSLT datasets, 250 epochs on Koran domain, 758

100 epochs on Medical domain, 120 epochs on 759

Law domain, while the early-stop mechanism is 760

also adopted with patience set to 20. 761
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B Limitation and Potential Risks762

Although kNN-KD is efficient in both training and763

inference, it will take a relatively long time for pre-764

processing to build the datastore and conduct kNN765

searches, and it also requires large disk space to766

store all these results. However, since the prepro-767

cessing can be done offline, it does not limit the768

deployment of kNN-KD in real-world applications.769

Our model is trained on open source datasets,770

and thus if there exists toxic text in the training771

data, our model may have the risk of producing772

toxic content.773
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