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Abstract

We propose several schemes for upper bounding the optimal value of the con-
strained most probable explanation (CMPE) problem. Given a set of discrete
random variables, two probabilistic graphical models defined over them and a real
number q, this problem involves finding an assignment of values to all the variables
such that the probability of the assignment is maximized according to the first
model and is bounded by q w.r.t. the second model. In prior work, it was shown that
CMPE is a unifying problem with several applications and special cases including
the nearest assignment problem, the decision preserving most probable explanation
task and robust estimation. It was also shown that CMPE is NP-hard even on
tractable models such as bounded treewidth networks and is hard for integer linear
programming methods because it includes a dense global constraint. The main
idea in our approach is to simplify the problem via Lagrange relaxation and decom-
position to yield either a knapsack problem or the unconstrained most probable
explanation (MPE) problem, and then solving the two problems, respectively using
specialized knapsack algorithms and mini-buckets based upper bounding schemes.
We evaluate our proposed scheme along several dimensions including quality of the
bounds and computation time required on various benchmark graphical models and
how it can be used to find heuristic, near-optimal feasible solutions in an example
application pertaining to robust estimation and adversarial attacks on classifiers.

1 Introduction

We develop upper bounding algorithms for the constrained most probable explanation (CMPE) task
[32], a recently defined unifying (discrete) optimization task over probabilistic graphical models
(PGMs) [9, 20, 25] or log-linear models. At a high level, the CMPE task adds a global capacity
constraint to the classic optimization problem in PGMs called most probable explanation (MPE).
Given a set of log-potentials F , namely a log-linear model, the MPE task seeks to find an assignment
of values to all variables (i.e., an explanation) such that the sum over the projection of the assignment
on the log-potentials is maximized, namely it has the maximum probability. The CMPE task adds
a global constraint to MPE using a possibly different set of log-potentials G and a real number q.
Specifically, it seeks to find the most probable assignment w.r.t. F under the constraint that the sum
over the projection of the assignment on the log-potentials in G is smaller than or equal to q.

Our interest in CMPE stems from the fact that several tasks in Explainable AI [16] can be reduced to
CMPE. For example, the nearest assignment problem [31] and the decision preserving explanation
problem [7, 32] are instances of CMPE; the former seeks to find an assignment whose probability is
as close as possible to a given assignment, namely, its nearest neighbor while the latter seeks to find
the most probable extension of a given partial assignment according to a generative model such that
the same (classification) decision is made according to a discriminative model. Other applications of
CMPE include various queries in robust estimation [10] and detecting adversarial attacks.
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In terms of computational complexity, Rouhani et al. [31, 32] showed that CMPE is much harder
than MPE. In particular, via a reduction from the multi-choice knapsack problem (MCKP) [19],
Rouhani et al. showed that while MPE is linear time on graphical models having empty primal
graphs, CMPE is NP-hard. However, despite these worst-case results, the good news is that MCKP is
an instance of easy NP-hard problems [19] and can be well-approximated using advanced methods
from the knapsack problems literature. The MCKP reduction also yields a graph-based technique for
approximating CMPE. The key idea is to condition on variables, namely remove them from the primal
graph G until no more than k nodes remain in each connected component. The removed nodes form
a k-separator [3] and each assignment to them yields an MCKP. When the k-separator is bounded,
this method yields a fully polynomial time approximation scheme (FPTAS). When the k-separator is
not bounded, Rouhani et al. propose to perform local search yielding an anytime algorithm.

While the algorithms described above yield a lower bound, no non-trivial upper bounding algorithms
are available for CMPE. Such algorithms serve two important purposes [24]: (1) generating heuristic
near-optimal solutions; and (2) pruning the search space of branch and bound methods and thus
improving their efficiency. In principle, CMPE can be encoded as a mixed integer linear program
(MILP) and solved using MILP solvers such as Gurobi [17] and SCIP [1, 2]. However, CMPE and
other related tasks such as MPE and MCKP are particularly difficult for MILP solvers because the
global constraint in CMPE simultaneously restricts all the variables while MILP solvers are adept at
handling sparse constraints. This motivates the development of specialized methods for CMPE.

In this paper, we propose two approaches for efficiently computing qualitative upper bounds for the
CMPE task. These approaches relax either the objective or the constraint or both. Our first approach
is based on Lagrangian relaxation (cf. [35]) and relaxes the global constraint using a Lagrange
multiplier λ ≥ 0 to yield an (unconstrained) MPE task. Given a value for λ, an upper bound on the
MPE task yields an upper bound on CMPE. We propose to solve the MPE task using either exact
or upper bounding approaches described in literature such as mini-bucket elimination [11], dual
decomposition [14] and join graph based cost shifting schemes [18] and further tighten the upper
bound by searching for the best possible value for λ, namely a value that minimizes the upper bound
on MPE. Our second approach is based on Lagrangian decomposition. The key idea is to decompose
the problem by duplicating variables [6] via equality constraints and then relaxing the latter using
Lagrange multipliers such that the resulting problem reduces to MCKP. Solving the MCKP for a
given assignment of values to the multipliers yields an upper bound on CMPE. We propose to further
improve the bound by searching for the best possible value assignment to the multipliers via an
iterative algorithm.

Empirically, we investigate the quality and computational efficiency of our proposed bounding
techniques on a variety of CMPE tasks formulated on cutset networks [30] and graphical models used
in the UAI competitions [13, 15]. We also explore a novel application of CMPE: making classifiers
(expressed as log-linear models) change their decision by minimally changing the test example. We
found that when there is a relatively small limit on the amount of storage space an algorithm can use,
our approach based on Lagrange decomposition via MCKP yields the best upper bounds. However, it
also requires significantly longer to converge. Conversely, when the space limit is relatively large, the
approach based on Lagrangian relaxation that utilizes MPE solvers is superior.

2 Notation and Background

We denote binary discrete random variables using upper case letters (e.g., X , Y , etc), their sets using
bold uppercase letters (e.g., X,Y , etc.) and assignment of values to them using bold lowercase
letters (e.g., x,y, etc). If S ⊆X , then xS is the projection of x onto S. We use letters f , g and h to
denote log-potentials or features and the calligraphic capital letters such as F , G, etc. to denote sets
of log-potentials. A log-linear model or a Markov network, denoted byM is a pair 〈X,F〉 where
X is a set of variables and F is a set of log-potentials or features such that each feature fi ∈ F is
defined over a subset of variables S(fi) ⊆X . S(fi) is called the scope of fi. A log-potential maps
each assignment in its scope to a real number (R). A primal graph ofM is an undirected graph
G(V,E) where V and E is the set of vertices and edges respectively such that each vertex Vi ∈ V
represents the random variable Xi ∈X and there is an edge between vertices Vi and Vj in G iff the
corresponding variables appear together in the scope of some function in F . Given an assignment
x, the weight of x w.r.t.M, denoted by ωM(x) equals

∑
f∈F f(xS(f)). For brevity, we will abuse

notation and use f(x) instead of f(xS(f)).
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Figure 1: Combined primal graph of two log-linear models having log-potentials {f1, f2, f3} and
{g1, g2, g3} respectively. Let q = 40, then the optimal solution x∗ to the CMPE problem is
(X1 = 1, X2 = 0, X3 = 1) (highlighted in green and yellow) and the optimal weight is 28. The
MPE assignment having weight 41 is (X1 = 0, X2 = 0, X3 = 1) ( highlighted in red and yellow).

Definition 1 (CMPE ). Given two log-linear modelsM1 = 〈X,F〉 andM2 = 〈X,G〉 defined
over the same set of variables X and a real value q, the constrained most-probable explanation
(CMPE) task is to find an assignment x∗ such that wM1(x∗) is maximized and wM2(x∗) ≤ q.
Mathematically, the problem of computing the optimal weight is given by

max
x

∑
f∈F

f(x) s.t.
∑
g∈G

g(x) ≤ q (1)

x∗ is the optimal solution to the CMPE problem. Let c∗ = ωM1
(x∗) denote the optimal value or

weight. A feasible solution of CMPE is an assignment x s.t.
∑
g∈G g(x) ≤ q.

The combined primal graph of CMPE is the graph obtained by taking the union of the edges of the
primal graphs associated withM1 andM2 respectively. Formally, let G1(V,E1) and G2(V,E2) be
the primal graphs associated withM1 andM2 respectively. Then the combined primal graph is
G(V,E1 ∪ E2). Without loss of generality and for simplicity of exposition we assume that bothM1

andM2 have the same number of functions and for each function f ∈ F there is a corresponding
function g ∈ G such that S(f) = S(g) and vice versa. Thus, under this assumption, G1 = G2 = G.
Example 1. Fig. 1 shows two log-linear models that define a CMPE problem given q = 40.

2.1 Prior Work on Upper Bounding the Most Probable Explanation Task

B(X1) : f1(X1, X2) f3(X1, X3)

+ c(X1) − c(X1)

B(X2) : f2(X2, X3) + h1(X2)

B(X3) : h2(X3) + h1(X3)

ub

Figure 2: Message-passing in MB and
MM on the log-linear model given in Fig.
1, having log-potentials f1, f2 and f3.

Removing the constraint in Eq. (1) encoded byM2 and
q yields the most probable explanation (MPE) task. MPE
is known to be NP-hard in general but can be solved effi-
ciently in practice when the primal graph has low treewidth
or when the partition-based [11] upper bounding schemes
yield close to optimal estimates within an AND/OR branch
and bound framework [24]. In this paper and specifi-
cally in our experiments, we use mini-buckets based upper
bounding schemes presented in Ihler et al. [18]. These
schemes operate by first converting the primal graph of
M to a join graph where each node called a cluster and
each edge called a separator is associated and labeled with
a subset of variables from M. The join graph can be
thought of as a relaxation of inference architectures called
tree-decompositions (cf. [20]), on which MPE inference
is exact, in that it satisfies all properties that the latter sat-
isfies including the running intersection property except
that it is a graph of clusters instead of a tree of clusters. Then these algorithms perform message-
passing on the edges of the join graph where the computational complexity of message-passing is
exponential in the maximum cluster size. To control the complexity and yield a bounded polynomial
time approximation, these schemes use an integer parameter i known as the i-bound which bounds
the number of variables in each cluster in the join graph by i.
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Figure 3: (a) combined primal graph over 6 variables {X1, X2, X3, X
′
1, X

′
2, X

′
3} and two log-linear

models, each having three log-potentials. The functions f ′1, f ′2 and f ′3 form the objective while the
functions g1, g2 and g3 form the constraint. (b) defines the CMPE task and (c) shows an equivalent
MCKP to the CMPE task given in (b). Solution to the MCKP and the corresponding solution to
CMPE is highlighted in red. The weight of the optimal solution is 15.01 + 8 + 4.99 = 28.

Ihler et al. propose three different classes of message-passing schemes on join graphs. The first
scheme which yields the classic mini-buckets (MB) algorithm [11] performs message-passing along
a given order o of variables processing the clusters one by one. For each variable X along o, the
algorithm maxes out X from each unprocessed cluster that it appears in and sends a message to all
unprocessed clusters that are connected to the cluster but do not mention X . The second scheme
called mini-bucket with max-marginal matching (MM) enhances the MB algorithm by performing
LP-tightening updates on all clusters that are processed when maxing-out X . These update equations
are inspired by work on a family of LP-based methods including reweighted max-product [34],
max-product linear programming (MPLP) [14], dual decomposition [21], and soft arc consistency
[4, 33]. At a high level, these tightening approaches shift cost/weight from one cluster to another
without changing the original weight and thus try to re-parameterize the model in order to reduce
and thus improve the upper bound. The third scheme, which we refer to as JG, is a fully iterative
approach which performs message-passing or LP-tightening updates until convergence or until a
bound on the number of iterations is reached. In practice, it was observed that in terms of the upper
bound quality, JG is superior to MM which in turn is superior to MB. However, since MM and MB
are single pass approaches while JG is iterative, JG requires significantly more time.

Fig. 2 demonstrates the MB and MM algorithms using the log-linear model given in Fig. 1 having
log-potentials f1, f2 and f3. MB is a one-pass algorithm and computes the messages denoted by h
while MM also passes the marginal matching messages denoted by c (red).

2.2 Multi-Choice Knapsack Problem

The knapsack problem is a classic problem in combinatorial optimization which is often stated as
follows. Given n items where each item i has a cost ci and a profit pi, and a knapsack with capacity
q, select a subset of items such that the total profit is maximized and the total cost does not exceed q.
For each item i, we can associate a Boolean variable xi which takes value 1 if the item is selected and
0 if it is not and state it as the following optimization problem: maxx

∑n
i=1 pixi s.t.

∑n
i=1 cixi ≤ q.

The multiple-choice knapsack problem (MCKP) is a generalization of the knapsack problem in which
items are partitioned into groups/bins and the constraint is that exactly one item must be chosen from
each group. Specifically, given m bins where each bin i has Ni items and each item j in bin i has a
cost cij and a profit pij , and a knapsack with capacity q, the MCKP task is to select one item from
each bin such that the total profit is maximized and the total cost does not exceed q. For each item j
in bin i, we can associate a Boolean variable xij that takes value 1 if the item is selected and 0 if the
item is not and express the problem mathematically as:

max
x

m∑
i=1

∑
j∈Ni

pijxij s.t.
m∑
i=1

∑
j∈Ni

cijxij ≤ q and
∑
j∈Nj

xij = 1, i = 1, . . . ,m (2)
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In recent work, Rouhani et al. [32] showed that when the combined primal graph ofM1 andM2 is
disconnected into multiple components and the number of variables in each component is bounded by
k then the CMPE task can be encoded as MCKP where the number of items in each bin is exponential
in k. Thus, if the maximum domain size of the variables is d, then the number of items in each bin is
bounded by dk. Fig. 3 demonstrates the MCKP encoding for an example CMPE task.

If the profits and costs of the items are integers, the MCKP problem can be solved in O(nq) time and
O(mq) space where n is the number of items, m is the number of bins and q is the capacity using
a dynamic programming algorithm [26, 27, 28]. When the profits and costs are not integers, a LP
upper bound can be computed in O(n) time using the Dyer-Zemel algorithm [12, 36].

3 Upper Bounding Techniques for CMPE

A straight forward upper bound (LP-Bound) for CMPE can be derived by converting it to an integer
linear program, relaxing the integrality constraint to yield a linear program and solving the latter using
standard methods and solvers such as the simplex, ellipsoid and interior-point methods. However, the
computational complexity of these algorithms is weakly polynomial. To this end, we seek to develop
algorithms that are non-trivial and have strong polynomial time guarantees.

We derive two classes of upper bounding algorithms for CMPE. The first class relaxes the global
constraint yielding an MPE task while the second duplicates variables by adding equality constraints
yielding an MCKP problem. We describe the two approaches in the next two subsections.

3.1 MPE based upper bounds by relaxing the global constraint

The Lagrangian relaxation of a constrained optimization problem is obtained by incorporating all or
some of the constraints into the objective function using appropriate coefficients called the Lagrange
multipliers. This relaxation provides a simple and efficient approach to compute upper bounds on the
maximization problem known as the primal problem. Given a parameter λ ≥ 0 called the Lagrange
multiplier, we consider the following Lagrangian relaxation of CMPE:

max
x

∑
f∈F

f(x)− λ
∑
g∈G

g(x) + λq s.t. λ ≥ 0 (3)

Let u∗λ denote the optimal value of the problem given in Eq. (3). Computing u∗λ can be easily reduced
to the MPE task. We construct a set of functions H as follows. We begin with an empty H. Then,
for each f ∈ F and its corresponding function g ∈ G such that S(f) = S(g) we add a function
h = f − λg toH. The MPE value of the log-linear model 〈X,H〉 plus λq equals u∗λ.

From the theory of Lagrangian relaxations, it is easy to show that u∗λ is an upper bound on c∗: all
feasible solutions of CMPE are also feasible solutions of the Lagrangian relaxed problem and the
objective value of the feasible solutions of CMPE is smaller than or equal to the relaxed problem
because

∑
g∈G g(x) − q ≤ 0. The optimal, namely the smallest upper bound via Lagrangian

relaxation is obtained by searching for a value for λ s.t. u∗λ is minimized. This minimization problem
is called the Lagrangian dual problem. Formally, we can show that

Proposition 1. minλ:λ≥0 u
∗
λ ≥ c∗ where u∗λ and c∗ are optimal values of problems given in Eqs. (3)

and (1) respectively.

Let u∗LR = minλ:λ≥0 u
∗
λ denote the optimal upper bound. u∗LR can be computed using standard

sub-gradient optimization methods. In particular, u∗λ as a function of λ has several nice properties
such as concavity but is non-differentiable in presence of multiple optima. To this end, we con-
sider the following update rule for λ. We start with a heuristic value λ0 and generate a sequence
[λ0, . . . , λk, λk+1, . . .] using: λk+1 = λk + αk

Ä∑
g∈G g(x∗,k)− q

ä
where αk is the learning rate

and x∗,k is the optimal solution to Eq. (3) with λ = λk.

The discussion above yields Algorithm 1 for computing an upper bound on CMPE. After initializing
the variables, specifically the Lagrangian multiplier λ and the step-size α to a random positive
number and the best answer u∗LR to∞, steps 3 to 10 iteratively solve the Lagrangian dual problem
by performing sub-gradient descent over λ. At each iteration, we construct the log-linear modelMλ

(step 3), solve the MPE problem overMλ to yield an optimal assignment x∗λ (step 4), use x∗λ to
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Algorithm 1: UB-MPE (M1,M2,q)
Input: Log-linear modelsM1 = 〈X,F〉 andM2 = 〈X,G〉; and a real value q ∈ R
Output: An upper bound on CMPE
Begin:
1: Initialize: (1) λ = random number > 0; (2) u∗LR =∞, α = a random number > 0
2: repeat
3: ConstructMλ = 〈X,H〉 whereH = {h = f − λg|f ∈ Fand g ∈ G}
4: Use an MPE algorithm overMλ to compute the MPE solution x∗λ.

{If MPE is not tractable, we can use algorithms such as MB, MM and JG to upper bound it.}
5: uλ = wMλ(x

∗
λ) + λq

6: if uλ < u∗LR then u∗LR = uλ
7: λ = λ+ α

Ä∑
g∈G g(x

∗
λ)− q

ä
8: Update α using a suitable step-size update procedure (cf. [5])
9: until convergence

10: return u∗LR
End.

compute the upper bound uλ (step 5), update the answer u∗LR if the current bound is better (step
6), perform a sub-gradient step to update λ (step 7) and update the learning rate using a suitable
update procedure (cf. [5]). In our experiments, we used diminishing step size which reduces α by
periodically dividing it by a positive constant.

To use Algorithm 1 in practice, we need access to an MPE solver. In particular, if MPE is tractable,
for example the treewidth of the combined primal graph is small or the model admits a tractable
probabilistic circuit such as a cutset network [29] or an arithmetic circuit [8] and the sub-gradient
optimization converges in t iterations, we can show that the bound returned by Algorithm 1 can never
be worse than the linear programming relaxation. Formally (proof in the supplement),

Theorem 1. If the MPE overMλ is tractable for all λ ≥ 0 then u∗LR ≤ u∗LP , where u∗LP is the
LP-bound of CMPE (Eq. (1)) and u∗LR is the upper bound returned by Algorithm 1.

WhenMλ is not tractable, we propose to use polynomial time approximations whose complexity can
be controlled using an integer parameter called the i-bound; specifically MB, MM and JG methods
(see section 2.1) to yield an upper bound on uλ at each iteration. This yields an upper bound that may
be worse (higher) than u∗LR; however using only polynomial time and space complexity.

3.2 MCKP based upper bounds using the Lagrange decomposition method

The main idea in our proposed scheme is to decompose the structures of both M1 and M2 by
duplicating variables such that the CMPE task reduces to MCKP and then solving the latter using
specialized algorithms to yield an upper bound. We describe our idea using the following CMPE
problem:

max
x

f1(x1, x2) + f2(x2, x3) + f3(x1, x3) s.t. g1(x1, x2) + g2(x2, x3) + g3(x1, x3) ≤ q (4)

Here, we assume that all variables are binary and take values from the set {0, 1} and x = (x1, x2, x3).
Duplicating each variable two times since each variable appears in two functions and adding equality
constraints to account for the duplication, we can express the problem given in Eq. (4) as:

max
x,x′

f1(x′1, x2) + f2(x′2, x3) + f3(x1, x
′
3) s.t. g1(x′1, x2) + g2(x′2, x3) + g3(x1, x

′
3) ≤ q (5)

and x1 = x′1, x2 = x′2 and x3 = x′3 (6)

Relaxing the constraints using Lagrange multipliers µ = (µ1, µ2, µ3), where µ1, µ2, µ3 ∈ R we get:

max
x,x′

f1(x′1, x2) + f2(x′2, x3) + f3(x1, x
′
3) + µ1(x1 − x′1) + µ2(x2 − x′2) + µ3(x3 − x′3) (7)

s.t. g1(x′1, x2) + g2(x′2, x3) + g3(x1, x
′
3) ≤ q (8)

Note that by theory of Lagrange relaxations, a solution to the problem described by Eqs. (7) and (8)
will yield an upper bound on the problem described by Eqs. (5) and (6). Let f ′1 = f1 − µ1x

′
1 + µ2x2,
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Algorithm 2: UB-KP (M1,M2,q,i)
Input: Log-linear modelsM1 = 〈X,F〉 andM2 = 〈X,G〉; a real value q ∈ R; i-bound∈ N
Output: An upper bound on CMPE
Begin:
1: Merge (via summation) functions in F (and corresponding ones in G) such that the number of variables in

the scope of the new functions is bounded by i to yield a new set of functionsH (and S for G).
2: Given Xj ∈X , let Ij = {a|ha ∈ H, sa ∈ S and Xj ∈ S(ha) = S(sa)} and {Yj,a} where a ∈ Ij

denote the set of duplicated variables of Xj . Let Y = {Yj,a|Xj ∈X and a ∈ Ij}
3: ExpressH and S using duplicated variables Y
4: Initialize: (1) all members of vector µ = {µj,a,b|Xj ∈X, a, b ∈ Ij , and a < b} to a random number; (2)
u∗LD =∞, and (3) α = a random number > 0

5: repeat
6: Construct a MCKP fromH, S, µ and q
7: Solve the MCKP to yield an optimal value u∗µ and an assignment of values y∗ to Y .

{If MCKP is intractable, we solve it approximately using a linear time upper bounding schemes [19].}
8: if u∗µ < u∗LD then u∗LD = u∗µ
9: Update each µj,a,b using µj,a,b − α(y∗j,a − y∗j,b)

10: Update α using a suitable step-size update procedure (cf. [5])
11: until convergence
12: return u∗LD
End.

f ′2 = f2 − µ2x
′
2 + µ3x3 and f ′3 = f3 − µ3x

′
3 + µ1x1. Then we can express the problem described

by Eqs. (7) and (8) as:

max
x,x′

f ′1(x′1, x2) + f ′2(x′2, x3) + f ′3(x1, x
′
3) s.t. g1(x′1, x2) + g2(x′2, x3) + g3(x1, x

′
3) ≤ q (9)

The problem described by Eq. (9) is an instance of MCKP having 3 bins and 4 items in each bin
since the combined primal graph associated with the CMPE problem has three connected components
corresponding to the three functions (see Fig. 3). Thus, it can be solved using MCKP methods
to yield an upper bound on our example CMPE problem. Let u∗µ denote the optimal value of the
problem described by Eq. (9), then solving the Lagrangian dual u∗LD = minµ u

∗
µ via sub-gradient

optimization methods yields the best possible upper bound.
Example 2. The combined primal graph given in Fig. 3 is obtained by duplicating each variable
in the combined primal graph of the log-linear models given in Fig. 1 and relaxing the equality
constraint (via Lagrangian decomposition) between the duplicated variables such that the number
of nodes in each connected component is bounded by 2. Given µ1 = −5.01, µ2 = −1.0 and
µ3 = 1.0, the functions f ′1, f ′2 and f ′3 given in Fig. 3(b) are obtained from the functions f1, f2 and f3
respectively given in Fig. 1 using the expressions f ′1 = f1 − µ1x

′
1 + µ2x2, f ′2 = f2 − µ2x

′
2 + µ3x3

and f ′3 = f3 − µ3x
′
3 + µ1x1. The functions g1, g2 and g3 are copied from Fig. 1. Thus, from Eq. (9),

theory of Lagrange relaxations and MCKP encoding described in Rouhani et al. [32], solving the
MCKP task in Fig. 3(c) will yield an upper bound on the optimal value of the CMPE problem. The
value of the optimal solution to MCKP given in Fig. 3(c) is 28. Thus, for this toy example, the MCKP
based upper bound is equal to the optimal value of the CMPE problem.

We generalize the method prescribed in the aforementioned example to yield a polynomial time
upper bounding scheme. In particular, in order to control both the computational time and space
complexity of our proposed algorithm, we use an integer parameter i (similar to the i-bound used
for join graphs). This parameter exponentially bounds the number of items in each bin of MCKP
and under the assumption that the log-potentials have integer values that are bounded above by
an integer B, the MCKP generated by our relaxation can be solved in time that scales linearly
in exp(i), B and the number of functions using a dynamic programming algorithm. Before we
present our algorithm, we introduce some required notation. Given a set of functionsH that defines
the objective, corresponding functions S that define the constraint and a variable Xj ∈ X , let
Ij = {a|ha ∈ H, sa ∈ S and Xj ∈ S(ha) = S(sa)} denote an index over functions that mention
Xj . Let {Yj,a} where a ∈ Ij denote the set of duplicated variables of Xj . Let {µj,a,b} denote the set
of Lagrange multipliers associated with each variable Xj ∈X where a, b ∈ Ij and a < b. Without
loss of generality, we can now state the Lagrangian relaxed problem as:

max
y

∑
h∈H

h(y) +
∑

j,a,b|a,b∈Ij ,a<b

µj,a,b(yj,a − yj,b) s.t.
∑
s∈S

s(y) ≤ q
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Table 1: Table showing results on cutset networks for 4 datasets AD, BBC, Book and Reuters. The line
under each network reports the number of random variables and their maximum domain size. Alg: Algorithm,
q20 and q50: q values are chosen from the 20-th and 50-th percentile respectively, and Tm: time in seconds.

AD BBC Book Reuters
(1556,2) (1058,2) (500,2) (889,2)

Alg q20 Tm q50 Tm q20 Tm q50 Tm q20 Tm q50 Tm q20 Tm q50 Tm
MB -3308.3 0 -3228.4 0 -953.9 1 -906.7 0 -670.4 0 -629.9 0 -1572.3 0 -1443.5 0
KP -3307.8 59 -3225.8 70 -953.4 42 -906.1 49 -669.9 15 -629.7 20 -1564.8 63 -1431.6 149

where Y is the set of duplicated variables. To solve the Lagrangian dual, we can use the sub-gradient
method with the following update rule for each µj,a,b. We start with µ0

j,a,b and generate a sequence
[µ0
j,a,b, µ

1
j,a,b, . . .] using: µk+1

j,a,b = µkj,a,b − αk(yj,a − yj,b) where αk is the learning rate.

Algorithm 2 formally describes our approach. In step 1, it merges functions inM1 (andM2) creating
new functions having potentially higher scope sizes under the constraint that the maximum scope size
is bounded by i. This yields two new sets of functionsH and S which represent the objective and the
constraint respectively. Then the algorithm duplicates the variables so that the resulting problem can
be converted to MCKP (step 2-3). In steps 4-12 the algorithm solves the Lagrangian dual problem
via sub-gradient descent over the Lagrange multipliers µ. A key sub-step in optimizing the dual is
solving the MCKP (step 7). For this, the algorithm either uses an exact MCKP algorithm if feasible
or a linear time upper bounding scheme [12, 36].

In general, when the combined primal graph has large number of disconnected components, the
quality of bounds returned by Algorithm 2 is likely to be better than the quality of bounds returned
by Algorithm 1. For instance, in the extreme case when the primal graph has no edges, Algorithm 2
will either yield an exact answer or superior knapsack-based upper bounds while Algorithm 1 will
yield inferior bounds that are equal to the LP-relaxation of the knapsack problem (see [19]).

4 Experiments

We compared the upper bounding schemes proposed in this paper on three types of CMPE problems
having different levels of complexity. The first type uses tractable probabilistic circuits, specifically
cutset networks [29, 30] learned on well known benchmarks used by the tractable models community
[23]. The second type uses intractable, high treewidth models from the UAI competitions [13, 15].
The third type uses models developed for performing adversarial attacks on classifiers in order to
measure their robustness. We also evaluated the impact of increasing the i-bound on the quality of
upper bound and the time required to compute the upper bound.

We evaluated three algorithms within our MPE-based bounding approach: (1) Mini-Bucket elimi-
nation (MB); (2) Mini-Bucket with max-marginal matching (MM); and (3) join graph based linear
programming (JG). We implemented the Dyer-Zemel algorithm [12, 36] to compute upper bounds
on MCKP (we will call it KP for brevity). We ran JG for a maximum of 40 iterations or until
convergence. We ran the outer-loop of the MPE-based as well as MCKP-based bounding algorithms
for a maximum of 100 iterations or until convergence. Details are described in the supplement.

Results on MPE Tractable Models. We learned cutset networks on four high-dimensional datasets
AD, BBC, Book and Reuters. We used these networks asM1. To constructM2, we modified the
parameters ofM1 using a noise parameter ε ∼ N(0, σ2 = 0.1). For each network, we experimented
with 5 values of q such that the chosen values lie roughly in the 10-th, 20-th, 50-th, 80-th and 90-th
percentile respectively. This helps us evaluate the impact of q on the bounds.

Table 1 shows the results for two values of q (20-th and 50-th percentile). Results for other values of q
are included in the supplement. Note that on these networks, the mini-buckets algorithm yields exact
MPE values in the inner loop of our algorithm and as a result max-marginal as well as join-graph
based propagation will not improve the bounds (we have therefore not reported them). As expected,
we see that when MPE is tractable, MPE based bounds are superior in terms of time as well as quality
than MCKP based bounds.

8



Table 2: Table showing results on four networks from the UAI competitions: Segmentation, Grids, Promedas
and Pedigree. The line under each network reports the number of random variables, the maximum domain size
of the variables, the number of functions and the treewidth. Alg: Algorithm, iB: i-bound, q20 and q50: q values
are chosen from the 20th and 50th percentile respectively, and Tm: time in seconds.

Segmentation Grids Promedas Pedigree
(232,2,863,18) (1600,2,4800,113) (1953,2,1953,148) (1152,5,1152,35)

Alg iB q20 Tm q50 Tm q20 Tm q50 Tm q20 Tm q50 Tm q20 Tm q50 Tm
MB 2 -381.7 0 -366.0 0 1370.4 1 1587.4 0 -1491.7 1 -1431.5 1 -123.4 0 -111.2 0
MM 2 -427.3 0 -416.9 0 1040.8 1 1235.8 1 -1964.8 1 -1881.8 1 -235.6 1 -222.0 1
JG 2 -459.9 5 -447.8 7 821.9 35 1017.8 30 -2466.1 45 -2362.5 56 -319.2 37 -307.4 33
KP 2 -459.9 37 -446.8 36 821.4 430 1020.4 406 -2765.3 139 -2677.6 138 -323.6 214 -310.9 204
MB 5 -425.0 1 -409.8 0 1078.4 2 1289.6 2 -2661.6 1 -2578.1 0 -268.9 1 -260.2 1
MM 5 -452.2 0 -440.0 1 857.3 2 1045.9 2 -2748.8 1 -2656.7 2 -315.3 1 -302.6 1
JG 5 -461.5 8 -449.1 6 819.9 51 1016.0 51 -2764.6 37 -2676.2 42 -330.8 32 -318.2 25
KP 5 -459.8 37 -446.8 31 819.9 214 1016.3 164 -2770.8 116 -2681.2 150 -324.8 139 -312.6 134
MB 8 -448.0 1 -434.4 0 995.8 3 1178.7 3 -2692.0 2 -2599.4 1 -292.3 1 -285.9 1
MM 8 -460.2 1 -448.5 1 830.3 6 1024.8 6 -2762.7 3 -2670.1 4 -327.6 3 -313.9 3
JG 8 -461.1 22 -449.2 25 820.3 190 1016.0 160 -2760.8 98 -2670.7 126 -327.8 91 -317.1 84
KP 8 -459.8 29 -448.1 37 819.6 202 1016.0 167 -2771.4 134 -2681.7 130 -325.8 171 -313.6 170
MB 10 -452.7 2 -438.7 2 951.7 8 1143.4 8 -2688.4 4 -2601.5 4 -300.9 3 -284.9 4
MM 10 -460.7 2 -448.5 3 824.1 12 1021.2 13 -2763.1 8 -2673.2 8 -330.1 6 -316.4 8
JG 10 -461.4 65 -448.9 68 823.9 396 1018.9 501 -2756.4 322 -2669.9 381 -331.2 288 -316.4 319
KP 10 -460.0 33 -448.4 36 819.5 215 1016.0 170 -2770.8 115 -2680.3 101 -324.9 211 -313.8 193

Results on Networks from the UAI Competition. We also experimented with several high
treewidth networks used in the UAI competitions [13, 15]. We varied the i-bound of all algo-
rithms from 2 to 10. We used the technique described above for MPE tractable models to construct
the CMPE problems. For brevity, in Table 2 we present results on the largest network from four
domains: image segmentation, Grids, medical diagnosis (Promedas) and pedigrees for genetic linkage
analysis for two values of q which are roughly equal to the 20-th and 50-th percentile respectively.

We see that KP and JG yield smaller (better) upper bounds than MB and MM. However, their
time complexity is much higher. For smaller i-bounds (= 2, 5), there is an order of magnitude
difference between the upper bounds output by JG and KP, and the other two approaches. However,
the difference is much smaller for larger i-bounds (= 8, 10). The MM algorithm yields the best
trade-off between time complexity and upper bound quality, especially when using higher i-bounds
is feasible. However, if using higher i-bounds in not feasible, the KP algorithm should be used.

Results on Adversarial Modification on the MNIST dataset. We consider the problem of per-
forming adversarial attacks on discriminative classifiers in order to measure their robustness. The
goal is to manipulate the predictions made by the classifier by minimally changing the test example.
We show that this problem can be reduced to CMPE if the classifier can be expressed as a log-linear
model. Formally, let G be a set of features/functions, each defined over a set of random variablesX .
Given an assignment x, let D be a decision variable which takes the value d if

∑
g∈G g(x) > 0 and

d̄ otherwise. Given an assignment (test example) x, our goal in rendering an adversarial attack is to
modify it minimally such that the classifier decision flips, namely find an assignment x′ such that
the decision flips from d to d̄ and the distance between x and x′ is minimized. Given an assignment
x, we can model the complement of the Hamming distance using the set of n univariate functions
F = {f1, . . . , fn} where fi(x′i) = 1 if x′i ∈ x and 0 otherwise. Notice that if the hamming distance
between x and x′ is k then

∑n
i=1 fi(x

′
i) = n− k. Given an assignment x such that

∑
g∈G g(x) > 0

and set of functions F and G as described above, we can now express the adversarial attack task as
the following CMPE problem: maxx′

∑
f∈F f(x′) s.t.

∑
g∈G g(x′) ≤ 0.

We can also use more sophisticated distance functions that take into account the spatial arrangement
of pixels. For example, if we want pixels that are spatially close to take the same value, we can add
the following set of pairwise functions to F : fi,j(xi, xj) = 1.0 if Xi is a neighboring pixel of Xj

and xi = xj , and 0 otherwise. This will yield a graphical model whose primal graph is a grid.
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Table 3: Table showing the average upper bound over 21000 test examples and the time required by the four
algorithms MB, MM, JG and KP with i-bounds varying between 2 and 4 on the MNIST dataset using the Grid
model for measuring distance and linear SVM as the classifier. Under the univariate distance model, the average
upper bounds for MB and KP with i-bound set to 1 were 781.05±2.662 and 780.8±2.926 respectively. Avg.
UB: average upper bound, Std. UB: standard deviation of upper bound and Avg. Time: average time in seconds.

i-bound=2 i-bound=3 i-bound=4
MB MM JG KP MB MM JG KP MB MM JG KP

Avg. UB 291.42 290.91 290.11 290.85 291.0 290.38 290.11 290.69 290.79 290.38 290.11 290.66
Std. UB 2.12 2.14 2.44 2.32 2.15 2.35 2.42 2.33 2.2 2.36 2.42 2.38
Avg. Time 0.0 0.0 2.8 0.6 0.0 0.0 3.0 0.4 0.0 0.0 3.3 0.3

Figure 4: Qualitative results on MNIST. Row 1 shows the original test images. Row 2 shows the
images changed using the univariate model so that the decision changes from the original classification
to any one of the other 9 digits. Row 3 shows the images changed using the grid model.

We conducted experiments on the MNIST dataset [22] using the univariate and grid distance functions
described above and linear support vector machine as the classifier. The dataset has 70,000 examples.
We used 70% of the examples for training and 30% for testing. The accuracy of our classifier
on the dataset was 97%. Note that a limitation of our approach in its current form is that we can
only use multi-linear classifiers (aka graphical models without latent variables) and cannot use
non-linear classifiers such as deep neural networks (however, we can use their linear or high treewidth
approximations and this is a subject of future research).

Table 3 shows quantitative results comparing the quality of the upper bounds and time required for
the univariate and grid distance functions. We see that on the univariate model, the KP based bounds
yield exact answers (since the univariate problem is an instance of the knapsack problem) while the
MPE based bounds are only slightly worse than the KP based bounds. On the grid models however,
the MPE bounds are more accurate.

Fig. 4 shows qualitative results. The qualitative results verify our intuition that the grid model yields
smoother deceptions than the univariate model. More qualitative results on the MNIST dataset are
included in the supplement.

5 Conclusion

We proposed novel upper bounding methods for solving the CMPE task. The schemes are based
on relaxing the original constrained maximization problem into either an MPE or MCKP problem
which can then be solved using state-of-the-art techniques. Our empirical findings on a large variety
of models including both tractable and intractable models suggest that our proposed relaxations can
produce effective upper bounds. We also presented the application of CMPE in solving an important
task in robust estimation: measuring the robustness of discriminative classifiers. On the MNIST
dataset we showed that CMPE equipped with our proposed upper bounding methods can efficiently
find the most important k pixels to change the prediction of the classifier. In future, we will explore
other interesting applications of CMPE involving multiple constraints and over non-linear models.
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