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ABSTRACT

This paper concerns image segmentation, with emphasis on correctly classifying
objects that are partially occluded. We present a novel approach based on
compositional modeling that has proven to be effective at classifying separate
instances of foreground objects. We demonstrate the efficacy of the approach by
replacing the object detection pipeline in UPSNet with a compositional element
that utilizes a mixture of distributions to model parts of objects. We also show
extensive experimental results for the COCO and Cityscapes datasets. The results
show an improvement of 2.6 points in panoptic quality for the top “thing” classes
of COCO, and a 3.43% increase in overall recall, using standard UPSNet as a
baseline. Moreover, we present qualitative results to demonstrate that improved
metrics and datasets are needed for proper characterization of panoptic segmen-
tation systems.

1 INTRODUCTION

Panoptic image segmentation has emerged in recent years as an important visual recognition
task (Kirillov et al., 2019b). The goal is to assign a label to each pixel of an image, so that
some labels represent amorphous background regions and other labels indicate separate instances
of foreground objects. Panoptic segmentation therefore balances the need to identify semantic
background portions of an image while simultaneously identifying countable instances of individual
objects in the foreground.

Occlusion presents a problem that must be addressed by panoptic segmentation systems, especially
for crowded scenes. Although occlusion has been studied extensively (e.g., Koller et al. (1994);
Elgammal & Davis (2001); Sun et al. (2005); Hoiem et al. (2007); Wang et al. (2009); Enzweiler
et al. (2010); Kortylewski et al. (2020b)), the problem continues to represent a difficult hurdle for
many visual analysis tasks. Example images are provided in Figure 1 to illustrate the complexity
of the problem. In these examples, some of the foreground objects are significantly occluded by
other foreground objects. The segmentation problem is exacerbated when an object is occluded

Figure 1: Example panoptic segmentation results on images from the COCO dataset (Lin et al.,
2014). The baseline system has incorrectly merged several of the foreground objects (center). In
contrast, our system was able to distinguish those cases through its compositional approach (right).
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by another instance of the same category, which makes it difficult to generate accurate masks and
recognize each case as a separate instance. For the examples shown here, the baseline system was
not able to distinguish all of the foreground objects, with the result that some of the detected regions
have been merged incorrectly. However, the new approach that is presented in this paper was able
to detect the separate foreground regions correctly.

In order to improve performance when occlusion is present, one might argue that strategies
involving larger datasets or improved data-augmentation techniques should be adequate. However,
experiments by Kortylewski et al. (2020a) reveal that these techniques alone are not sufficient to
improve performance for occlusion-related problems. As an alternative, Kortylewski et al. (2020b)
have argued that compositional models may offer a suitable approach to addressing difficulties
related to occlusion. Our work demonstrates that such a compositional approach can indeed improve
detection of occluded objects.

Compositionality (Bienenstock et al., 1997; Geman et al., 2002) refers to an ability to represent
entities as hierarchies of constituent parts, with the parts themselves being meaningful, reusable
entities. The compositionality property has been shown to be beneficial in tackling several high-
level tasks. For example, neuroscientific research shows that human cognition uses compositionality
for object classification so that severely occluded objects can be detected and recognized in many
situations (Bienenstock et al., 1997; Fodor & Pylyshyn, 1988). For computational systems, composi-
tional models can recursively represent object parts and facilitate decisions that contribute to the
final result. Several researchers, for example, have successfully employed compositional models for
image classification tasks (e.g., George et al. (2017); Kortylewski (2017); Wang et al. (2017); Zhang
et al. (2018)).

In the work presented here, we demonstrate that a compositional approach leads to improved image
segmentation for foreground objects that may be partially occluded. To this end, we have integrated
a compositional encoding component into UPSNet (Xiong et al., 2019), which is an adaptation of
the Mask R-CNN (He et al., 2017) framework for the panoptic segmentation task. The system
consists of a feature extraction backbone that is made up of the popular ResNet (He et al., 2016)
architecture, followed by a Feature Pyramid Network (FPN) module that computes features at
multiple scales. The resulting multiscale feature maps serve as input to two task-specific heads
that separately perform instance segmentation and semantic segmentation. The semantic head is a
series of deformable convolution layers that produce class predictions for each pixel in the input. The
instance head consists of parallel branches for classification, bounding box regression and segmen-
tation mask prediction. The outputs of the semantic and instance heads are then combined within a
panoptic head to produce a single pixel-wise segmentation output.

We have tested the performance of our approach on two popular datasets for panoptic segmentation:
COCO (Lin et al., 2014) and Cityscapes (Cordts et al., 2016). We show both qualitative and quanti-
tative improvements on the COCO panoptic dataset relative to the UPSNet baseline. In summary,
the major contributions of this paper are as follows:

• To our knowledge, this work is the first to apply a compositional approach to the task of
panoptic image segmentation.

• We describe a modular implementation of compositional models using a generalized
mixture model that can be plugged in any two-stage detection network. The approach has
been tested using the UPSNet design for panoptic segmentation, but is broadly applicable.
For example, our modular approach is applicable to the problems of object detection and
classification directly.

• We propose a new training strategy for the instance segmentation head of panoptic segmen-
tation systems, using available ground-truth mask information to learn object represen-
tations.

In addition, we present qualitative results that highlight some limitations of current datasets. We
propose a refinement to the panoptic segmentation metric that accounts for noisy labelling of
datasets. With this refinement, we demonstrate significant gains in performance over the baseline
for all panoptic segmentation metrics.
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2 RELATED WORK

Panoptic segmentation, as introduced by Kirillov et al. (2019b), integrates the problems of instance
segmentation and semantic segmentation to produce a single output that contains class labels and
an instance identifier for each pixel. By convention, “thing” classes refer to foreground objects,
and “stuff” classes indicate background portions of an image. Virtually all panoptic segmentation
systems that have been proposed can be categorized broadly as either top-down or bottom-up. The
work being presented here falls into the top-down category.

The top-down approach first predicts bounding boxes around objects and then generates a segmen-
tation mask to associate each pixel that lies within the mask with its corresponding class score.
Many approaches of this type, such as (Li et al., 2019; Porzi et al., 2019; Yang et al., 2020; Lazarow
et al., 2020) use Mask R-CNN (He et al., 2017) as a foundation and propose novel additions to
improve segmentation performance. Kirillov et al. also propose a strong baseline called Panoptic
FPN (Kirillov et al., 2019a) that is formed by adding a semantic segmentation branch to Mask
R-CNN. AUNet (Li et al., 2019) joins the two heads by adding attention mechanisms to produce
coherent outputs and to minimize conflict between foreground instance predictions and background
predictions. Petrovai & Nedevschi (2019) propose a panoptic segmentation network for automated
driving that combines the benefits of PSPNet (Zhao et al., 2017) for semantic segmentation and
Mask R-CNN for instance segmentation. Liu et al. (2019) propose a Spatial Ranking module to
resolve conflicts between overlapping instance masks. Some transformer based approaches include
(Dai et al., 2021; Wang et al., 2021).

Bottom-up methods make class predictions for each pixel before using grouping strategies to detect
and localize instances. AdaptIS (Sofiiuk et al., 2019) first performs semantic segmentation by
generating pixel-wise predictions, and then uses point proposals to generate instance masks. Li
et al. (2018b) use weak supervision in the form of bounding boxes and image-level tags to produce
non-overlapping instance masks while performing semantic segmentation. FPSNet (de Geus et al.,
2020) prioritizes runtime and attempts to perform both instance and semantic segmentation as a fully
convolutional model by predicting a class score and an instance ID for each pixel. Hou et al. (2020)
present a single-shot fully convolutional panoptic segmentation strategy. Li et al. (2021); Hong et al.
(2021) take a fully convolutional approach to panoptic segmentation.

There have been several efforts to develop segmentation algorithms with emphasis on addressing the
problem of occlusion. Tighe et al. (2014) first obtain pixelwise labels and a set of candidate object
instances for hundreds of object classes. Overlapping regions are then used to obtain an occlusion
ordering using a graph-theoretical approach to achieve an output that “explains” the image contents.
Chen et al. (2015) collect segmentation masks and class scores for objects that are possibly occluded
and formulate them into an energy minimization framework. Wang et al. (2018) introduce “repulsion
loss,” which tries to force bounding box regressors to move toward the correct target while also being
repelled by other nearby target proposals. The panoptic segmentation model proposed by Lazarow
et al. (2020) has a design identical to Kirillov et al. (2019a), with a ResNet FPN backbone followed
by two task-specific heads, Mask R-CNN for instance tasks and FCNs for semantic tasks. Other
approaches that emphasize occlusion have been presented by Zhu et al. (2017), Liu et al. (2019),
Zhan et al. (2020), and Yang et al. (2020).

3 APPROACH

This section introduces an instance detection strategy that is based on a compositional model, and
explains how this model has been integrated into the Mask R-CNN pipeline for improved instance
segmentation. The proposed architecture is shown in Figure 2.

3.1 SHARED BACKBONE AND SEMANTIC HEAD

The backbone network of our architecture is identical to Mask R-CNN (He et al., 2017), which is
a combination of ResNet (He et al., 2016) and FPN (Lin et al., 2017). The spatial dimensions of
the input image are H ×W pixels. The semantic head is fully convolutional, based on deformable
convolution (Dai et al., 2017) as adopted from Xiong et al. (2019). It consists of one 3 × 3 × 256
convolution layer followed by two 3× 3× 128 convolution layers.
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Figure 2: The high-level architecture of our panoptic segmentation system, which is adapted from
UPSNet (Xiong et al., 2019). Within the instance head at the right, our design replaces the instance
detection pipeline from Mask R-CNN (He et al., 2017) with a new element based on a compositional
model (indicated by New in the diagram).

3.2 DETECTION USING A COMPOSITIONAL MODEL

To perform instance segmentation, the second stage of Mask R-CNN consists of two branches.
One branch performs detection, producing class scores and bounding box offsets for each region
of interest (RoI). The second branch generates segmentation masks for each of the highest-scoring
RoIs. Let us refer to these as the detect branch and the mask branch, respectively. The usual detect
model within Mask R-CNN is a standard multilayer perceptron (MLP). A major innovation in our
design is the insertion of a generative compositional model before these dense layers. The goal is to
incorporate a higher degree of spatial awareness into the classification process.

Our modified detect branch is shown in Figure 3. The input to this branch is a feature tensor for
a particular RoI, as represented by the orange block in the figure. (Each feature tensor is extracted
using RoIAlign (He et al., 2017), for regions of interest selected by the Region Proposal Network,
or RPN (Ren et al., 2015), within the shared backbone.) We denote this tensor as f ∈ IRk×k×D,
where k× k represents the spatial dimensions of the RoI lattice, and D is the number of channels of
the feature map. For a fair comparison, we use the same values as previous designs for k and D.

To determine a class prediction, our strategy is to compute a tensor of posterior probability values
from the given feature map f , scale those values using an attention map, and finally produce a
vector containing a distribution of class scores for the given RoI. Let fi,j represent a particular D-
dimensional feature vector at position (i, j) within the k×k lattice. We implement the compositional
approach by assuming that any given fi,j can be represented using a weighted set ofM components.
To simplify the model, we consider each lattice position (i, j) to be independent of the rest. Let
v ∈ RM represent a vector of contribution levels by constituent components. The contribution of a
particular component is written as vm, for m = 1, 2, ...,M .

For a given object instance, assume that the probability of occurrence of fi,j can be expressed as
follows:

p(fi,j) =

M∑
m=1

p(fi,j , vm) =

M∑
m=1

p(vm) p(fi,j | vm) (1)

If we further adopt the assumption that each likelihood p(fi,j | vm) is normally distributed, then we
have

p(fi,j) =

M∑
m=1

πm N (fi,j |µm,Σm), (2)

where πm ≡ p(vm), µm is a D-dimensional mean vector, and Σm is a covariance matrix of size
D×D. This is the familiar form of a Gaussian mixture model, for which the different terms πm, µm,
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and Σm can be estimated from training samples through clustering procedures. After training, this
representation has the advantage that each µm can be interpreted as a reusable, frequently occurring
component within RD that is characteristic to particular thing classes in the training set.

This approach allows computation of soft assignments for each position (i, j) on the RoI lattice,
and distributes responsibility of classification across the RoI. These assignments are then combined
to arrive at the final class prediction for each RoI. Such an approach allows for accumulation of
evidence from multiple components of an object, even when some of the components are absent
because of occlusion.

As shown in the figure, a k × k attention mask is also generated and is used to scale the tensor
of posterior values. This attention mechanism is implemented as a fully connected layer followed
by a sigmoid activation function. The resulting object-presence scores (in the range [0, 1]) cause the
system to concentrate on foreground objects within the RoI. In the final step of the detection pipeline,
the system passes all elements of the attention-scaled tensor of posterior values to a series of dense
layers to make final class predictions for the current RoI. Unlike Mask R-CNN, the bounding box
offset prediction for the detect branch is separated from classification and is performed in parallel,
using a couple of convolutional layers for channel adjustment followed by dense layers for prediction
of final offsets of each RoI. The mask prediction branch of the instance head is identical to the one
introduced by He et al. (2017) that generates class-agnostic binary masks for each RoI.

Figure 3: The new detect branch of the instance head. Feature vectors at each position in the k × k
sized RoI lattice (shown in orange) are processed using a compositional model to compute a map of
posterior values. The posterior values are then used to produce final class score predictions.

3.3 FINAL PREDICTION

The panoptic fusion head produces the final output of the system by aggregating the outputs of
the semantic and instance heads. We use the panoptic head introduced in UPSNet (Xiong et al.,
2019). It operates by creating a logit tensor of size H × W × (Nstuff + Ninst + 1). The first
Nstuff channels are taken from the logits produced by the semantic head, and Ninst channels are
taken from the logits that were produced by the instance head. The final panoptic output is obtained
by applying a softmax operation along the channel dimension. If the maximum across channels
indicates one of the Nstuff channels, then the pixel belongs to a stuff class, otherwise it belongs
to one of the instances of a thing class. The class assignment for each instance is calculated by the
strategy explained in Xiong et al. (2019). To reduce the risk of making incorrect predictions, logits
for an additional “unknown” category are also predicted.

3.4 IMPLEMENTATION DETAILS

Model training. We implement our system in PyTorch (Paszke et al., 2019) and perform training with
up to 16 GPUs. The novel instance head is trained with 4 loss terms for box classification, foreground
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attention, box regression and mask segmentation. Because the architecture is based on (Xiong et al.,
2019; He et al., 2017), we follow many of the settings used in those works. Unless otherwise
specified, experimental results are obtained using the ResNet-50 FPN (R-50 FPN) backbone. In
some cases, we also present results using the larger ResNet-101 FPN (R-101 FPN) backbone.
Results for all datasets are reported on the validation split. We use the pretrained backbone and RPN
weights from the baseline, and retrain all other task-specific heads. Since our instance head performs
spatially aware object classification, we also need mask information for training. Therefore, we
move away from the training strategy of Mask R-CNN and generate training data for object classi-
fication that includes mask information. All results are reported on setups with M = 320 mixtures
(4 × number of classes in COCO, as used in Kortylewski et al. (2020a)) with a feature vector size
D = 256 and lattice size k = 7 as used in He et al. (2017). Additional details related to the training
process are provided in the appendix.

Learning compositional model parameters. We use the pretrained backbone network to collect
feature vectors in RM , as needed to obtain parameters of our compositional model. For all
foreground classes, ground-truth bounding boxes and masks are used to select feature vectors. First,
we bring the ground-truth mask of each RoI to size k×k using bilinear interpolation. Then we collect
feature vectors fi,j for all locations (i, j) having a mask value of 1 (after applying a threshold of
0.5). Similar to Girshick et al. (2015), we also add an extra “background” class to improve learning
within the classification pipeline. A subset of these background RoIs are sampled from regions
that correspond to stuff classes in the training images. Using these features, we apply the standard
Expectation-Maximization algorithm to obtain {πm, µm,Σm} form = 1, ...,M . The parameters of
the compositional model are learned before training the remaining portions of the task heads. More
details are given in the appendix.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION METRICS

We perform most of our experiments on the Microsoft COCO dataset (Lin et al., 2014), which
consists of 118k training images, 5k validation images and 20k images for testing. For panoptic
segmentation, a total of 133 categories are specified, consisting of 80 thing categories and 53 stuff
categories. We also show results on the Cityscapes dataset (Cordts et al., 2016), which contains
pixel level annotations for a total of 19 classes of which 11 belong to stuff and 8 to thing categories.
Images are divided into group sizes of 2975, 500, and 1525 for training, validation, and testing,
respectively. The performance of our approach is evaluated using the Panoptic Quality (PQ) metric
from Kirillov et al. (2019b):

PQ =

∑
p,g∈TP IoU(p, g)

|TP |︸ ︷︷ ︸
Segmentation Quality (SQ)

× |TP |
|TP |+ 1

2 |FP |+
1
2 |FN |︸ ︷︷ ︸

Recognition Quality (RQ)

(3)

The term IoU(p, g) is the Intersection over Union of a predicted segment p and a ground-truth
segment g; TP is the number of True Positive segments (i.e., IoU(p, g) > 0.5); FP is the number of
False Positives; and FN is number of False Negatives. We see that SQ is the average of Intersection
over Union for all TP segments. We also compute PQth (PQ over all thing classes) and PQst (PQ
over all stuff classes) to gain insights into instance and semantic segmentation results, respectively.
We do not include the “unknown” category (section 3.3) when calculating Panoptic Quality.

4.2 QUALITATIVE COMPARISON

Some examples of qualitative results from our approach are shown in Figure 4. The first and second
columns show the input data and the ground truth, respectively. The results of the baseline (Xiong
et al., 2019) have also been included for comparison. These baseline results have been generated
using a retrained model which performs slightly better than reported in Xiong et al. (2019).

All examples shown in Figure 4 contain some instances that appear in close proximity to others
and suffer from varying amounts of occlusion. As seen in the figure, our approach makes an

6



Under review as a conference paper at ICLR 2022

Figure 4: Qualitative results on examples from the COCO Val dataset.

Table 1: Panoptic segmentation results on the COCO 2018 Val dataset. Superscripts ‘Th’ and ‘St’
denote numbers for thing and stuff classes respectively. (*: computed using noisy annotations.)

Method Backbone PQ SQ RQ PQTh SQTh RQTh PQSt

PCV (Wang et al., 2020) R-50 FPN 37.5 77.7 47.2 40.0 78.4 50.0 33.7
AUNet (Li et al., 2019) R-50 FPN 38.6 76.4 47.5 46.2 80.2 56.2 27.1
OANet (Liu et al., 2019) R-50 FPN 39.0 77.1 47.8 48.3 81.4 58.0 24.9
UPSNet (Xiong et al., 2019) R-50 FPN 42.5 78.5 52.5 48.1 79.2 59.2 33.9
Ours* R-50 FPN 40.3 78.2 50.0 44.6 78.8 55.0 33.9

UPSNet (Xiong et al., 2019) R-101 FPN 46.7 80.5 56.9 53.2 81.2 64.6 36.9
Ours* R-101 FPN 44.9 80.5 54.7 50.3 81.6 60.9 36.8

improvement over the baseline and is able to detect most of the occluded instances. For example, the
mother occluded by a baby elephant in the first row is a difficult case as the two instances are very
similar and without clearly discernible edges, and as a result, is not handled well by the baseline,
but they are distinguished as separate instances by our approach. In the second row, two people on
a motorcycle have been reliably detected by our approach, but were merged by the baseline. In the
third row, our system has detected a person who is occluded by the batter, just to the left. Also in
the third row, our system has correctly detected many individuals in the stands, but they were not
detected by the baseline. We note that there remains room for improvement in the masks produced
by our system, but we have observed many cases for which the baseline system incorrectly merges
two neighboring instances while our system distinguishes them correctly.

4.3 QUANTITATIVE COMPARISON

We show quantitative results on the validation split of both COCO (Table 1) and Cityscapes datasets
(Appendix A). For most methods, we include architectures that share the same backbone as our
method for a fair comparison. Despite dataset limitations (Section 4.4), our approach still performs
well in comparison to many state-of-the-art approaches to panoptic segmentation and ranks second
in terms of overall metrics as shown in Table 1. It is interesting to note that all methods except one in
the table use the same base design of Mask R-CNN. The performance scores using the ResNet-101
backbone are also shown in the table. Making use of the larger ResNet-101 backbone improves
overall PQ performance by 4.8 points and improves RQ by 6.3 points, which are both better than
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gains made by the baseline. By introducing the compositional model in the instance head, our
approach improves PQTh by 2.6 points and RQTh by 2.6 points, as reported in Table 2a.

To exclude the incorrect false positive predictions, we also report detection performance using TP
counts, FN counts, and recall. In terms of detecting ground truth instances, our approach shows
an improvement over the baseline. We note that an increase in recall could possibly result in lower
precision. However, our method performs exceedingly well on crowded scenes; a large portion of
FPs are contributed by such segments, which, given perfect annotations, would turn into TPs and
improve both precision and recall even further. Table 2b shows a comparison of our approach with
the baseline. We see an improvement of 1.45 points on the overall recall score, accompanied by
a 2.53% increase in TP counts and a 3.36% decrease in FN counts. Using the larger ResNet-101
backbone increases the overall recall improvement even further to 2.14 points.

4.4 PANOPTIC QUALITY COMPUTATION

As the panoptic segmentation task is still fairly recent, the datasets and metrics continue to evolve.
A particular problem for the work reported here is the noise level for small and partially occluded
objects within the COCO dataset. Here we discuss some of these issues and propose alternatives
to aid in minimizing the discrepancy between qualitative performance and quantitative metrics for
panoptic segmentation. Similar discussions and suggestions can also be found in (FiftyOne, 2020;
Porzi et al., 2019).

Computing panoptic quality can be defined as a two-step procedure: First, segment matching of
detections is performed. Each ground truth instance is matched with a prediction if the IoU of the
two is greater than 0.5. After matching, each prediction falls into one of three groups: TP (matched
pairs), FP (unmatched predictions), and FN (unmatched ground truth annotations). In the second
step, these groups are then used to compute the final PQ using (3). If an image in the COCO
dataset contains more than 10 instances of the same category, often they have been labelled collec-
tively as an “iscrowd” category. Each annotation has a parameter that indicates if the annotation
is an “iscrowd”. During usual quantitative metric calculation, the predictions made over regions
that belong to “iscrowd” are ignored. However, the “iscrowd” flag has been left unset for many
annotations. This causes successful detection of instances present in complex scenes to be evaluated
as FPs (despite being TPs), contributing negatively to the quantitative performance. Moreover, it
was found that many smaller sized instances in the COCO dataset have not been annotated at all,
which caused smaller sized predictions to be considered as false positives. A detailed analysis is
provided in the appendix.

To accommodate noisy labelling in the COCO dataset, we propose an alteration to the segment-
matching algorithm which reduces the negative effect of such incorrect false positives. First,
to account for the unset “iscrowd” flag, we compute the overlap area of a prediction with the
corresponding ground-truth segment. If the prediction has a significant overlap (> 0.5) with a
ground-truth segment of the same category, we consider it as a True Positive (represented in Table

Table 2: Results on COCO Val. (B = Baseline (Xiong et al., 2019); O = Ours.)
(a) Results for top 20 thing classes (by instance count)
using ResNet-101 FPN backbone and updated segment
matching. (WS: without smaller FPs; MI: detections on
unset “iscrowd” instances; CR: detections on “iscrowd”
instances.)

Method PQ RQ PQTh RQTh

B WS 41.4 51.1 53.3 66.5
O WS 41.6 51.5 54.5 68.0
B WS+MI 45.4 55.2 67.7 81.4
O WS+MI 45.9 55.9 70.0 83.9
B WS+MI+CR 45.5 55.4 68.4 82.0
O WS+MI+CR 46.1 56.1 71.0 84.6

(b) Comparison of instance detection performance
for our approach against the baseline. (R-50 and
R-101 are ResNet-50 and ResNet-101 with FPN
backbones, respectively.) (↑ = Higher is better;
↓ = Lower is better.)

Method TP ↑ FN ↓ Recall ↑

B (R-50) 20,599 15,504 0.5705
O (R-50) 21,121 14,982 0.5850
Increase +0.0145

B (R-101) 22,535 13,568 0.6241
O (R-101) 23,308 12,795 0.6455
Increase +0.0214
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Figure 5: Patterns that map to the same component while detecting instances of four categories are
shown. As seen in the figure, similar regions across instances map to the same component of the
compositional model.

Figure 6: Parts that map to two components that are active for the Vehicle supercategory. The first
five columns show parts of wheels taken from instances that were classified as Car, Motorcycle, Bus
and Truck, with all parts having the same most active component. Similarly, the last five columns
show parts of Bicycle and Motorcycle instances.

2a by MI, for Missing Iscrowd). The segments predicted over “iscrowd” having the same class are
also deemed True Positives to gauge the detection performance over the complex “iscrowd” region
(represented by CR in Table 2a). Secondly, false positives that have a small area (less than 64× 64)
are also not considered while calculating Panoptic Quality as they might lack the annotation in
ground truth (represented in Table 2a by WS, for Without Smaller FPs).

4.5 ANALYSIS OF COMPOSITIONAL MODEL

This section discusses intermediate results for the compositional model, as generated during the
inference phase. For each RoI, we retain the posterior values generated by the compositional model
and consider the argmax at each position on the 2D lattice of the feature map after applying a
threshold of 0.8. Then for each input image, RoIs predicted by the model are extracted and divided
into k × k parts. Figure 5 shows parts of the RoIs where the same component is the most active for
a particular category.

For each category, the COCO dataset also specifies a “supercategory” that indicates the broad group
to which a category belongs. For instance, thing classes such as Car, Bicycle, Motorcycle, Truck and
Bus altogether form the Vehicle supercategory. Interestingly, classes in some of the supercategories
also share some common features or patterns that are unique to the supercategory. Figure 6 shows
parts that map to two components that are active while detecting classes of the Vehicle supercategory.
This shows that the compositional model is able to learn feature vectors that encode the common
patterns observed on instances of the classes present in the dataset.

5 CONCLUSION

We have introduced a novel object classification approach based on compositional modelling that has
proven to be effective at classifying separate instances of foreground objects. We demonstrated the
efficacy of the approach by replacing the object detection pipeline in UPSNet with a compositional
element that utilizes a mixture of distributions to model parts of objects. We presented extensive
experimental results for the MS COCO dataset, and showed significant gains in performance in
detecting foreground (thing) classes. Finally, we presented qualitative results to demonstrate that
improved metrics and datasets are needed for proper characterization of panoptic segmentation
systems.
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A ADDITIONAL RESULTS

A.1 COMPARISON WITH STATE-OF-THE-ART METHODS

We show additional results using both ResNet-50 FPN and ResNet-101 FPN backbones. First,
qualitative results are shown in Figures 7, 8, and 9 for the COCO dataset, and Figure 10 shows
additional results on the Cityscapes dataset. As seen in the figures, our approach makes significant
improvements at detecting occluded instances, as compared to the baseline.

A quantitative comparison with several state-of-the-art panoptic segmentation methods on the
COCO and Cityscapes datasets is shown in Tables 3 and 4, respectively. We emphasize that many
of the qualitative improvements from Figures 1-4 are not reflected in the quantitative results. The
reason for the discrepancy is discussed in detail in Section 4.3. Table 3 reports the overall PQ score
and PQ averaged over thing classes and stuff classes as well. The methods are grouped into two
broad categories called Single stage and Two stage. It is interesting to note that six of the eleven
two stage methods in the table use the same base design of Mask R-CNN He et al. (2017). For
most methods, we include architecture versions that share the same backbone as our method for

13



Under review as a conference paper at ICLR 2022

uniform comparison. The performance of our approach is comparable to UPSNet as we use many
modules from the UPSNet architecture. Results using the ResNet-101 backbone are also shown in
the table. Making use of the larger ResNet-101 backbone improves overall performance 4.8 points
and improves RQ by 6.3 points, which are both better than improvements made by the baseline. The
results on the Cityscapes dataset are shown in Table 4. In contrast to COCO, the Cityscapes dataset
is much smaller in terms of both, dataset size and category count. The dataset also contains a fairly
large ratio of crowds, with very little visibility of occluded instances. This makes it tougher to detect
instances well. As seen in the table, the performance of the proposed approach is almost identical to
the baseline.

A.2 ABLATION EXPERIMENTS ON COMPOSITIONAL MODEL

Number of clusters. The compositional model is implemented here as a mixture of multivariate
Gaussian distributions. Determining the optimum number of components to model an entire class in
the dataset is not trivial. Table 5 shows results of experiments on the COCO Val dataset with varying
sizes of the compositional model. Clusters represent the count of mixture components. As seen
in the table, the RQ and Recall metrics improve as number of clusters are increased. To maintain
speed of training, we show all results using a compositional model of 320 components (C×4 where
C is the number of classes). However, performance improvements can be expected if size of the
compositional model is increased.

Ground truth data. The ground truth data consists of all boxes and masks of ground truth
instances. The ratio of foreground to background instances for training is set to 1:4, as inferred from
the training data used for Faster R-CNN Ren et al. (2015) (as both methods use RPN to generate
proposals). It is important to learn this separation function well, as assigning high confidence to
RoIs with low overlap is not desirable. To include a high number of background proposals, multiple
folds of the foreground samples are included each batch of the training data. This strategy results in
a larger count of background RoIs as N × 4 background proposals are sampled (N is the count of
foreground proposals). Table 6 shows the results of including multiple folds of foreground samples
in the training data. As seen in the table, showing more background RoIs to the detect branch during
training improves performance of the detection branch.

Compositional model training. While learning parameters of the compositional model, feature
vectors used for training are sampled using the procedure explained in Appendix C.

Following Girshick et al. (2015), we also predict an extra background class (along with thing classes)
to recognize RoIs that have low overlap with a foreground instance. Therefore, features that map
to background regions are also included in the training data to maintain some components that can
recognize background regions in the RoI. We explored this design choice and performed A/B testing
to determine if inclusion of background features improves recognition performance. Inclusion of
background features helps the compositional model determine if some position on the RoI lattice
corresponds to the background. The results of A/B testing that justify the inclusion of background
features are shown in Table 7. As seen from the metrics, including background features improves
detection performance.

A.3 CLASSWISE PERFORMANCE

Here we discuss the class-wise performance of our approach on the COCO dataset. For the panoptic
segmentation task in COCO, there are a total of 133 classes, consisting of 80 thing or object
categories and 53 stuff categories.

Table 8 shows the TP and FN counts and recall for some classes in the COCO dataset. The Person
and Car classes have the highest frequency in the dataset and have an improved recall of 2.59 and
2.99 percentage points respectively. Smaller sized instances (by area) of categories such as Traffic
Light, Bird, Book and fruits see the largest gains in recall, which indicates that our approach is able
to detect instances with varied scales and is able to discern instances even though they are closely
packed together (and often partially occluded, as well). A situation where our approach struggles is
when objects with very similar textures are closely packed together. For example, in crowded scenes
in which animals of the same type (elephant, zebra, sheep) overlap one another, the boundaries of
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instances often become ambiguous. In some cases, our model and the baseline may incorrectly
detect them as a single instance. However, we have found several such cases for which our method
separates individual instances well and generates better segmentation masks than the baseline.

The features used for learning the parameters of the compositional model are extracted using ground
truth bounding boxes and masks. During our experiments, the input images were used without the
application of any data augmentation techniques for feature extraction to maintain fast convergence
times. Further improvements to the performance of the compositional model can be expected by
including augmented data for learning the parameters of the compositional model.

B PANOPTIC QUALITY COMPUTATION

In this section, we discuss some of the issues with panoptic segmentation metrics and noisy labeling
that create a discrepancy between qualitative performance and quantitative metrics for panoptic
segmentation. Similar discussions and suggestions can also be found in FiftyOne (2020); Porzi
et al. (2019).

As discussed in the Experiments section of the main document, computing panoptic quality can be
defined as a two step procedure: First, segment matching of detections is performed. Each ground
truth instance is matched with a prediction if the IoU of the two is greater than 0.5. After matching,
each prediction falls into one of three groups: TP (matched pairs), FP (unmatched predictions), and
FN (unmatched ground truth annotations). In the second step, these groups are then used to compute
the final PQ. If an image in the COCO dataset contains more than 10 instances of the same category,
often the ground-truth annotations group those instances collectively as an “iscrowd” category. Each
annotation has a parameter that indicates if the annotation is an “iscrowd”. During usual quantitative
metric calculation, the predictions made over regions that belong to “iscrowd” are ignored. However,
the “iscrowd” flag has been left unset for many annotations. This omission within the ground-
truth data causes successful detection of instances present in complex scenes to be evaluated as FPs
(despite being TPs), contributing negatively to the quantitative performance. Moreover, it was found
that many smaller sized instances in the COCO dataset have not been annotated at all, which caused
smaller sized predictions to be considered as false positives.

Some examples of incorrect labelling issues are shown in Figure 11. We show the input image,
ground truth and predicted results with green boxes indicating all of the cases that were tabulated
as false positives. In the first row, we see that a majority of the “false positives” are of the chair
category; these should have been counted as true positives, but only a few of the corresponding chairs
are labelled in the ground truth data. Our approach is also able to detect many correct instances on
the “iscrowd” region. The second row shows an example where segments are considered as false
positives due to the “iscrowd” flag being set to 0 for instances of the book category. Notice that
the entire set of books to the left is labelled as a single instance (with the “iscrowd” flag set to 0),
which is inconsistent with some books being labelled individually on the right. Finally, the last row
shows correct detections of many instances of the person category that are very small in size, but the
ground truth annotations are missing and therefore our correct detections are included in the total of
false positives.

To accommodate this sort of noisy labelling in the COCO dataset, we propose a modification to
the segment matching algorithm which reduces the negative effect of such incorrect false positives.
First, to account for the unset “iscrowd” flag, we compute the overlap area of a prediction with
the corresponding ground truth segment. If the prediction has a significant overlap (> 0.5) with
a ground truth segment of the same category, we consider it as a True Positive. The segments
predicted over “iscrowd” having the same class are also deemed True Positives to gauge the detection
performance over the complex “iscrowd” region. Secondly, false positives that have a small area
(less than 64× 64) are also not considered while calculating Panoptic Quality as they might lack the
annotation in ground truth. Table 1 in the main document shows the performance using the modified
segment matching algorithm. All other tables show metrics calculated using the original algorithm.
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C IMPLEMENTATION DETAILS

In this section, we discuss the training process and design choices in detail, and explain how the
output of the instance head is generated in the inference phase. We also expand on some of the
points discussed in the main paper.

Model training. Our panoptic segmentation architecture is trained with a total of 7 loss terms:
panoptic-head loss (pixelwise cross-entropy loss for the unified panoptic output), semantic-head
loss (pixelwise cross-entropy loss and RoI loss), and instance-head loss (4 loss terms for box classi-
fication, foreground attention, box regression and mask segmentation). Each loss has a weighting
factor associated with it to maintain balance. We use standard stochastic gradient descent with
momentum with a weight decay of 0.0001. All the input images are resized to dimensions where
the shorter side is 800 and the maximum possible largest side is 133. All images undergo horizontal
flipping and per-channel normalization.

In the inference phase, the first step of the instance head is to get the class scores and box offsets from
the detection branch. The RoIs with class scores and box offset predictions are then filtered to only
retain RoIs that have confidence scores greater than 0.6, followed by non-maximum suppression to
reject duplicate predictions. The RoIs that remain are then fed to the mask segmentation branch that
generates binary masks for each RoI and subject attention predictions. To combine mask predictions,
a pruning process is used. First, RoIs (now with masks added) are sorted in the decreasing order
of confidence. Each mask is then interpolated to the image scale and place onto an empty canvas.
In the final output, there will be one canvas for each foreground class that has the same spatial size
of the input image. If any mask happens to have an overlap greater than 0.3 with another that was
placed earlier, the mask being processed is discarded. Otherwise, the non-overlapping portion of
the mask is copied to the canvas. In this way, logits for each foreground category are calculated and
passed to the final fusion head for final panoptic logits prediction.

Since our instance head performs spatially aware object classification, we also need mask
information for training. Therefore, we move away from the training strategy of Mask R-CNN
and generate training data for object classification that includes mask information. The RoIs used
for training still consist of a mixture of foreground and background samples. For each image, we
use the ground-truth RoIs and their corresponding masks as the foreground samples. The ratio of
foreground to background RoIs is set to 1:4. The background RoIs are chosen from a pool of RoIs
that have an IoU between 0 and 0.5 with any ground-truth box. After combining the two groups
of samples, each batch then is trimmed to limit the RoI batch size to 512. Features extracted using
the pretrained weights of the backbone form the training data for learning the parameters of the
compositional model.

Learning compositional model parameters. To perform classification in the instance head, we use
a compositional model that matches features at every spatial position (i, j) on the 2D lattice of the
RoI feature map with a reference set. This reference set of features represent frequently observed
sub-parts of instances of some thing class. Our method aims to learn representations of higher
level features or object parts rather than per pixel representations learnt by Behl et al. (2020). We
assume that patterns / parts may be shared across classes, rather than assigning a constant number of
centroids per class (Behl et al., 2020). Similarity functions also differ, Behl et al. (2020) uses cosine
similarity with softmax vs. posteriors w.r.t. each component in a multivariate GMM. There are also
some works that attempt to model instances in a part-group fashion. Bolya et al. (2019) produces
“image sized” prototype masks combined with mask co-efficients for mask assembly as opposed to
compositionality for object classification, while Arnab & Torr (2017) uses a disjointly trained pre-
existing detector. Shape priors are used by an instance CRF to generate masks. In contrast to this,
our method uses sub-parts of objects to make class predictions, with no assumptions about shape
information.

Our compositional model consists of M multivariate Gaussians that correspond to these commonly
observed patterns. To learn the parameters of these Gaussians, we use the pre-trained backbone
network to collect all features using the ground truth information of all thing classes. We leverage
the available mask information to identify which locations on the 2D lattice of the RoI feature map
correspond to instances of thing classes. We use the feature maps extracted using RoIAlign to learn
parameters of the compositional model.
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First, we bring the ground-truth mask of each RoI to size k × k using bilinear interpolation. Then
we collect feature vectors fi,j for all locations (i, j) having a mask value of 1 (after applying a
threshold of 0.5). Similar to Girshick et al. (2015), we also add an extra “background” class to
improve learning within the classification pipeline. A subset of these background RoIs are sampled
from regions that correspond to stuff classes in the training images. Using these features, we apply
the standard Expectation-Maximization algorithm to obtain {πm, µm,Σm} for m = 1, ...,M . The
parameters of the compositional model are learned before training the remaining portions of the task
heads.

To obtain the parameters of our compositional model, with M multivariate Gaussians, we use the
pretrained backbone network to collect all features using the ground truth boxes and corresponding
masks of all instances of foreground classes. This is shown in Figure 12, which shows an example
from the COCO dataset. In the left half of the figure, we show the input image with each RoI
annotated in green. On the right, we show the extracted RoIs and place corresponding masks on
top of them. The highlighted parts in the rightmost column correspond to mi,j = 1. Similar to
Ren et al. (2015), we also add an extra background class to improve learning of the classification
pipeline. A subset of these background RoIs are sampled from regions that correspond to stuff in
the input image.

Figure 7: Additional results using the ResNet-50 FPN backbone on the COCO Val dataset. Left to
right, the columns show input images, ground-truth annotations, baseline results using UPSNet, and
our results using a compositional model. In the top row, notice that our system has correctly detected
a person who is severely occluded by the batter, at the left side of the batter, while also detecting
a significantly higher number of spectator instances, even though some of those instances have
not been annotated individually in the ground truth. In the second row, occluded Person instances
present in the background have also been detected with high precision. In the remaining rows, our
system has performed better than the baseline for many of the foreground objects.
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Figure 8: Representative results of our approach using ResNet-101 on the COCO Val dataset. All
of these cases represent complex scenes involving occlusion. Our system has performed better than
the baseline in each case.
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Figure 9: More representative results of our approach using the ResNet-101 backbone. Rows 1,
3 and 5 contain examples of crowded scenes where our approach shows an improvement over the
baseline. It is interesting to note that our approach detects and segments many instances that are
not present in the ground truth labels. The example in row 2 is particularly difficult, and yet it is
segmented well by our approach despite having an unusual perspective with a partially visible zebra
instance occluding another instance of the same class.
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Figure 11: Examples from the COCO dataset that show points discussed in section B. The green
boxes indicate instances that were detected by our system and were flagged as False Positives.
However, close examination reveals that almost all of these detections were actually correct.

Figure 12: (left) Example image from the COCO dataset with ground-truth RoIs annotated in
green. (middle) RoIs extracted from the image. (right) RoIs with ground-truth masks superimposed.
Highlighted cells indicate parts of the instance.

21



Under review as a conference paper at ICLR 2022

Table 3: Panoptic segmentation results on the MS-COCO 2018 Val dataset. Superscripts ‘Th’ and
‘St’ denote numbers for thing and stuff classes respectively. (*: computed using noisy annotations.)

Method Backbone PQ SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt

Single Stage

DeeperLab (Yang et al., 2019) Xception-71 33.8 - - - - - - - -
Hou et al.(Hou et al., 2020) ResNet-50 FPN 37.1 - - 41.0 - - 31.3 - -
PCV (Wang et al., 2020) ResNet-50 FPN 37.5 77.7 47.2 40.0 78.4 50.0 33.7 76.5 42.9
Panoptic DeepLab (Cheng et al., 2020) Xception-71 40.2 - - 44.4 - - 33.8 - -

Two Stage

JSIS-Net (de Geus et al., 2018) 26.9 72.4 35.7 29.3 72.1 39.2 23.3 73.0 30.4
AUNet (Li et al., 2019) ResNet-50 FPN 38.6 76.4 47.5 46.2 80.2 56.2 27.1 70.8 34.5
AdaptIS (Sofiiuk et al., 2019) ResNet-50 FPN 41.8 78.4 51.3 47.8 81.3 58.0 32.8 74.1 41.1
Panoptic FPN (Kirillov et al., 2019a) ResNet-50 FPN 39.0 - - 45.9 - - 28.7 - -
OANet (Liu et al., 2019) ResNet-50 FPN 39.0 77.1 47.8 48.3 81.4 58.0 24.9 70.6 32.5
SOGNet (Yang et al., 2020) ResNet-50 FPN 43.7 - - 50.6 - - 33.6 - -
SpatialFlow (Chen et al., 2020) ResNet-50 FPN 39.3 - - 45.1 - - 30.5 - -
Single-Shot (Weber et al., 2020) ResNet-50 FPN 32.4 - - 34.8 - - 28.6 - -
Naiyu Gao et al. (Gao et al., 2021) ResNet-50 FPN 40.2 - - 45.3 - - 32.3 - -
OCFusion (Lazarow et al., 2020) ResNet-50 FPN 42.5 - - 49.1 - - 32.5 - -
UPSNet (Xiong et al., 2019) ResNet-50 FPN 42.5 78.5 52.5 48.1 79.2 59.2 33.9 77.4 42.3
Ours* ResNet-50 FPN 40.3 78.2 50.0 44.6 78.8 55.0 33.9 77.4 42.3

Method Backbone PQ SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt

UPSNet (Xiong et al., 2019) ResNet-101 FPN 46.7 80.5 56.9 53.2 81.2 64.6 36.9 79.5 45.4
Ours* ResNet-101 FPN 44.9 80.5 54.7 50.3 81.6 60.9 36.8 78.4 45.3

Table 4: Panoptic segmentation results on the Cityscapes Val dataset. Superscripts ‘Th’ and ‘St’
denote numbers for thing and stuff classes respectively.

Method Backbone PQ PQTh PQSt

Single Stage

Hou et al. (Hou et al., 2020) ResNet-50 FPN 58.8 52.1 63.7

Two Stage

Panoptic FPN (Kirillov et al., 2019a) ResNet-101 FPN 58.1 52.0 62.5
SOGNet (Yang et al., 2020) ResNet-50 FPN 60.0 56.7 62.5
SpatialFlow (Chen et al., 2020) ResNet-101 FPN 59.6 55.0 63.1
TASCNet (Li et al., 2018a) ResNet-50 FPN 59.3 56.3 61.5
Seamless (Porzi et al., 2019) 60.3 56.1 63.3
OCFusion (Lazarow et al., 2020) ResNet-50 FPN 59.3 53.5 63.6
UPSNet (Xiong et al., 2019) ResNet-50 FPN 58.7 53.2 62.6
Ours ResNet-50 FPN 58.2 52.2 62.7

Table 5: Results of experiments with varying sizes of the compositional model. Clusters represent
the count of mixture components. As seen in the table, the RQ and Recall metrics improve as
number of clusters are increased. To maintain speed of training, we show all results using a composi-
tional model of 320 components (C × 4 where C is the number of classes). However, performance
improvements can be expected if size of the compositional model is increased.

Clusters PQ PQTh SQTh RQTh Recall

160 38.1 42.3 77.9 52.7 0.5289
320 38.2 42.2 77.7 52.7 0.5319
640 38.4 42.6 77.9 53.1 0.5334
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Table 6: Results of experiments to compare the data augmentation to increase training data size per
image for the detection branch of the instance head. Including a higher count of background RoIs,
allows the network to learn the large variation of background RoIs with different IoU thresholds. As
seen in the table, showing more of these RoIs improves performance of the detection branch.

Augmentation PQ PQTh SQTh RQTh Recall

Without 39.9 44.1 78.6 54.6 0.5357
With 40.1 44.4 79.7 54.8 0.5456

Table 7: The compositional model is trained using features that are sampled from both foreground
objects and background regions. Inclusion of background features helps the compositional model
determine if some position on the RoI lattice corresponds to the background. The results of A/B
testing that justify the inclusion of background features are shown in this table. As seen from the
metrics, including background features improves detection performance.

Background PQ PQTh SQTh RQTh Recall

Without 39.9 43.9 78.4 54.4 0.5440
With 40.1 44.4 79.7 54.8 0.5456
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Table 8: A comparison of instance detection performance using the ResNet-50 backbone of our
approach against the baseline (Xiong et al., 2019) for some classes in the MS-COCO 2018 Val
dataset. The Person and Car classes have the highest frequency in the dataset and have an improved
recall of 2.59 and 2.99 percentage points respectively. Smaller sized instances (by area) of categories
such as Traffic Light, Bird, Book and fruits are also detected well.

Class Baseline Ours Recall Increase in Recall

TP FN TP FN Baseline Ours

Person 7884 2891 8163 2612 0.7317 0.7576 0.0259
Bicycle 131 183 134 180 0.4172 0.4268 0.0096
Car 1172 733 1229 676 0.6152 0.6451 0.0299
Motorcycle 211 156 216 151 0.5749 0.5886 0.0136
Airplane 108 35 109 34 0.7552 0.7622 0.0070
Truck 176 213 180 209 0.4524 0.4627 0.0103
Boat 196 228 205 219 0.4623 0.4835 0.0212
Traffic Light 349 285 371 263 0.5505 0.5852 0.0347
Parking Meter 35 25 37 23 0.5833 0.6167 0.0333
Bench 126 279 128 277 0.3111 0.3160 0.0049
Bird 187 239 204 222 0.4390 0.4789 0.0399
Cow 247 121 253 115 0.6712 0.6875 0.0163
Bear 55 16 56 15 0.7746 0.7887 0.0141
Backpack 78 282 85 275 0.2167 0.2361 0.0194
Umbrella 237 170 250 157 0.5823 0.6143 0.0319
Handbag 119 412 128 403 0.2241 0.2411 0.0169
Tie 62 190 65 187 0.2460 0.2579 0.0119
Suitcase 150 143 151 142 0.5119 0.5154 0.0034
Baseball Glove 78 70 82 66 0.5270 0.5541 0.0270
Bottle 553 456 578 431 0.5481 0.5728 0.0248
Wine Glass 143 195 155 183 0.4231 0.4586 0.0355
Cup 462 400 502 360 0.5360 0.5824 0.0464
Banana 114 256 140 230 0.3081 0.3784 0.0703
Apple 69 165 78 156 0.2949 0.3333 0.0385
Carrot 134 230 154 210 0.3681 0.4231 0.0549
Cake 158 149 167 140 0.5147 0.5440 0.0293
Chair 670 1082 757 995 0.3824 0.4321 0.0497
Potted Plant 153 187 154 186 0.4500 0.4529 0.0029
Book 287 841 362 766 0.2544 0.3209 0.0665
Scissors 12 23 13 22 0.3429 0.3714 0.0286
Toothbrush 16 41 17 40 0.2807 0.2982 0.0175
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