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Abstract
Reasoning about events, their relationships, and001
inferring implicit context are crucial abilities002
of event commonsense reasoning, which state-003
of-the-art language models still struggle to per-004
form. However, data scarcity makes it chal-005
lenging to learn systems that can generate com-006
monsense inferences for contexts and questions007
involving interactions between complex events.008
To address this demand, we present COM2009
(COMplex COMmonsense), a new dataset010
created by sampling multi-hop logical queries011
(e.g., the joint effect or cause of both event012
A and B, or the effect of the effect of event013
C) from an existing commonsense knowledge014
graph (CSKG), and verbalizing them using015
handcrafted rules and Large Language Models016
into multiple-choice and text generation ques-017
tions.018

Our experiments show that Language models019
trained on COM2 exhibit significant improve-020
ments in complex reasoning ability, resulting021
in enhanced zero-shot performance in both in-022
domain and out-of-domain tasks for question023
answering and generative commonsense rea-024
soning, without expensive human annotations.025

1 Introduction026

Despite achieving remarkable performance in many027

commonsense reasoning tasks, LLMs still face028

challenges when it comes to more complex sce-029

narios, such as reasoning about multiple events and030

their relationships, as well as inferring implicit con-031

text to facilitate subsequent reasoning. This is due032

to the inherent difficulty of reasoning over multiple033

pieces of information and a lack of adequate-scale034

supervised training datasets for learning (Zhao035

et al., 2023). Unfortunately, complex and multi-036

hop commonsense reasoning benchmarks (Gabriel037

et al., 2021) are both technically challenging and038

financially expensive to curate. Consequently, pre-039

vious efforts either constructed datasets (a) with040

simpler reasoning structures, such as single-hop041

find new things to do

PersonX goes skydiving

PersonX gets tired of it

(the intention of PersonX)

xIntent

xWant
(then PersonX wants to)

Verbalization

After getting tired of it, PersonX goes skydiving

PersonX is living a boring life.

🤖
LLM-added
context

Rule-based
discourse

Question: What’s both the intention of PersonX going skydiving
and what X wants to do after PersonX getting tired of it?

Answer: find new things to do

𝑞 𝑉? = 𝑉?: xIntent X goes sky diving , 𝑉?
∧ xWant (X gets tired of it, 𝑉?)

Figure 1: An example of conjunctive logical queries and
the verbalization to complex commonsense inferences.

chains (Mostafazadeh et al., 2020), (b) using distant 042

supervision based on one-hop inference (Gabriel 043

et al., 2021), or (c) with human-annotations, but at 044

relatively small scale (Ravi et al., 2023). 045

To alleviate this training data bottleneck, recent 046

works have explored extracting and formulating 047

questions from existing CommonSense Knowledge 048

Graphs (CSKGs; Hwang et al., 2021), which store 049

commonsense triples. However, using CSKGs to 050

produce high-quality reasoning datasets poses sev- 051

eral challenges. First, while the shared entities in 052

commonsense triples encode a complex, intercon- 053

nected graph structure, the sparsity of this structure 054

limits the number of potential questions that encode 055

more than one reasoning hop (Sap et al., 2019b; 056

Kim et al., 2023). Second, triples in CSKGs are 057

represented in a context-free manner, such as the 058

event “PersonX gets tired of it” in Fig. 1, yielding 059

ambiguous (and sometimes incorrect) human an- 060

notations in the CSKG, e.g., ATOMIC (Sap et al., 061

2019a) has an error rate of over 10%. These errors 062

propagate quadratically when triples are naively 063

combined to construct reasoning questions. Finally, 064

also because triples in CSKGs are represented in 065

a context-free manner, additional context must be 066
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added to make questions fluent, a problem exac-067

erbated in multi-hop settings where the entities of068

multiple reasoning hops must be coherently verbal-069

ized together.070

In this paper, we construct COM2 (COMplex071

COMmonsense), a novel commonsense reason-072

ing dataset using multi-hop queries in common-073

sense knowledge graphs to construct question an-074

swer pairs requiring complex narrative reasoning075

to solve. To build a dataset that integrates more076

complex reasoning signals, we resort to conjunc-077

tive logical queries (Hamilton et al., 2018), a subset078

of First-Order Logical queries that use existential079

quantifiers and conjunction. The multi-hop projec-080

tion operation involves inferring hidden contexts,081

while the intersection operation enables reasoning082

among multiple events, encompassing common083

cause or effect, and abduction. For example, in084

Fig. 1, an intersection of two triples can be ver-085

balized to a short narrative, and the process of in-086

ferring the sampled common tail can be seen as087

an abduction of the hidden cause between the two088

heads.089

To address the challenges above, we propose to090

first densify the CSKG to merge nodes with high091

semantic similarity, increasing the connectivity of092

the graph. Then, we use an off-the-shelf plausibil-093

ity scorer to filter out low quality triples, avoiding094

error propagation as we construct more compli-095

cated queries. Finally, we verbalize the queries to096

a natural language context with handcrafted rules097

and Large Language Models to derive coherent and098

informative narrative contexts for our questions.099

Our final COM2 dataset comprises 790K question-100

answer pairs (both with multiple-choice and gen-101

erative answer settings), including 1.3K examples102

that we manually verify for evaluation.103

Our results demonstrate the challenges faced by104

even powerful LLMs and supervised question an-105

swering models on the COM2 dataset, underscor-106

ing the difficulty of performing complex multi-hop107

reasoning. Moreover, fine-tuning question answer-108

ing models and generative commonsense inference109

models on COM2 leads to substantial improvements110

across four commonsense reasoning datasets, show-111

ing the effecacy of our framework for boosting112

commonsense reasoning ability.113

To conclude, our contributions are three-fold.114

First, we present a pipeline for effectively sam-115

pling and verbalizing complex logical queries from116

CSKGs, to form a complex commonsense rea-117

soning benchmark, COM2, with minimum human118

effort. Second, we benchmark the complex rea- 119

soning ability of various state-of-the-art language 120

models and question answering models on COM2. 121

Third, we conducted comprehensive experiments 122

to validate the beneficial impact of fine-tuning 123

on COM2 for subsequent commonsense reasoning 124

tasks across eight datasets. 125

2 Related Work and Background 126

Complex Logical Queries Recent years have 127

witnessed significant progress in reasoning on one- 128

hop relational data (Bordes et al., 2013; Sun et al., 129

2019; Lin et al., 2023). In addition to one-hop 130

reasoning, efforts are also put into handling com- 131

plex logical structures, involving reasoning on 132

unobserved edges and multiple entities and vari- 133

ables (Ren et al., 2020; Wang et al., 2021, 2023b; 134

Bai et al., 2023a). In this paper, we focus on con- 135

junctive logical queries (Hamilton et al., 2018), a 136

subset of first-order logic that is defined with logi- 137

cal operators such as existential quantifiers ∃ and 138

conjunctions ∧. There is a set of anchor entities, V , 139

a unique target entity V? representing the answer 140

to the query, and a set of existential quantified vari- 141

ables V1, · · · , Vm. Conjunctive queries are defined 142

as the conjunction of literals e1, · · · , en: 143

q = V?, ∃V1, · · · , Vm : e1 ∧ e2 ∧ · · · ∧ en (1) 144

where ei is an edge involving variable nodes and 145

anchor nodes, satisfying ei = r(vj , Vk), Vk ∈ 146

{V?, V1, · · · , Vm}, vj ∈ V, r ∈ R, or ei = 147

r(Vj , Vk), Vj , Vk ∈ {V?, V1, · · · , Vm}, j ̸= k, r ∈ 148

R. R is the set of relations defined in the KB. 149

Previous efforts focus on constructing box em- 150

beddings (Ren et al., 2020), embeddings based on 151

beta distribution (Ren and Leskovec, 2020), parti- 152

cle simulations (Bai et al., 2022), and computation 153

tree optimization (Bai et al., 2023b). Instead of 154

relying on embeddings or limited query types for 155

matching synthetic logical queries, we leverage the 156

concept of logical queries to effectively acquire 157

complex reasoning data from CSKGs with mini- 158

mum human efforts. 159

Complex Commonsense Reasoning Recent ad- 160

vances in commonsense reasoning growed starting 161

from the construction human-annotated of Com- 162

monSense Knowledge Graphs (CSKG), including 163

ConceptNet (Speer et al., 2017), ATOMIC (Sap 164

et al., 2019a), ATOMIC20
20 (Hwang et al., 2021), 165

and GLUCOSE (Mostafazadeh et al., 2020). A 166
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common approach to create challenges for com-167

monsense reasoning involves constructing tasks168

in the form of question-answering (Talmor et al.,169

2019; Sap et al., 2019b), knowledge base com-170

pletion (Malaviya et al., 2020), grounding (Gao171

et al., 2022), and daily dialogue (Kim et al., 2023),172

based on CSKGs. However, most of those previous173

benchmarks are based on one-hop triples.174

In contrast, real-world situations in dialogues175

and narratives usually involve more complicated176

reasoning across multiple events, sentences, and177

paragraphs (Schank and Abelson, 1975). Previous178

works are devoted to learn representations of narra-179

tive chains (Chambers and Jurafsky, 2008; Pichotta180

and Mooney, 2014) and draw inferences (Fang181

et al., 2022; Yuan et al., 2023). To address more182

complicated paragraph-level or multi-event reason-183

ing, ParaCOMET (Gabriel et al., 2021) is pro-184

posed to pre-train on distantly supervised one-185

hop paragraph-level commonsense inferences, and186

COMET-M (Ravi et al., 2023) is proposed to be187

fine-tuned on a crowdsourced corpus focusing on188

reasoning on multiple events. Instead of crowd-189

sourcing or using language models to distill com-190

plex inferences, we provide narrative-level infer-191

ence by verbalizing complex logical queries over192

CSKGs, to effectively acquire grounded inferences193

at scale. Moreover, besides involving multiple194

pieces of information in the context, the question195

to the context also involves multiple relations.196

3 Methodology197

In this section, we introduce the construction de-198

tails of COM2, including pre-processing, sampling199

of complex queries, verbalization, and the details200

of human annotations.201

3.1 Pre-processing202

We use ATOMIC20
20 (Hwang et al., 2021), a compre-203

hensive Commonsense Knowledge Graph covering204

social, physical, and event-level everyday knowl-205

edge, as the base CSKG. Before sampling, we deal206

with the sparsity and quality issue first.207

Sparsity CSKGs are usually highly sparse com-208

pared to factual KGs due to the nature of human an-209

notation and flexibility of commonsense (Malaviya210

et al., 2020), making it hard to sample diverse com-211

plex queries. To alleviate the sparsity issue, we first212

conduct normalization to the tails. In ATOMIC,213

heads are pre-defined complete sentences (for ex-214

ample, “PersonX says sorry”) while tails are usu-215

2i 3i
2p 3p

1p

ip pi

Anchor Entity

Free Variable

Answer Entity

Training Query Types

Unseen Query Types

Figure 2: Visualization of query structures. The an-
chor entities and relations are specified to instantiate the
query. ‘p’ and ‘i’ represent projection and intersection,
and the number ahead of p and i indicates the number
of anchor entities and free variables.

ally short phrases without a subject (for example, 216

“to say sorry”). This discrepancy produces many 217

duplicated nodes and make the graph sparser. We 218

develop simple rules to add “PersonX” or “Per- 219

sonY” in front of the tails to make them a complete 220

sentence, if the tail does not have a subject. This 221

process merged 3.7% nodes in ATOMIC together. 222

Second, as the nodes in ATOMIC are free-text, 223

some nodes with the same semantic meaning are 224

represented as separated nodes due to some minor 225

annotation distinctions and errors, e.g., “PersonX 226

buys a ticket” versus “PersonX buys a ticket.”. We 227

use a state-of-the-art sentence embedding model1, 228

to merge nodes with cosine similarity score over 229

0.95. In this process, 20.0% nodes are merged to- 230

gether and the average degree increases by 25.3%. 231

Quality The error rate of ATOMIC itself is over 232

10% (Sap et al., 2019a). This error rate can be 233

problematic when we consider the intersection and 234

projection of more than two triples as errors propa- 235

gate quadratically. We use an off-the-shelf plausi- 236

bility scorer Vera (Liu et al., 2023), a 5B T5-based 237

plausibility scorer fine-tuned on 2 CSKGs and 19 238

QA datasets, to score every triple in terms of com- 239

monsense plausibility (between 0 to 1). We fil- 240

ter out triples with a plausibility score lower than 241

0.5, the threshold provided as a tipping point in 242

Vera between plausible and implausible statements. 243

Around 10% of the triples are filtered out. 244

3.2 Query Sampling 245

The query structures that we study are visualized in 246

Fig. 2. Following Ren et al. (2020), we use projec- 247

tions (1p, 2p) and intersections (2i, 3i) as training 248

queries, and leave more complex queries ip and pi 249

as the zero-shot evaluation queries. To examine 250

scenarios involving negation and differentiate them 251

1https://huggingface.co/sentence-transformers/all-mpnet-
base-v2
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childish

V1: X pulls out Y’s phone

V2: X swings Y’s legs

xAttr

2i: Common Attribution Context:
X and Y were at a park. Suddenly, Y's phone starts ringing and X reaches over and pulls out Y's 
phone from their pocket. Just as X does that, Y playfully kicks their legs in the air, and X swings 
Y's legs in response.
Question:
What state is both what X is seen as given V1 and what X is seen as given V2?xAttr

2p: 2nd order Effect

pi

V1: X starts a new life V?: X makes new friends socialize

Question:
What event or state is what X wants to do after what 
X wants to do after V1? 

xWant xWant

2i-negative: Negated Common Cause

V1: X feels worse

V2: X smokes cigarettes

xEffect

HinderedBy

wind up in 
hospital

Context:
X has been feeling unwell lately. As a result, X doesn't smoke cigarettes anymore.
Question:
What event or state is both what X will do after V1 and also hindered V2?

V1: X works hard for months

V2: X joins Y's ranks

V?: PersonX get a promotion

Context:
X was looking for a new opportunity and decided to join Y's ranks. After joining, 
X works hard for months to prove their dedication and commitment.
Question:
What event or state is both what Y wants to do after {what X wants to do after X 
works hard for months}, and also what Y wants to do after X joins Y's ranks?

xWant

oWant

congratulate X
oWant

Figure 3: Examples of different query types, the verbalization, and corresponding questions.

from regular 2i queries, we use the term “2i-neg”252

to represent 2i queries where one of the relations is253

“HinderedBy”.254

Given a query structure, we use pre-order traver-255

sal to sample free variables and anchor entities256

starting from an answer entity. We sample prede-257

cessors uniformly based on (relation, entity) pairs.258

During sampling, to avoid over-sampling on nodes259

with extremely high degree, we empirically set a260

cut-off degree T = 10 to only sample from top T261

neighbors of a node scored by Vera. In the end,262

we conduct a post-order traversal starting from the263

anchor entities to find all the answers of the query,264

in addition to the starting answer entity.265

Option Sampling We sample 4 additional candi-266

date distractors for each query, where 2 of them are267

randomly sampled across the whole CSKG, and268

2 of them are sampled from the neighbors of the269

anchor entities that are not the answers to the whole270

query, represented as confusing negative examples.271

In case of fine-tuning a question answering lan-272

guage model, the negative examples are used as273

synthetic question answering pairs for training. In274

the evaluation set, these candidate negative exam-275

ples, together with the sampled answer, are manu-276

ally annotated to form a gold evaluation set.277

3.3 Verbalization278

CSKGs are constructed in a context-free manner.279

To make the logical queries on such context-free280

triples more human-interpretable, we introduce an281

additional step of verbalizing the anchor entities to282

a narrative, to effectively acquire fluent and plausi-283

ble narrative-inference pairs.284

Anchor Entity Verbalization We consider a 285

rule-based verbalizer and a ChatGPT-driven ver- 286

balizer. In the rule-based verbalizer, we add a dis- 287

course marker between the two or three anchor 288

entities depending on the semantics of the query 289

relations. For example, a simple situation would 290

be adding an “and” or “then” between two anchor 291

entities in a 2i query. To make the query even more 292

human-understandable, we consider using Chat- 293

GPT to synthesize necessary contexts to make the 294

query an actual narrative. We include the detailed 295

rules for adding discourse connectives (denoted as 296

rule-based verbalization), and prompts for using 297

ChatGPT to verbalize complex queries (denoted as 298

LLM-based) in Appx. §A.3. 299

Relation Verbalization The multiple relations 300

in complex queries can be deterministically con- 301

verted to a question using the natural language de- 302

scriptions of the relations, which are presended in 303

Appx. §A.3. 304

3.4 Human Annotation 305

We formalize the problem of complex common- 306

sense reasoning as a multi-choice question answer- 307

ing task, to support reliable automatic evaluation. 308

There are only one true answer and three distrac- 309

tors, together with an option indicating “None of 310

the answers are correct”. We crowdsourced the 311

answers using Amazon Mechanical Turk (AMT). 312

The workers are given the verbalized query as the 313

context, the corresponding question by converting 314

the relations in the query using a prompt template, 315

and the sampled (negative) answers. If no sampled 316

answers are correct, then the worker is asked to se- 317
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Method 2i 2i-neg 3i 2p ip pi All

API-based LLMs
gpt-3.5-turbo-0613 33.56 43.12 42.01 38.66 38.05 28.40 37.74

- 1-shot 43.31 35.31 58.45 57.73 51.33 62.96 48.22
- 1-shot w/ CoT 45.80 36.43 54.34 57.73 50.44 66.67 48.75
- 8-shot (2i, 2p) 48.52 41.26 57.08 67.53 53.10 74.07 53.22
- 8-shot (2i, 2p) w/ CoT 52.61 46.10 60.27 59.79 52.21 65.43 54.37

gpt-4-1106-preview 44.67 46.47 52.05 32.47 40.71 53.08 44.64
- 1-shot 47.85 42.01 50.68 38.66 44.25 50.62 45.63
- 1-shot w/ CoT 48.97 46.46 52.96 49.48 52.21 58.02 50.04
- 8-shot (2i, 2p) 54.87 46.47 58.90 45.88 52.21 66.67 53.00
- 8-shot (2i, 2p) w/ CoT 57.82 49.07 62.56 61.34 52.21 66.67 57.40

Open-source (QA) Language Models
HyKAS (Ma et al., 2021, zero-shot) 34.92 39.41 27.85 41.75 37.17 33.33 35.76
CAR (Wang et al., 2023a, zero-shot) 37.41 30.48 37.44 57.73 32.74 53.09 39.56
UnifiedQA-v2 (Khashabi et al., 2022) 56.23 39.41 62.56 58.76 51.33 62.96 54.21
Flan-T5 (11B) (Chung et al., 2022) 58.28 47.21 65.30 76.29 56.64 79.01 60.97
Llama2 (7B) (Touvron et al., 2023) 35.15 21.93 39.27 35.57 28.32 51.85 33.64
Vera (Liu et al., 2023) 47.62 27.51 40.18 66.49 52.21 58.02 46.09

Fine-tuned on COM2

DeBERTa-v3-Large (+COM2) 60.09 58.36 69.41 61.86 59.29 81.48 62.79
CAR-DeBERTa-v3-Large (+COM2) 61.22 56.13 69.86 68.56 56.64 85.19 63.78

Table 1: Model performance (%) on the multiple-choice question answering evaluation set of COM2.

lect an additional “None of the answers are correct”318

option. If the verbalization itself does not make319

sense, the worker can also click another option320

“The context doesn’t make sense or is meaning-321

less.” and we will discard the data. Each question322

is annotated by three workers, and the overall per-323

option Inter Annotator Agreement (IAA) is 78%,324

and the fleiss kappa is 0.445, indicating moderate325

agreement. The workers are paid on average 16 US326

Dollar per hour.327

We refer readers to Appx. §A for technical de-328

tails and dataset statistics regarding §3.329

4 Experiments330

We conduct experiments on the evaluation set331

of COM2, a Multi-Choice Question Answering332

(MCQA) task. Specifically, we examine the per-333

formance of state-of-the-art off-the-shelf language334

models on COM2, and also study the effect of train-335

ing a question answering model on the distantly336

supervised training set of COM2.337

4.1 Setup338

We study popular API-based LLMs and some339

Open-source Language Models as baselines. Fol-340

lowing the standard practice of prompting LLMs341

for QA (Robinson et al., 2022), we use a prompt-342

based method that takes “[Context] [Question] [Op-343

tions]” as the input and ask the model to only output344

the associated symbol (e.g., ‘A’) in the QA pair as345

the prediction. For open-source language models346

like Flan-T5 and Llama2, we use same prompt, and347

compute the logits received by each of the options 348

in the first prediction token. 349

We also study the effect of fine-tuning a question- 350

answering model on the synthetic training queries 351

discussed in §3.2. We follow the most effective 352

pipeline by HyKAS (Ma et al., 2021), which fine- 353

tunes language models on QA pairs synthesized 354

from one-hop knowledge in CSKGs, and extend it 355

to complex queries. For one-hop (1p) triples, the 356

head and relation are transformed into a question 357

with pre-defined prompts. For complex queries, 358

the verbalized queries (as illustrated in §3.3) are re- 359

garded as the context, and questions are also trans- 360

formed with a different prompt template depending 361

on the relations. The tails to the one-hop triple or 362

the sampled answer to the query are regarded as the 363

correct answer, and the negative examples are ran- 364

domly sampled across the whole CSKG following 365

a keyword overlapping filtering (Ma et al., 2021; 366

Wang et al., 2023a). We use DeBERTa-v3-large as 367

the backbone encoder2. 368

4.2 Results and Analysis 369

We present the results in Tab. 1. In terms of per- 370

formance on commercial LLMs, GPT-4 generally 371

outperforms ChatGPT with a notable margin. The 372

incorporation of Chain-of-Thought (CoT) proves 373

crucial in enhancing LLM reasoning capabilities, 374

as it fosters a step-by-step thinking approach that 375

first focuses on inducing the causes or effects of 376

2We refer readers to Appx. §B for detailed implementations
and prompt templates.
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Model CSKG Out-of-domain In-dom.

a-NLI CSQA PIQA SIQA WG Avg. COM2

Random - 50.0 20.0 50.0 33.3 50.0 40.7 20.0
DeBERTa-v3-L (He et al., 2023) - 59.9 25.4 44.8 47.8 50.3 45.6 14.7
Self-talk (Shwartz et al., 2020) - - 32.4 70.2 46.2 54.7 - -
COMET-DynGen (Bosselut et al., 2021) ATOMIC - - - 50.1 - - -
SMLM (Banerjee and Baral, 2020) * 65.3 38.8 - 48.5 - - -
MICO (Su et al., 2022) ATOMIC - 44.2 - 56.0 - - -
STL-Adapter (Kim et al., 2022) ATOMIC 71.3 66.5 71.1 64.4 60.3 66.7 -

Large Language Models
GPT-3.5 (text-davinci-003) - 61.8 68.9 67.8 68.0 60.7 65.4 -
GPT4 (gpt-4-1106-preview) - 75.0 43.0 73.0 57.0 77.0 65.0 44.6
ChatGPT (gpt-3.5-turbo) - 69.3 74.5 75.1 69.5 62.8 70.2 37.7

+ zero-shot CoT - 70.5 75.5 79.2 70.7 63.6 71.9 28.9

Backbone: DeBERTa-v3-Large 435M
HyKAS (Ma et al., 2021) ATM-10X 75.1 71.6 79.0 59.7 71.7 71.4 27.7
HyKAS (Ma et al., 2021) ATOMIC 76.0 67.0 78.0 62.1 76.0 71.8 35.8
CAR (Wang et al., 2023a) ATOMIC 78.9 67.2 78.6 63.8 78.1 73.3 36.8
CAR (Wang et al., 2023a) ATMC 79.6 69.3 78.6 64.0 78.2 73.9 39.8
HyKAS + COM2(Ours) ATM, COM2 78.4 69.9 78.7 64.1 78.3 73.9 62.8
CAR + COM2(Ours) ATMC

, COM2 81.2 70.9 80.3 65.6 77.4 75.1 63.8

Human Performance - 91.4 88.9 94.9 86.9 94.1 91.2 -

Table 2: Zero-shot evaluation results (%) on five out-of-domain commonsense question answering benchmarks, and
the in-domain evaluation set of COM2. The best results are bold-faced, and the second-best ones are underlined.

individual events in intersection-based queries, or377

inducing the hidden variables in projection-based378

queries. The eight-shot CoT, which encompasses379

both 2i and 2p queries as exemplars, yields the380

highest performance naturally due to the coverage381

of all base query types.382

When it comes to fine-tuning on complex queries383

using the HyKAS and CAR paradigm, we observe384

that the synthetic training pairs, despite lacking385

manual annotation, serve as valuable distant su-386

pervision signals. They effectively enhance the387

complex reasoning capability of a QA model, even388

surpassing the performance of an 8-shot GPT-4389

model with CoT by 6%. CAR + COM2 can also390

outperform the 11B version of UnifiedQA-v2 and391

Flan-T5, which are both fine-tuned on numerous392

(commonsense) question answering datasets by 9%393

and 3%, respectively. We also include the zero-394

shot transferability experiments of this QA model395

to some other commonsense QA datasets, which396

will be presented in §5.1.397

5 Downstream Evaluation398

In addition to benchmarking Complex Common-399

sense Reasoning, we also study the effect of lever-400

aging COM2 as training data and the generalization401

to other downstream commonsense reasoning tasks.402

In detail, we study zero-shot CommonSense Ques-403

tion Answering (CSQA), and Generative Common- 404

sense Inference, including one-hop, multi-event, 405

and paragraph-level settings. 406

5.1 Commonsense Question Answering 407

Setup The task of zero-shot commonsense QA 408

involves selecting the most plausible option for 409

commonsense questions without any supervision 410

signals from the training set of the benchmark 411

data. We directly leverage the model we trained in 412

§4, the DeBERTa-v3-large-based model fine-tuned 413

on synthetic question pairs in both ATOMIC and 414

COM2, and check the performance on five pop- 415

ular commonsense question answering datasets: 416

Abductive NLI (aNLI; Bhagavatula et al., 2020), 417

CommonsenseQA (CSQA; Talmor et al., 2019), 418

PhysicalIQA (PIQA; Bisk et al., 2020), SocialIQA 419

(SIQA; Sap et al., 2019b), and WinoGrande 420

(WG; Sakaguchi et al., 2021). We report the ac- 421

curacy of each dataset and the average accuracy 422

among five datasets. 423

Results and Analysis We report the model per- 424

formance in Tab. 2. The first batch of baselines 425

are zero-shot CSQA models that leverages CSKGs 426

as supervision signals, and we surpass them by a 427

large margin. We also report the zero-shot per- 428

formance of API-based LLMs including GPT-3.5, 429

ChatGPT, and GPT-4. The inclusion of COM2 and 430
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Model Training Data Multi-Event Paragraph-Level Single-Event COM2

B-2 R-L BERT R-L CIDE BERT R-L CIDE BERT R-L CIDE BERT

(Distantly) Supervised Learning

COMET-M (BART-L) MEI 25.1 33.6 64.9 - - - - - - - - -
COMET-M (GPT-2-L) MEI 16.2 25.7 55.1 - - - - - - - - -
ParaCOMET (GPT-2-L) ParaCOMET - - - 18.8 27.8 60.2 - - - - - -

Zero-shot Learning Supervised

COMET 1p 1.20 2.73 38.9 3.5 6.4 25.7 50.0 66.1 75.1 10.0 20.7 44.3
COMET-distill ATM10x 1.20 3.55 12.7 11.8 16.8 29.5 1.6 4.8 24.3 8.3 11.9 36.1
COM2-COMET 1p, 2i 8.87 15.2 46.4 13.8 22.1 53.7 50.7 68.0 77.1 13.6 26.1 39.8
COM2-COMET 1p, 2p, 2i, 3i 5.41 10.4 44.8 9.2 16.6 44.1 50.4 66.9 77.1 14.7 33.0 46.3

LLama2-7b - 1.81 4.14 45.7 2.2 2.2 48.6 5.4 2.9 51.5 3.9 6.7 44.9
COMET-LLama2-7b 1p 7.62 14.4 44.2 9.1 12.3 51.0 27.5 26.4 64.2 10.9 22.3 44.9
COM2-LLama2-7b 1p, 2i 8.82 16.4 47.5 14.6 22.1 55.3 31.6 31.1 66.0 35.7 107.2 61.3
COM2-LLama2-7b 1p, 2p, 2i, 3i 8.22 15.4 47.0 15.9 21.3 55.3 31.3 29.8 65.5 35.6 105.0 60.1

Table 3: Experimental results on downstream narrative commonsense reasoning, including in a multi-event (Ravi
et al., 2023) setting, and a paragraph-level setting (Gabriel et al., 2021). In-domain settings include single-event
generation and complex inference in COM2. We use BLEU-2 (B-2), ROUGE-L (R-L), CIDEr (CIDE), and
BERTScore (BERT) as the evaluation metrics.

one-hop triples from ATOMIC as training data for431

CAR and HyKAS yields significant improvements432

in question answering ability. This improvement433

is observed in both in-domain complex reasoning434

tasks and out-of-domain CSQA tasks. Notably, the435

combination of CAR and COM2 achieves the high-436

est performance among all models, surpassing even437

ChatGPT and GPT-4, despite having a parameter438

size at least two orders of magnitude smaller.439

5.2 Generative Commonsense Inference440

Setup We study generative commonsense infer-441

ence as an additional evaluation task. We include442

multi-event commonsense generation (COMET-443

M; Ravi et al., 2023) and paragraph-level com-444

monsense generation (ParaCOMET; Gabriel et al.,445

2021) as two out-of-domain evaluation tasks. We446

also include the vanilla COMET (Bosselut et al.,447

2019) as an additional in-domain evaluation, which448

actually focuses on 1p queries that requires gener-449

ating the tail given head and relation as the input.450

Besides, we report the generation performance on451

generative COM2 in the last columns.452

We study the effect of fine-tuning COMET (GPT-453

2-large) on ATOMIC and different query types454

of COM2, following the settings in Bosselut et al.455

(2019). We also study fine-tuning on an LLM,456

Llama2-7b, by converting triples and queries to457

an instruction-tuning format, following the prompt458

template in §3.3 and Appx. §B.2. We leverage459

the framework of Chen et al. (2023)3 to fine-tune460

3https://github.com/epfLLM

Llama2-7b. We fine-tune on a mixture of different 461

query types as detailed in the “Training Data” col- 462

umn. To ensure diversity and prevent overfitting to 463

common tails, complex queries are selected using 464

an n-gram based diversity filter (Yang et al., 2020). 465

Results and Analysis We report the performance 466

of various models on three datasets in Tab. 3. First, 467

compared to fine-tune on only one-hop triples, 468

COMET models based on both GPT2-large and 469

Llama2-7b will have an improved generative com- 470

monsense inference ability on both multi-event, 471

paragraph-level, and single-event commonsense in- 472

ference. The first two settings are out-of-domain 473

complex commonsense reasoning tasks that require 474

reasoning on longer context and more complicated 475

event-event relations. Second, among different 476

query types, 2i is the most useful query type that 477

help improve the reasoning ability. This may be 478

due to the fact that both the task from COMET-M 479

and ParaCOMET doesn’t require second-order in- 480

ference, while only requires the reasoning ability 481

brought by intersection-based queries. 482

6 Discussions and Analysis 483

6.1 Ablation Study 484

We analyze the impact of various data filters, query 485

types, and verbalization methods in Tab. 12 in the 486

appendix on generative inference in COM2. 487

Filtering We include two types of filters, a Vera- 488

based plausibility filter and a diversity filter. Evalu- 489

ating the performance of generative commonsense 490
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Model #Plau. #1-hop #False

LLama2-7b 26 2 28
COMET-LLama2-7b 29 8 23
COM2-LLama2-7b (2i) 47 2 11
COM2-LLama2-7b (all) 45 3 12

Table 4: Human evaluation results on the generative
sub-task in COM2 using Llama2-7b as the backbone.
‘1-hop’ indicates the answer is plausible in terms of only
one-hop relations.

inferences on COM2, we examine the impact of re-491

moving both filters while employing GPT2-Large492

as the backbone model. Removing the plausibility493

filter results in a significant performance decline,494

highlighting its critical role. On the other hand, the495

diversity filter exhibits a minor positive influence496

on enhancing performance.497

Type of Queries We investigate the impact of498

training our models on different types of logical499

queries. The model trained only on 1p and 2i500

queries does not generalize well to other query501

types such as pi and ip, leading to a worse perfor-502

mance than the model trained on all query types.503

However, according to Tab. 1 and Tab. 3, models504

trained on only 2i queries have a better generaliza-505

tion ability to downstream commonsense reason-506

ing tasks. This is probably because most existing507

commonsense benchmarks focusing on interactions508

regarding multiple events are actually structured509

as an intersection-based manner, instead of projec-510

tions and more complicated structures.511

Verbalization We investigate the effect of us-512

ing a rule-based verbalizer or ChatGPT-enabled513

verbalizer. The ChatGPT-verbalized queries help514

produce better inference system a tad bit on both515

ParaCOMET and COM2. In COM2, the presence516

of ChatGPT-verbalization intuitively improves per-517

formance since the training context aligns with the518

evaluation set’s format. On the other hand, the con-519

text in the ParaCOMET dataset is long and com-520

prised of five sentences. Verbalization not only521

adds more contexts to the training but also aligns522

better with the ParaCOMET format.523

6.2 Difficulty of Different Query Types524

Based on Tab. 1, there is a significantly higher ac-525

curacy of pi queries than others. This is mainly526

because of the sparsity issue, such that we cannot527

sample enough pi queries. Within the limited pi528

queries, the number of unique answers is also small529

and they are usually common nodes with high de-530

grees in the CSKG, making it easier for models 531

to make accurate predictions. The same situation 532

applies to 2i and 3i queries. Though 3i queries pos- 533

sess a more complex structure, they are constrained 534

by the sparse structures of ATOMIC, resulting in a 535

relatively narrower answer set. This narrower set 536

of possible answers makes predictions easier4. 537

6.3 Error Analysis 538

We present a human-annotated quality evaluation 539

of the Llama-7b-based model on the generation 540

sub-task of COM2. To ensure diverse coverage of 541

query types, we randomly sampled 60 queries, with 542

10 from each of the 6 categories. Manual inspec- 543

tion revealed a common error where the generated 544

output was partially correct, either providing the 545

answer to one of the triples in an intersection query 546

or only the one-hop answer instead of the two-hop 547

answer in 2-projection queries. Tab. 4 includes the 548

number of such ‘1-hop’ partially correct answers. 549

Our results demonstrate that the zero-shot Llama 550

model already produces 26 out of 60 plausible infer- 551

ences. Fine-tuning the model on one-hop ATOMIC 552

further increases the number of plausible genera- 553

tions while more frequently generating inferences 554

that are one-hop correct. Moreover, fine-tuning 555

on the synthetic training set of COM2 significantly 556

improves the model’s ability to generate complex 557

commonsense inferences and reduces the occur- 558

rence of partially correct answers. We leave the 559

some case studies in the Appx. §D. 560

7 Conclusion 561

In this paper, we leverage the concept of con- 562

junctive logical queries to create a complex com- 563

monsense reasoning dataset derived from CSKGs. 564

The dataset, COM2, comprises a human-annotated 565

evaluation set and a distantly supervised training 566

set without further annotations. Our experiments 567

demonstrate the difficulty of answering complex 568

logical queries on CSKGs, even for advanced lan- 569

guage models like GPT4. Additionally, we train 570

question answering models and generative com- 571

monsense reasoning models using the COM2 train- 572

ing set. The results show significant improvements 573

across eight downstream commonsense reasoning 574

tasks, encompassing various aspects. This high- 575

lights the potential of leveraging CSKGs to acquire 576

complex reasoning signals inexpensively, without 577

relying on extra human efforts. 578

4We leave more quantative analysis in Appx. §C
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Limitations579

Data Construction The construction of COM2580

reply on sampling complex logical queries from581

existing CSKGs. However, there are sparsity is-582

sue, quality issue, non-close-world-asssumption583

issue that needs to be tackled. Even we have con-584

ducted normalization and filtering, there may still585

be missing links within ATOMIC and mislabeled586

or ambiguous triples, which limits the quality of587

our sampled queries. Future works can focus on588

deriving complex queries from CSKGs with better589

quality and more diverse semantics, which should590

also have higher density, such as on ATOMIC-10x,591

NovATOMIC (West et al., 2023).592

Evaluation In the context of generative common-593

sense reasoning, we employ lexical-overlap based594

automatic evaluation metrics to assess the perfor-595

mance of the model in a scalable manner. However,596

since each query typically has 1 to 3 gold refer-597

ences on average, this type of evaluation may not598

accurately capture the true plausibility of common-599

sense reasoning, which is inherently open-ended.600

To address this limitation, we have supplemented601

the automatic evaluation with human annotation602

on a subset of sampled queries. Nevertheless, this603

approach is still not scalable by nature.604

Future research can focus on the development of605

automatic complex reasoning protocols based on606

large language models. Such protocols can delve607

into more fine-grained aspects such as typicality608

and the degree of correctness, even if it’s only par-609

tially correct.610

Ethical Considerations611

We sample the data from ATOMIC20
20, which is612

an open-source commonsense knowledge graph613

that may contain certain bias regarding gender, oc-614

cupation, and nationality (Mehrabi et al., 2021).615

The dataset does not contain specific individuals616

or organizations. Instead, it employs generic place-617

holders such as PersonX, PersonY, and randomly618

replaced first names to represent subjects and ob-619

jects. However, this paper primarily focuses on620

complex reasoning based on knowledge, which is621

in contrast to works that solely rely on one-hop622

biased knowledge exploitation.623

We collected 1.3k inferences through crowd-624

sourcing. The participants were compensated with625

an hourly wage of 16 USD, which is comparable626

to the minimum wages in the US. The qualifica-627

tion was purely based on the workers’ performance 628

on the evaluation set, and we did not collect any 629

personal information about the participants from 630

MTurk. 631
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A Additional Details on Data1023

Construction1024

In this section, we provide additional details to1025

node normalization, plausibility filter, verbaliza-1026

tion, and human annotations. The overview of our1027

construction framework is presented in Fig. 4.1028

A.1 Nodes Normalization1029

We present the normalization rules in Tab. 5. For1030

example, a tail of “to go” under the relation xWant1031

will be transformed to “PersonX go”. A tail of “sat-1032

isfied” under the relation xAttr will be transformed1033

to “PersonX is satisfied”.1034

Relations Mapping rules
xWant/oWant/
xIntent/xNeed

Add PersonX/Y in front of the tail
and remove the initial “to”

xEffect/oEffect Add PersonX/Y in front of the tail

xReact/oReact Add PersonX/Y and “is” in front of
the tail

xAttr Add a PersonX/Y and “is” in front
of the tail

Table 5: Normalization rules for ATOMIC tails.

A.2 Data Filtering1035

Plausibility Filter We verbalize a (h, r, t) triple1036

from ATOMIC using the default template as pro-1037

vided in Hwang et al. (2021). For example, (Per-1038

sonX repels PersonY’s attack, xAttr, brave) would1039

be transformed to a declarative statement “If Per-1040

sonX repels PersonY’s attack, then PersonX is seen1041

as brave”. To obtain a plausibility score, we input1042

the statement into the Vera-5B model. 0.5 is used as1043

the threshold to draw a boundary between plausible1044

and implausible statements. We perform a manual1045

inspection on the triples scored by Vera and ran-1046

domly select 40 samples for three plausibility score1047

intervals. Among these, we find that 4/40 triples1048

are plausible when the Vera scores range from 0 to1049

0.1. 13/40 triples are considered plausible within1050

the score range of 0.2 to 0.25. Furthermore, we1051

identify 20/40 triples as plausible when their plau-1052

sibility scores hover around 0.5, when most of the1053

triples are quite ambiguous. By setting the filter1054

threshold as 0.5, we filter out around 14% triples1055

that are of a relatively lower quality.1056

Diversity Filter To prevent overfitting to com-1057

mon tails, we conduct a diversity-based filter to1058

acquire diverse queries for training. We take in-1059

spirations from G-DAUG (Yang et al., 2020), to1060

use a simple greedy algorithm to iteratively select1061

Verbalization
&

Refinement

Query
Sampling

Distantly-supervised
Training set

CSKB

Human-Annotated
Evaluation set

Normalization
& Filtering

Context: 𝑓(𝑉!, 𝑉", 𝑉#, 𝑟!, 𝑟", 𝑟#)
Question: 𝑔(𝑉!, 𝑉", 𝑉#, 𝑟!, 𝑟", 𝑟#3)

Synthetic Answer: 𝑉?

Figure 4: Overview of the construction process.

training data, which has been proven useful for se- 1062

lecting augmented data. To be more specific, for 1063

each unique answer, we adopt an iterative approach 1064

to select the verbalized query that contributes the 1065

highest number of unique 1-gram terms to an on- 1066

going vocabulary constructed for each answer. We 1067

select top-20 queries for each unique answer entity. 1068

A.3 Verbalization 1069

Query Verbalization We employ two methods 1070

to verbalize complex queries: a rule-based method 1071

and a ChatGPT-based method. 1072

In the case of 2i and 3i queries, the rule-based 1073

method typically involves inserting an “and” be- 1074

tween the anchor entities. However, if the query 1075

suggests a specific chronological order between the 1076

two events, we use “then” to connect the events. 1077

For instance, in 2i queries where one triple is (V1, 1078

xEffect, V?) and the other is (V2, xIntent, V?), it 1079

implies that V? serves as the effect of V1 and the 1080

intermediate hidden cause of V2. In this scenario, 1081

V1 should occur before V2. Therefore, the verbal- 1082

ization would be “V1 then V2”. 1083

For ChatGPT verbalization, we present the sys- 1084

tem instructions for verbalizing different kinds of 1085

queries in Tab. 6. Then, we generate the verbal- 1086

ized contexts with six exemplars that are manually 1087

annotated. In the system instruction, we also ask 1088

ChatGPT to output “NA” if the given anchor en- 1089

tities are totally irrelevant or too ambiguous. We 1090

filter out those queries where the output is “NA”. 1091

For example, to better interpret the query in 1092

Fig. 1, we need to take into consideration both 1093

the relations of interest and the anchor entities. The 1094

query asks about the effect of the first event and 1095

what causes (intention) of the second event, which 1096

is inherently represents abductive reasoning. This 1097
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Query Prompt

2i, ip, pi

Given two events, come up with concise and necessary context to make the a coherent and understand-
able narrative. No more than 2 additional piece of context should be added. If the one of the given
events itself is ambiguous and hardly make sense even with extra context, return NA. If the two events
are totally irrelevant even with additional context, then simply return NA. If the given two events can
be directly composed to a narrative with simple a discourse connective without additional context,
then there’s not need to add additional context.\nMark the location of both events with <E1></E1>
for event 1 and <E2></E2> for event 2 in the generated narrative.

2i-neg

Given two events, create a cohesive narrative by incorporating event 1 (E1) and negated event 2 (E2) to
make the a coherent and understandable narrative. No more than 2 additional piece of context should
be added. If the one of the given events itself is ambiguous and hardly make sense even with extra
context, return NA. If the two events are totally irrelevant even with additional context, then simply
return NA. If the given two events can be directly composed to a narrative with simple a discourse
connective without additional context, then there’s not need to add additional context.\nMark the
location of both events with <E1></E1> for event 1 and <E2></E2> for event 2 in the generated
narrative.\nDon’t explain the reasons why E2 didn’t happen!!\nRemember that negating an event
means stating that it did not occur. For instance, if event 2 is “PersonX goes shopping,” the negated
form would be “PersonX didn’t go shopping”.

Table 6: System instructions for verbalizing complex queries given different query types.

requires the second event to happen before the first1098

event, to derive reasonable abduction. In this sense,1099

a natural rule of verbalizing the query would be1100

adding a discourse connective “after” to convert1101

the query to “After PersonX gets tired of it, Per-1102

sonX goes skydiving”. However, the verbalized1103

query may still be ambiguous without additional1104

context. To make the verbalized context more in-1105

formative and human-understandable, we take ad-1106

vantage of Large Language Models (i.e., ChatGPT)1107

to add additional context to compose the query to a1108

narrative.1109

Relation Verbalization We use conversion rules1110

and pre-defined templates to compose questions1111

based on the relations in the queries. Based on the1112

definition of each commonsense relation (Hwang1113

et al., 2021), we use the templates in Tab. 7 to ver-1114

balize each relation. In terms of complex queries,1115

we use the conversion rules in Tab. 8 to convert the1116

query to a question.1117

Person Names To make the context more nat-1118

ural, we replace PersonX, PersonY, PersonZ in1119

the context to names randomly sampled from the1120

2021 public US social security application name1121

registry5.1122

A.4 Human Annotation1123

We introduce the details of the annotation process1124

in this subsection.1125

5https://catalog.data.gov/dataset/baby-names-from-
social-security-card-applications-national-data

Query
Type Question Template

2i What event or state is both Prompt(r1) [V1] and
also prompt(r2) [V2]?

3i What event or state is both Prompt(r1) [V1],
Prompt(r2) [V2], and also Prompt(r2) [V2]?

2p What event or state is Prompt(r1) {Prompt(r2)
[V1]}?

ip What event or state is prompt(r3) {both prompt(r1)
[V1], and also prompt(r2) [V2] }?

pi What event or state is both prompt(r1) {prompt(r3)
[V3]}, and also prompt(r2) [V2]?

Table 7: Templates for verbalizing one-hop relations.

Worker Selection We have a qualification test to 1126

select eligible workers for the main task. We pre- 1127

pare six pre-selected 2i queries of different types, 1128

including (negated) common effect, (negated) com- 1129

mon cause, common attribute, and abduction. We 1130

compare the pair-wise annotation accuracy be- 1131

tween each annotator and the gold answer anno- 1132

tated by the authors of the paper, and select those 1133

who have at least 85% agreement as qualified work- 1134

ers. After selection, we pick 53 worker out of 120 1135

participants in the qualification round. 1136

Annotation Interface A snapshot of the annota- 1137

tion interface is presented at Fig. 5. In addition, we 1138

have provided comprehensive instructions along 1139

with detailed examples to guide the annotators 1140

throughout the annotation process. To ensure their 1141

understanding, we require annotators to confirm 1142

that they have thoroughly read the instructions by 1143

checking a checkbox before the annotation task. 1144

We also manually checked the performance of the 1145

annotators along with the annotation process and 1146
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Figure 5: Annotation interface.

Relation Prompt Template

xIntent the intention of PersonX before
xNeed what PersonX needed to do before
xWant what PersonX wants to do after
xEffect the effect on PersonX after
xReact what PersonX feels after
xAttr what PersonX is seen as given
oEffect the effect on PersonY after
oReact what PersonY feels after
oWant what PersonY wants to do after
HinderedBy what hindered
isAfter what happens before
isBefore what happens after

Table 8: Templates for verbalizing relations in complex
queries.

gave feedbacks based on common errors. For ex-1147

ample, typical errors include mistakenly regard the1148

one-hop answer as correct instead of fully consid-1149

ering the multi-hop context.1150

Post-processing To aggregate the annotation re-1151

sult, we randomly sample one option that is labeled1152

as plausible by majority voting as the final positive1153

answer, and sample three negative options and dis-1154

tractors. If there are no options labeled as plausible,1155

then the correct answer is “None of the answers are1156

correct”. If there are less than three options labeled1157

as negative, we manually add one or two negative1158

examples to match the number. To improve the1159

quality, after crowdsourcing, the authors of this pa-1160

per manually checked the QA pairs with an IAA1161

lower than 0.6, and resolve the disagreements man-1162

ually. 1163

Tab. 9 presents the statistics of the training and 1164

evaluation set. 1165

Training Evaluation

#Instances 782,140 1,317

Table 9: Statistics of COM2.

B Additional Details of Experiments 1166

B.1 Implementation Details of the Question 1167

Answering Models 1168

We follow the pipeline in HyKAS (Ma et al., 2021) 1169

and CAR (Wang et al., 2023a) Let C represent 1170

the original context, which is the head entity for 1171

1p triple and the verbalized context for complex 1172

queries, Q represent the question verbalized from 1173

the anchor relations, and (A1, A2, ...) be the list of 1174

options. We first concatenate C, Q, and an answer 1175

option Ai together via natural language prompts 1176

following the order of “C Q Ai” to generate input 1177

sequences (T1, T2, ...). We then repeatedly mask 1178

out one token at a time to calculate the masked 1179

language modeling loss. 1180

S(T ) = − 1

n

n∑
i=1

logP (ti|..., ti−1, ti+1, ...) (2) 1181

We then compute the marginal ranking loss 1182

based on Equation 3, where η represents the margin 1183

15



Model Prompt

Llama2, Flan-T5
ChatGPT, GPT-4

Answer this commonsense reasoning question, where you are supposed to handle a multiple-chioce
question answering task to select the correct answer. Select one correct answer from A to E.\n

Context: [Context] Question: [Question] A: [Option A]. B: [Option B]. C: [Option C]. D: [Option D].
E: [Option E]. \n

Answer:

UnifiedQA [Question] \n
(a): [Option A] (b) [Option B] (c) [Option C] (d) [Option D] (e) [Option E] \n
[Context]

Vera [Context] [Question] [Option]

HyKAS, CAR [Context] [Question] [Option]

Table 10: Prompt templates for multiple-choice question answering.

Model Prompt

Llama2 (zero-shot)
[System_Message] = As an expert in commonsense reasoning, your task is to provide a concise
response to a question based on the given context. The question focuses on studying the causes,
effects, or attributes of personas related to the given context. Answer shortly with no more than 5
words.

<s>[INST] <<SYS>>\n[System_Message] \n<</SYS>>\n\n[Context] [Question] [/INST]

Llama2 (fine-tuned) <|im_start|>question\n[Context] [Question] <|im_end|>\n<|im_start|>answer\n[Answer]

GPT-2 2i: [V1] [V2] [r1] [r2] [GEN] [Answer]
3i: [V1] [V2] [V3] [r1] [r2] [r3] [GEN] [Answer]
2p: [V1] [r1] [r2] [GEN] [Answer]

Table 11: Prompts for fine-tuning generative commonsense inference models.

and y is the index of the correct answer.1184

L =
1

m

m∑
i=1,i ̸=y

max(0, η − Sy + Si) (3)1185

We train the DeBERTa QA model for 1 epoch1186

with a learning rate of 5e-6 and a linear learn-1187

ing rate decay. The checkpoint that yields the1188

best performance on the synthetic validation set1189

in CAR (Wang et al., 2023a) or HyKAS (Ma et al.,1190

2021) is selected as the final model. During eval-1191

uating, we select the option that yields the lowest1192

score as the final prediction.1193

We provide the prompt templates for each model1194

in Tab. 10.1195

B.2 Implementation Details of Generative1196

Commonsense Inference Models1197

The training and evaluation of GPT2-based1198

model is based on the paradigm defined in1199

COMET (Bosselut et al., 2019). The input of one-1200

hop ATOMIC triples is serialized to “h r” and the1201

expected output is t, where (h, r, t) forms a triple1202

in the CSKG. The input of 2p queries, (h, r1, V )1203

and (V , r2, V?), are serialized as “h r1 r2” and1204

the expected output is V?. The input of 2i queries, 1205

which includes (h1, r1, V?) and (h2, r2, V?), is se- 1206

rialized as “h1 h2 r1 r2” with the expected output 1207

as V?. All models are fine-tuned for 3 epochs with 1208

a batch size of 32, a learning rate of 1e-5, a linear 1209

learning rate decay. The last checkpoint is taken as 1210

the final model. 1211

For Llama2, we follow the standard instruction 1212

tuning procedure and use the pipeline provided by 1213

Chen et al. (2023). We train the model with a batch 1214

size of 32, learning rate of 1e-5, and linear learning 1215

rate decay. We take the final checkpoint as our 1216

model to make prediction. 1217

The whole list of prompt templates that we use 1218

is presented in Tab. 11. 1219

C Additional Analysis 1220

Differences from ParaCOMET and COMET-M 1221

In ParaCOMET, the task involves providing a nar- 1222

rative as input, requiring the model to determine 1223

the commonsense causes or effects of a specific 1224

sentence within the context. To generate training 1225

data, a single-hop COMET model fine-tuned on 1226

ATOMIC is employed to create synthetic infer- 1227
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ences. These inferences are generated solely based1228

on the target sentence and the desired relation, with-1229

out accessing the whole context. The resulting one-1230

hop synthetic inferences are then utilized as distant1231

supervision signals during the fine-tuning process1232

for ParaCOMET.1233

COMET-M utilizes a context consisting of a sen-1234

tence containing multiple events. Unlike from a1235

sentence level, COMET-M focuses on generating1236

commonsense inferences based on a specific event1237

within the sentence. T his fine-grained approach1238

enables more precise and detailed commonsense1239

reasoning.1240

In contrast, our complex commonsense reason-1241

ing benchmark introduces additional complexities1242

compared to ParaCOMET and COMET-M. Besides1243

the complex structures in the context that involves1244

multiple events, the desired relation or question1245

involves multi-hop reasoning as well. For instance,1246

rather than focusing on the cause of a single sen-1247

tence or event, COM2 explores questions related1248

to common causes, effects, attributions of multiple1249

events, and two-hop inferences. This distinctive1250

formulation sets our work apart and poses a greater1251

challenge for LLMs to effectively reason and pro-1252

vide accurate responses.1253

Discussions on different query types Accord-1254

ing to the main experiments on the MCQA version1255

of COM2 in Tab. 1, there are some variance regard-1256

ing the performance on different query types. A1257

notable distinction is the performance of pi queries,1258

which exhibits a significantly higher success rate1259

compared to other query types, particularly ip1260

queries, as both pi and ip involve a single free1261

variable and both intersection and projection op-1262

erations. We present two perspectives to explain1263

this phenomenon. First, the limited availability1264

of sampled pi queries restricts the diversity of the1265

data. Out of all the queries sampled from the dev1266

set of ATOMIC20
20, only 4k are pi queries, while1267

there are 12k ip queries and 598k 2i queries. This1268

paucity of pi queries contributes to a lack of variety.1269

Moreover, within these 4k pi queries, the number1270

of unique answers is limited to 459, indicating a1271

limited range of possible responses. As a result,1272

models fine-tuned on ATOMIC can generate an-1273

swers to pi queries with relative ease, given that1274

most of them consist of nodes with high degrees.1275

Second, the chances of the sampled answer is ac-1276

tually the correct answer to pi queries (67.8%) is1277

significantly higher than other query types (e.g.,1278

47.2% for ip). This is also a result of the first 1279

reason, as the answers to the sampled queries are 1280

limited to nodes with high degrees. 1281

In all, despite that the query structure itself is 1282

more complicated, the reasoning difficulty is not 1283

that hard compared to other query types due to the 1284

above two reasons. 1285

Results of the Ablations We present the results 1286

of the ablation study in Tab. 12. 1287

Discussions on Further Applications of Complex 1288

Queries Intuitively, 2i queries can represent vari- 1289

ous scenarios such as common attribution, common 1290

effect, common cause, and abduction (when one 1291

relation pertains to effects and the other relates to 1292

cause), depending on the types of relations involved 1293

in the query. Besides, complex logical queries, par- 1294

ticularly those involving intersection operations, 1295

are relevant to defeasible reasoning (Rudinger et al., 1296

2020), where inferences can be weakened given 1297

new evidence. In the one-hop setting, tails are anno- 1298

tated in a context-free manner, considering only the 1299

most general cases. However, in intersection-based 1300

queries like 2i and 3i, additional anchor entities 1301

and relations act as specific constraints, narrowing 1302

down the inferences to a particular scope while 1303

disregarding other commonsense inferences in the 1304

context-free scenario. For instance, in the exam- 1305

ple from Fig. 1, other potential tails for (PersonX 1306

goes skydiving, xIntent) could include overcoming 1307

fear, seeking enjoyment, or achieving a personal 1308

milestone. Nevertheless, when constrained by an- 1309

other query (PersonX gets tired of it, xWant), the 1310

intentions related to fear, enjoyment, and fulfill- 1311

ment are weakened, and only the correct inference 1312

of “finding new things to do” remains. 1313

D Error Analysis 1314

We present some error cases in Tab. 4. In general, 1315

a common error in both projection and intersec- 1316

tion queries is that the generated answer can be 1317

only the one-hop answer instead of the correct an- 1318

swer that is multi-hop. For example, in the 2p 1319

case, “get a new job” is a direct intention of some- 1320

one who updates his or her resume. However, the 1321

2p query asks about the intention of the intention, 1322

which requires inducing the intention behind “get a 1323

new job”. In this sense, “to be financially indepen- 1324

dent” is more plausible inference. In the case of 2i 1325

queries, the error lies in the absence of inferential 1326

gaps between the context, where the generated an- 1327
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Model COM2

R-L CIDEr BERT

Filter
COM2-COMET 14.7 33.0 46.3
- w/o plau. filter 13.0 31.2 42.3
- w/o div. filter 14.4 32.5 45.8
- w/o both filter 12.5 30.3 40.1

Query Types
COMET (1p) 10.0 20.7 44.3
+ 2i 13.6 26.1 39.8
+ 2p 9.8 19.9 43.4
+ 2i, 3i, 2p 14.7 33.0 46.3

Verbalization
COM2-COMET 13.6 26.1 39.8
COM2-COMET (V) 14.3 27.1 43.4
COM2-Llama 35.7 107.2 61.3
COM2-Llama (V) 36.2 105.4 61.4

Model ParaCOMET
R-L CIDEr BERT

Verbalization
COM2-COMET 13.8 22.1 53.7
COM2-COMET (V) 14.0 23.2 54.0
COM2-Llama 14.6 22.1 55.3
COM2-Llama (V) 14.8 23.6 55.5

Table 12: Ablation studies on filters, type of queries,
and using ChatGPT for verbalizing queries (denoted as
V).

swers become paraphrases of the events rather than1328

being the result by any anchor entity. In the case1329

of ip, a common error for one-hop COMET is the1330

generation of “None” for complex cases, indicating1331

a deficiency in multi-hop reasoning capabilities.1332
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Type Context Question COMET COM2-COMET

2p Ezra updates Ezra’s resume (V1) What event or state is the intention of Ezra
before the intention of Ezra before V1?

get a new job ✗
(one-hop correct)

be financially indepen-
dent ✓

2i-
neg

Every day, Benjamin goes to work diligently
(V1), never missing a day. They are dedicated
and committed to their job. In particular, Ben-
jamin doesn’t work hard on it (V2) and instead
takes a more relaxed approach, focusing on
maintaining a healthy work-life balance.

What event or state is both the effect on Ben-
jamin after Benjamin go to work every day
(V1) and also what hindered Benjamin work
hard on it (V2)?

Benjamin is sick ?
(Not perfect as Benjamin
is trying to keep a work-
life balance instead of
having a sick leave)

Benjamin gets tired from
working hard ✓

2i
Chloe is known for being hardworking (V1)
and dedicated. As a result, Chloe leads a good
life (V2).

What event or state is both the effect on Chloe
after Chloe is hardworking (V1) and also what
Chloe wants to do after Chloe leads a good
life (V2)?

to have a good life ?
(No inferential gap)

to have success in life ?
(No inferential gap)

ip After looking for a new car (V1), Lydia is
driving to school (V2).

What event or state is what Lydia needed to
do before the event that is both what Lydia
wants to do after Lydia is looking for a new
car (V1), and also what Lydia needed to do
before Lydia is driving to school (V2)?

None ✗ take a car for test drive ✓

Table 13: Error analysis of generated inferences on the evaluation set of COM2. We present the generations of
COMET-Llama-7b and COM2-Llama-7b fine-tuned on all queries.
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