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Abstract

Deep reinforcement learning policies, despite their outstanding efficiency in simu-
lated visual control tasks, have shown disappointing ability to generalize across
disturbances in the input training images. Changes in image statistics or distract-
ing background elements are pitfalls that prevent generalization and real-world
applicability of such control policies. We elaborate on the intuition that a good
visual policy should be able to identify which pixels are important for its decision,
and preserve this identification of important sources of information across images.
This implies that training of a policy with small generalization gap should focus
on such important pixels and ignore the others. This leads to the introduction of
saliency-guided Q-networks (SGQN), a generic method for visual reinforcement
learning, that is compatible with any value function learning method. SGQN vastly
improves the generalization capability of Soft Actor-Critic agents and outperforms
existing state-of-the-art methods on the Deepmind Control Generalization bench-
mark, setting a new reference in terms of training efficiency, generalization gap,
and policy interpretability.

1 Introduction

Deploying reinforcement learning (RL) [Sutton and Barto, 2018] algorithms in real-life situations
requires overcoming a number of still open challenges. Among these is the ability for the trained
control policies to focus their attention on causal state features and ignore confounding factors
[Machado et al., 2018, Henderson et al., 2018]. In visual RL tasks, this implies for instance being able
to ignore the background and other distracting factors, even when they might be somehow correlated
with progress within the task at hand. Despite a very active trend of research on the topic of closing
the generalization gap for RL agents [Cobbe et al., 2019, 2020, Song et al., 2019, Hansen et al., 2021,
Hansen and Wang, 2021], current algorithms are still rather brittle when it comes to filtering out such
distracting factors, which hinders their applicability to real-life scenarios.
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In the present work, we propose a novel method which encourages the agent to identify efficiently
crucial input pixels, and strengthen the policy’s dependency on those pixels. In plain words, we
encourage the agent to pay attention to, and be self-aware of where it looks in input images, in
order to make its decision policy more focused on important areas and less sensitive to ambiguous
or distracting pixels. This intention is expressed within the generic method of saliency-guided
Q-networks (SGQN), which can be applied on any approximate value iteration based, deep RL
algorithm. SGQN relies on two core mechanisms. First, it regularizes the value function learning
process with a consistency term that encourages the value function to depend in priority on pixels
that are identified as decisive. The second mechanism pushes the agent to be self-aware of which
pixels are responsible for making decisions, and encode this information within the extracted features.
This second mechanism translates to a self-supervised learning objective, where the agent trains to
predict its own Q-value’s saliency maps. In turn, this improves the regularization of the value function
learning phase, which provide better labels for the self-supervised learning phase, overall resulting in
a virtuous improvement circle.

SGQN is a simple, generic method, that permits many variants in the way the two core mechanisms
are implemented. In the present paper, we demonstrate that applying SGQN to soft actor-critic
agents [Haarnoja et al., 2018] dramatically enhances their quality on the DMControl generaliza-
tion benchmark [Hansen and Wang, 2021], a standard evaluation benchmark for generalization in
continuous actions RL. SGQN already improves the training efficiency of such agents in domains
without distractions. But most importantly, it sets a new state-of-the-art in terms of generalization
performance, in particular in especially difficult benchmarks where previous methods suffered from
confounding factors. As a side benefit, it also provides explanations of its own decisions at run time,
under the form of interpretable attribution maps, with no overhead cost and no need to compute ad
hoc saliency maps, which is another desirable property in the pursuit of deployable RL.

Section 2 of this paper introduces the necessary background and state-of-the-art in closing the
generalization gap in RL, as well as attribution methods, leading to the key intuitions underpinning
SGQN. Section 3 introduces the method itself and implements it within soft actor-critic agents.
Section 4 evaluates SGQN’s training efficiency, generalization capabilities, and policy interpretability.
It also discusses the different design choices made along the way and some foreseeable limitations.
Section 5 summarizes and concludes this paper.

2 Background and related work

Reinforcement learning (RL). RL [Sutton and Barto, 2018] considers the problem of learning a
decision making policy for an agent interacting over multiple time steps with a dynamic environment.
At each time step, the agent and environment are described through a state s ∈ S, and an action
a ∈ A is performed; then the system transitions to a new state s′ according to probability P(s′|s, a),
while receiving reward R(s, a). The tuple M = (S,A,P,R) forms a Markov Decision Process
(MDP) [Puterman, 2014], which is often complemented with the knowledge of an initial state
distribution p0(s). A decision making policy parameterized by θ is a function πθ(a|s) mapping states
to distributions over actions. Training a reinforcement learning agent consists in finding the policy
that maximizes the discounted expected return J(πθ) = E[

∑∞
t=0 γ

tR(st, at)].
Poor generalization in RL. Despite the recent progress of (deep) RL algorithms in solving complex
tasks, a number of studies have pointed out their poor generalization capabilities. Using a grid-world
maze environment, Zhang et al. [2018c] demonstrate the ability of deep RL agents to memorize a
non-trivial number of training levels with completely random rewards. Using attribution methods,
Song et al. [2019] highlight what they define as observational overfitting i.e., the propensity of
RL agents to base their decision on background uninformative elements observed during training,
instead of the semantic pieces of information one could intuitively expect such as object positions or
relations. Zhang et al. [2018a] measure the generalization error in continuous control environments
by training and testing agents on different sets of seeds. Zhao et al. [2019] define generalization in
RL as robustness to a distribution of environments, and samples environments from this distribution
to learn a robust policy. Overall, these works illustrate the lack of generalization abilities of vanilla
deep RL algorithms, either to states that were not encountered during training, or to variations in the
transition dynamics. In the present work, we aim to shape the policy learning process, so that it relies
on meaningful features that permit such generalization and robustness.
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Evaluating generalization in RL. Under the impetus of these works and the need for benchmarks
with separate training and testing environments [Whiteson et al., 2011, Machado et al., 2018, Hender-
son et al., 2018], original benchmarks for evaluating the generalization capacities of RL agents have
been designed. Packer et al. [2018] propose a modified version from control problems in OpenAI
Gym [Brockman et al., 2016] and Roboschool [Schulman et al., 2017] that lets the user change the
system dynamics. Machado et al. [2018] propose a modified version of the ALE environments [Belle-
mare et al., 2013] allowing one to change modes and difficulties. Without modifying the underlying
transition model, Zhang et al. [2018b], Grigsby and Qi [2020], Stone et al. [2021] add distracting
elements (e.g., addition of real images or videos in the background, change of colors) to the ALE
environments and the Deepmind control suite. Even if the modifications to the original environments
do not alter the semantic information, they already appear to be challenging for agents prone to
observational overfitting. Cobbe et al. [2019, 2020], Juliani et al. [2019] use procedural content
generation to design highly randomized sets of environments with different level layouts, game assets,
and objects locations, letting the user study robustness to several independent variation factors. One
may note that the diversification of learning environments is in itself a first practical way to induce
generalization [Tobin et al., 2017, Cobbe et al., 2019, 2020] and also permits curriculum-based
learning [Jiang et al., 2021]. Nevertheless, when the diversity of training scenarios is lacking, three
sets of methods are generally employed, as detailed below.

Regularization. Farebrother et al. [2018], Cobbe et al. [2019, 2020] demonstrated the beneficial
effects of popular regularization methods from the supervised learning literature. Igl et al. [2019]
mitigate the adverse effect that classical regularization may have on the gradient quality with selective
noise injection and combine it with an information bottleneck regularization. Inspired by mixup
[Zhang et al., 2018d], Wang et al. [2020] use mixtures of observations to stimulate linearity in the
policy’s outputs in-between states.

Data augmentation. Laskin et al. [2020a] evidence the benefits of training RL agents with augmented
data (RAD). Yarats et al. [2020] average both the value function and its target over multiple image
transformations (DrQ). Hansen et al. [2021] only apply data augmentation in Q-value estimation
without augmenting Q-targets used for boostrapping. Raileanu et al. [2021] combine the previous
method with UCB [Auer, 2002] to pick the most promising augmentation, and apply it to PPO
[Schulman et al., 2017]. Yuan et al. [2022] propose a task-aware Lipschitz data augmentation method
(TLDA) to augment task irrelevant pixels. Fan et al. [2021] use weak data augmentation to train an
expert without hindering its performance and distill its policy to a student trained with substantial
data augmentation. Besides augmentations of raw inputs, other augmentations operate directly within
the agents’ network. Lee et al. [2020] introduce a random convolutions layer at the earliest level
of the agent’s network to modify the texture of the visual observations. Zhou et al. [2020] adapt
mixup [Zhang et al., 2018d] with style statistics encoded in early instance normalization layers to
increase data diversity. Bertoin and Rachelson [2022] apply channel-consistent local permutations
of the feature map to induce robustness to spatial spurious correlations. Finally, data augmentation
can also be used in an auxiliary loss to promote invariance to distributional shift in representations.
Hansen and Wang [2021] propose a soft-data augmentation method (SODA) by adding an auxiliary
self-supervised learning phase to SAC [Haarnoja et al., 2018], similar to BYOL [Grill et al., 2020].

Representation learning. Higgins et al. [2017b] demonstrate zero-shot adaptation to unseen con-
figurations in testing environments, using a β-VAE [Higgins et al., 2017a] to learn disentangled
representations. Fan and Li [2021] jointly maximize the mutual information between sequences
of observations to remove the task-irrelevant information. Fu et al. [2021] learn a disentangled
world model that separates reward-correlated features from background. Wang et al. [2021] extract,
using visual attention, the observation foreground to provide background invariant inputs to the
policy learner. Raileanu and Fergus [2021] separate the actor from the critic in the agent’s network
architecture and add an adversarial auxiliary objective on the actor’s representations to remove the
information needed to estimate the value function that is not irrelevant to a general policy. Zhang et al.
[2020] train an encoder to project states so that their distances match with the bisimulation distances
in state space. Other recent works use behavioral similarities combined with contrastive learning
[Agarwal et al., 2020] or clustering [Mazoure et al., 2022] to map behaviorally similar observations
to similar representations.

Attributing decisions to inputs. Although not directly aiming at generalization, a related topic is that
of attribution, where one wishes to identify which parts of an input are responsible for major changes
in the output of a function. Intrinsically, computing attributions boils down to computing (some trans-
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formation of) the gradient of the function’s output with respect to the input’s components. Computa-
tional graphs of differentiable functions, such as neural networks, are particularly suited to computing
attributions by using the back propagation algorithm [Simonyan et al., 2014, Springenberg et al.,
2015, Smilkov et al., 2017, Selvaraju et al., 2017, Chattopadhay et al., 2018]. When these methods
are applied to images, one obtains a map which is known as a saliency map or attribution map. Such
attribution maps indicate which input pixels are determining for a policy’s output (or the Q-value of
action a) and thus permit interpretation of the function itself, rather than its point-wise decision alone.
Mousavi et al. [2016], Greydanus et al. [2018], Atrey et al. [2020] have used saliency maps to analyze
and explain the behavior of RL agents. Rosynski et al. [2020] indicates in particular that guided
backpropagation [Springenberg et al., 2015] provides good visualizations of RL policies across a span
of environments. Most existing works, however, only exploit saliency maps as tools for interpretation.
Closely related to our contribution is that of Ismail et al. [2021], who incorporate attributions into their
training process in supervised learning. Their procedure iteratively uses a binary mask computed from
attributions to remove features with small and potentially noisy gradients while maximizing the simi-
larity of model outputs for both masked and unmasked inputs. This saliency guided regularization im-
proves the quality of gradient-based saliency explanations without interferring with training stability.

This contribution. The rationale of the method we introduce in the next section is to encourage the
agent to generalize to new states, based on which pixels are identified as important decision factors.
For this purpose, we perform pixel-level masking on the input image, depending on the computed
attribution, and regularize the value function learning process with the difference in Q-values.
This way, we encourage the value function to focus specifically on the pixels with high attribution.
Leveraging data augmentation, self-supervised learning methods have demonstrated their ability
to induce features that are insensitive to lighting, background, and high-frequency noise. The method
we propose does not directly use data augmentation in the value function or policy update phase.
Instead, it is introduced during an auxiliary phase where the augmented state’s encoding is used
to predict the attribution mask of the original state. This way, the encoder is encouraged to preserve
information that is useful for predicting which pixels were important in the agent’s decision-making.
A parallel with SODA can thus be made by considering that the projector used in the BYOL objective
is here replaced by a surrogate of the derivative of the value function, allowing to refine the quality
of the projection and to learn which pixels and visual features are consistently important across states
to predict the Q-values. The value function regularization and the self-supervised learning objective
are mutually beneficial: the former outputs sharper saliency maps from the value function, that serve
as better labels for the auxiliary self-supervised learning task, which in turn induces better features
and better attributions. In short, we encourage the agent to pay attention to where it is looking, with
the intention that this triggers more efficient learning and more interpretable output.

3 Saliency-guided Q-networks

We propose a generic saliency-guided Q-networks (SGQN) method, for visual deep reinforcement
learning. In a nutshell, SGQN considers the application of the binarized attribution map as a mask
over the input state and regularizes the value function learning objective with a consistency term
between the Q-values of the masked and the original state images. It also defines an auxiliary
self-supervised learning task that aims to match a prediction of the attribution map on an augmented
image, with the attribution map of the original image. Such an auxiliary task orients the gradient
descent towards features that are shared across states, as illustrated by the work of Hansen and
Wang [2021]. SGQN can be combined with any value function learning objective, any attribution
map computation technique, any image augmentation method for self-supervised learning, and is
suited for both discrete and continuous actions. We first present SGQN as a generic enhancement of
approximate value iteration methods. Then we derive a specific version built on SAC [Haarnoja et al.,
2018] and on the guided backpropagation algorithm [Springenberg et al., 2015].

A vast number of deep RL algorithms belong to the family of approximate value iteration methods.
Such methods build a sequence of (Qn)n∈N and (πn)n∈N functions that aim to asymptotically tend
to Q∗ and π∗. Qn+1 is defined as a minimizer of LQ = ∥Q− TπnQn∥, where Tπn is the Bellman
evaluation operator with respect to πn. Then πn+1 is defined by applying a greediness operator G to
Qn+1 and the process is iterated. Geist et al. [2019] showed how one could introduce regularization
within the expression of LQ, yielding the class of regularized MDPs. The classical DQN algorithm
[Mnih et al., 2015] approximates the solution to LQ by taking a number of gradient steps with respect
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Figure 1: SGQN losses. The LSL self-supervised loss trains fθ so that Mθ(fθ(τ(s)), a) predicts
Mρ(Qθ ◦ fθ, s, a). In turn, the LC consistency loss pushes Qθ ◦ fθ to only depend on salient pixels.

to a target network Qn and uses an argmax greediness operator. When actions are continuous,
actor-critic methods introduce a surrogate model of the Qn+1-greedy policy, under the form of
an actor network πn+1 = G(Qn+1) obtained by gradient ascent. In what follows, we denote by
LQ(θ) the loss minimized by a generic learning procedure for Qθ, based on the Bellman operator,
independently of whether it is regularized, uses double critics, etc. Similarly, we note Lπ(θ) the loss
minimized to yield a greedy policy πθ, when applicable.

We denote by M(Q, s, a) an attribution map for Q(s, a), in the space of images S . Vanilla grad [Si-
monyan et al., 2014] for instance will compute such a map under the form M(Q, s, a) = ∂Q(s, a)/∂s,
while guided backpropagation [Springenberg et al., 2015] will mask out negative gradients, yield-
ing a different attribution map. We note Mρ(Q, s, a) the binarized value attribution map where
Mρ(Q, s, a)j = 1 if attribution pixel M(Q, s, a)j belongs to the ρ-quantile of highest values for
M(Q, s, a), and 0 otherwise.

The proposed method is built on a classical Q-network architecture. The value function is divided
into 2 parts: an encoder fθ : S → Z and a Q-function Qθ : Z ×A → R built on top of this encoder.
We add a decoder function Mθ after the features encoder fθ, such that Mθ(fθ(s), a) aims to predict
the attribution map of Qθ(fθ(s), a). Many algorithms require defining double critics [Fujimoto et al.,
2018] or target networks fψ and Qψ which are often updated with an exponential moving average of
θ [Polyak and Juditsky, 1992]. We omit them here for clarity, although their introduction in SGQN is
straightforward. When needed, a policy head πθ : Z → A is built on top of the encoder fθ to define
the actor network. The backbone architecture and training process are summarized in Figure 1. The
SGQN training procedure involves two additional objectives: a consistency objective responsible for
regularizing the critic update and an auxiliary supervised learning objective.

The consistency regularization objective (Figure 1 right) LC(θ) = Es,a[[Qθ(fθ(s), a)−Qθ(s⊙
Mρ(Qθ ◦ fθ, s, a), a)]2] (where ⊙ denotes the Hadamard product), is added to the classical critic loss
LQ(θ) during the critic update phase. This loss function encourages the Q-network Qθ◦fθ to make its
decision based in priority on the salient pixels in M(Q, s, a), hence promoting consistency between
the masked and original images. The new critic objective function is thus defined as LQ(θ)+λLC(θ).

The self-supervised learning phase (Figure 1 left) updates the parameters of fθ so that given a
generic image augmentation function τ , (fθ(τ(s)), a) contains enough information to accurately
reconstruct the attribution mask Mρ(Qθ, s, a). This defines a self-supervised learning objective
function LSL(θ) = Es,a[BCE(Mθ(fθ(τ(s), a),Mρ(Qθ, s, a)], where BCE is the binary cross
entropy loss, which could be replaced by any other measure of discrepancy between attribution maps.

The interplay between these two phases acts as a virtuous circle. The consistency regularization
loss, similar to that of Ismail et al. [2021], pushes the network to focus its decision on a selected
set of pixels (hence relying on the assumption that initial saliency maps are reasonably good). This
enhances the contrast between pixels in the gradient image, and thus yields sharp saliency maps, even
before binarization. These maps serve as a target labels during the self-supervised learning phase;
since they are less noisy than without the consistency loss, they provide a stronger incentive to encode
the information of which pixels are important, within fθ. In turn, as exemplified by Hansen and
Wang [2021] and Grill et al. [2020], the features obtained by the self-supervised learning procedure
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tend to be insensitive to background, noise, or exogenous conditions, and provide features that are
shared across observations. These features benefit from the better labels (less irrelevant pixels in
the attribution map). Finally, this helps provide good pixel attributions that will be used in the
minimization of the consistency loss during the critic phase. Appendix G proposes an extended
discussion on this virtuous circle.

Note that the thresholding operation performed to obtain Mρ is not strictly necessary, either in the
consistency loss or in the self-supervised learning one. Instead of a hard thresholding, one could
turn to a normalization of the attribution map, such as a softmax for instance. Such a soft-attribution
image remains fully compatible with SGQN. The choice to keep the thresholded ρ-quantile mask
is motivated by the arguments of Ismail et al. [2021] who extensively study such variations and
conclude to the benefits of this binarized mask. One could also remark that SGQN does not require
to use the target network during the self-supervised learning phase, which contrasts with the choices
of SODA or BYOL and makes the method somewhat more versatile.

Algorithm 1 presents the pseudo-code of combining SGQN with SAC, yielding an SG-SAC algorithm.
Note that, for the sake of simplicity, we write θ for the full set of network parameters, which are thus
shared by the encoder, the Q-value head, the policy head, and the attribution reconstruction head.

Algorithm 1: Saliency-guided SAC (changes to SAC in blue)
Parameters: frequency of auxiliary updates NSL, attribution quantile value ρ, learning rate α,
data augmentation function τ .

for each interaction time step do
a, s′ ∼ πθ(· | fθ(s)),P(· | s, a) // Sample a transition
B ← B ∪ {(s, a,R (s, a) , s′)} // Add transition to replay buffer
{si, ai, r(si, ai), s′i}i∈[1,N ] ∼ B // Sample a mini-batch of transitions
θ ← θ − α∇θLQ(θ) + λLC(θ) // Critic update phase
θ ← θ − α∇θLπ(θ) // Actor update
Every NSL steps: θ ← θ − α∇θLSL(θ) // Self-supervised learning

Note: LQ and Lπ are as defined by Haarnoja et al. [2018], temperature update, double critics and
target network updates are omitted here for clarity.

4 Experimental results and discussion

This section evaluates SGQN’s training efficiency, generalization capabilities, and policy interpretabil-
ity. It also discusses the different design choices made along the way. We compare our approach with
current state-of-the-art methods for generalization in continuous actions RL (RAD [Laskin et al.,
2020b], DrQ [Yarats et al., 2020], SODA [Hansen and Wang, 2021], SVEA [Hansen et al., 2021])
on five environments from the DMControl Generalization Benchmark (DMControl-GB) [Hansen
and Wang, 2021]. The DMControl-GB presents a variety of vision-based continuous control tasks
based on the Deepmind control suite. Agents are trained in a fixed background environment and
evaluated under two challenging distribution shifts, consisting in replacing the training background
with natural videos. Figure 2 illustrates the effects of both domain shifts. All the compared methods
herein are variants of SAC, for which we use the same architecture for all agents. These methods
all use data augmentation in one of their stages. Following the experimental protocol of the com-
peting approaches, we used a random overlay augmentation [Hansen and Wang, 2021] (consisting
in blending together original observations with random images from the Places365 dataset [Zhou
et al., 2017]) for all the methods except for RAD and DrQ, for which we used random crops and
random shifts respectively, as it is reported as producing the best results [Laskin et al., 2020b, Yarats
et al., 2020]. We trained all agents for 500 000 steps using the vanilla training environment with no
visual variation. Appendix A, B, and E discuss all the hyperparameters, network architectures, and
implementation choices used for this benchmark. Appendix C includes extra experimental results on
DMControl-GB and Appendix D provides additional results on a vision-based robotic environment.

SGQN improves value iteration in the training domain. We first compare the performance in
the training domain, with no visual distractions, of SAC and SGQN, on five environments from the
DMControl-GB (Figure 3). The SGQN agents outperform, by a considerable margin, the SAC agents
both in terms of asymptotic performance and sample efficiency on 4 out of the 5 environments. In
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(a) Training (b) “Video easy” distribution shift (c) “Video hard” distribution shift

Figure 2: Examples of training and testing environments

Benchmark Environment SAC DrQ RAD SODA SVEA SGQN ∆

Easy

Walker walk 245 ± 165 747 ± 21 608 ± 92 771 ± 66 828 ± 66 910 ± 24 +82(10%)
Walker stand 389 ± 131 926 ± 30 879 ± 64 965 ± 7 966 ± 5 955 ± 9 −11(1%)
Ball in cup 192 ± 157 380 ± 188 363 ± 158 939 ± 10 908 ± 55 950 ± 24 +11(1%)
Cartpole 398 ± 60 459 ± 81 473 ± 54 742 ± 73 753 ± 45 761 ± 28 +8(1%)

Finger spin 206 ± 169 599 ± 62 516 ± 113 783 ± 51 723 ± 98 956 ± 26 +173(22%)
Average 286 622 568 836 836 906 +70(8%)

Hard

Walker walk 122 ± 47 121 ± 52 80 ± 10 312 ± 32 385 ± 63 739 ± 21 +354(92%)
Walker stand 231 ± 57 252 ± 57 229 ± 45 736 ± 132 747 ± 43 851 ± 24 +104(14%)
Ball in cup 101 ± 37 100 ± 40 98 ± 40 381 ± 163 498 ± 174 782 ± 57 +284(57%)
Cartpole 158 ± 17 136 ± 29 152 ± 29 403 ± 17 401 ± 38 544 ± 43 +141(35%)

Finger spin 13 ± 10 38 ± 13 39 ± 20 309 ± 49 307 ± 24 822 ± 24 +513(166%)
Average 125 129 119 430 468 748 +280(60%)

Table 1: Performance on video easy and video hard testing levels. ∆ = difference with second best.

addition to obtaining better results, the variance of the agents trained with SGQN is also significantly
lower than that of the agents trained with SAC, demonstrating that the enhancements employed in
SGQN have a beneficial effect on the stability of the training, regardless of the ability to generalize
across domains.

Figure 3: Comparison of SAC and SGQN training learning curves

SGQN improves generalization. We assess the zero-shot generalization ability of SGQN on the
video easy and video hard benchmarks from the DMControl-GB. The easy version only replaces the
background of the training image with a distracting image, while the hard version also replaces the
ground and the shadows (Figure 2). We report the average sum of rewards after 500 000 training steps
for the video easy benchmark in the top part of Table 1. Agents trained with SGQN outperform agents
trained with other state-of-the-art methods on all tasks but one (where it is on par with other agents),
thus demonstrating the generalization capabilities induced by the method. By removing the ground
and shadows, the video hard benchmark (bottom part of Table 1) causes a larger, more confusing,
and more challenging distributional shift. All the competitors of SGQN experience a radical decrease
in their generalization performance. SGQN is significantly less impacted and outperforms all its
competitors with an average margin over the second-best of 60% on all environments, and a gain
range of 14 to 166% across environments. Figure 4 reports the evolution of each agent’s score on the
video hard environments, along training. SODA and SVEA’s scores drop drastically when the ground
and shadows are removed. SGQN is less sensitive to this change, notably through the consistency
loss, which encourages agents to make decisions based on the subsets of pixels they deem most
interesting. Overall, the interplay of the two phases of SGQN seems to be key to a major leap forward
in terms of generalization gap in difficult environments, setting a new reference state-of-the-art.

SGQN yields sharp saliency maps. We use guided backpropagation to visually compare the SGQN
agents’ ability to discriminate the essential information with that of other agents. Figure 5 shows an
example of the binarized attribution maps for all agents in a video hard state. While the other agents
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Figure 4: Performance on video hard testing levels.

seem to be disturbed by background elements and retain some dependency on background pixels in
their decision, the attributions of the agent trained with SGQN are precisely located on the important
information, hence suggesting better generalization potential.

(a) Observation (b) SAC (c) RAD (d) SODA (e) SVEA (f) SGQN

Figure 5: Example of attributions in video hard levels

SGQN is interpretable by design. In all our experiments, we trained the SGQN agents using guided
backpropagation. We emphasize that any other attribution method could be used instead. Some of
these methods are expensive and require several forward (or backward) passes within the network
(e.g., RISE [Petsiuk et al., 2018], or the work of Fel et al. [2021]) to yield attribution maps which
explain the agent’s decision. In contrast, SGQN’s auxiliary phase trains a predictor to estimate the
most important pixels according to the chosen attribution method. Therefore, this predictor is a
surrogate of the attribution method used during training. It allows identifying the essential image
features that condition the agent’s decision in the same forward pass as the prediction of the action
itself, without incurring the cost of one or several costly additional backward or forward passes.
Figure 6 illustrates the proximity between the actual saliency map and the attribution surrogate model
Mθ. This makes SGQN both self-aware (of its own saliency maps) and intrinsically interpretable
from a human perspective, with no computational overhead at evaluation time.

(a) Observation (b) Mρ(Qθ, s, a) (c) s⊙Mρ(Qθ, s, a) (d) Mθ(s, a)

Figure 6: Comparison between the true saliency map (b), the masked image (c) used in the consistency
regularization term, and the estimated saliency map (d) in a video hard level.

Ablation study. SGQN relies on two enhancements of vanilla approximate value iteration: the
auxiliary self-supervised learning phase and the consistency regularization term in the critic’s loss.
We perform an ablation study to assess their individual contribution and Table 2 reports the average
sum of rewards in the training domain and for zero-shot generalization in all environments (Appendix
F takes a different perspective and compares SGQN with the combination of SVEA and SODA).
Individually, each of these features greatly improves both training and zero-shot generalization
performance on all environments. The auxiliary self-supervised learning phase provides the most
significant performance gains over vanilla SAC. The average training performance on all environments
of agents trained with this auxiliary objective is more than 73% higher than that of agents trained
with vanilla SAC. The same applies to the performance in zero-shot generalization, which increases
by more than 146% on video easy and by more than 198% on video hard environments. One can note

8



Environment benchmark SAC SAC+Consistency SAC+Self learning SGQN

Walker walk train 287 ± 165 449 ± 100 (+56%) 934 ± 28 (+225%) 937 ± 12 (+226%)
easy 245 ± 165 423 ± 96 (+73%) 844 ± 53 (+244%) 910 ± 24 (+271%)
hard 122 ± 47 344 ± 87 (+182%) 226 ± 48 (+85%) 739 ± 21 (+505%)

Walker stand train 467 ± 162 857 ± 120 (+84%) 957 ± 11 (+105%) 960 ± 9 (+106%)
easy 389 ± 131 846 ± 107 (+117%) 944 ± 14 (+143%) 955 ± 9 (+145%)
hard 231 ± 57 696 ± 150 (+201%) 769 ± 32 (+233%) 851 ± 24 (+268%)

Ball in cup train 284 ± 329 755 ± 261 (−8%) 967 ± 1 (+240%) 971 ± 7 (+242%)
easy 192 ± 157 440 ± 214 (+129%) 705 ± 43 (+267%) 950 ± 24 (+399%)
hard 101 ± 37 190 ± 63 (+88%) 203 ± 122 (+100%) 782 ± 57 (+670%)

Cartpole train 850 ± 29 863 ± 9 (+2%) 857 ± 20 (+1%) 839 ± 37 (−1%)
easy 398 ± 60 663 ± 96 (+67%) 647 ± 42 (+63%) 761 ± 28 (+91%)
hard 158 ± 17 228 ± 62 (+44%) 294 ± 40 (+86%) 544 ± 43 (+244%)

Finger spin train 829 ± 21 985 ± 1 (+19%) 985 ± 1 (+19%) 985 ± 1 (+19%)
easy 382 ± 40 865 ± 65 (+126%) 803 ± 65 (+110%) 956 ± 26 (+150%)
hard 20 ± 10 352 ± 58 (+1660%) 385 ± 45 (+1825%) 822 ± 24 (+4010%)

Average train 543 781 (+44%) 940 (+73%) 938 (+73%)
easy 321 647 (+102%) 789 (+146%) 906 (+182%)
hard 126 362 (+187%) 375 (+198%) 747 (+493%)

Table 2: Ablation study. Percentages indicate variations compared to vanilla SAC.

(a) Observation (b) Without consistency loss (c) With consistency loss

Figure 7: Comparison of SGQN attributions with and without consistency loss

that agents trained with our self-supervised learning objective obtain performance of the same order
of magnitude as SODA agents (Table 1). Recall that SODA relies on the BYOL [Grill et al., 2020]
self-supervised feature learning procedure, whose target labels differ notably from those proposed
herein. The reported performance, compared to that of SODA suggests that attribution maps constitute
a good labeling function that could be considered in the more general context of self-supervised
learning. To a slightly lesser extent, adding the consistency loss to SAC also significantly improves
its performance. The average score obtained improves by more than 44% on the training domain and
by 102% and 187% respectively on the video easy and video hard domains. Similarly to the results
obtained by Ismail et al. [2021] in supervised learning, the regularization of the critic’s loss with the
consistency term sharpens the attribution maps obtained (Figure 7). In SGQN, these fine-grained
attributions provide higher quality labels to the auxiliary self-supervised learning phase, thus yielding
significant performance improvements in training (+73% on average, range up to +242%), video easy
generalization (+182% on average, range up to +399%), and video hard generalization (+493% on
average, range up to +4010%).

5 Conclusion

The ability to filter out confounding variables is a long-standing goal in machine learning. For visual
reinforcement learning, it is a pre-requisite for real-world deployment of learned policies, since we
want to avoid at all costs situations where an agent makes the wrong decision due to distracting visual
factors. In this work, we introduced saliency-guided Q-networks (SGQN), a generic method for visual
reinforcement learning, that is compatible with any value function learning method. SGQN relies on
the positive interaction of two core mechanisms of self-supervised learning and attribution consistency
that jointly encourage the RL agent to be self-aware of the decisive factors that condition its value
function. We implement an SGQN agent based on the soft actor-critic algorithm, and evaluate it
on the DMControl generalization benchmark. This agent displays a dramatically more efficient
learning curve than vanilla SAC on the various environments it is trained on. Most importantly, the
policy it learns closes the generalization gap on environments that include confusing and distracting
visual features, setting a new reference in terms of generalization performance. Since they rely on
self-awareness of important pixels, SGQN agents are also very interpretable, in the sense that they
provide a prediction of their own saliency maps, with no computational overhead.
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The introduction of SGQN is an exciting milestone in RL generalization, and we wish to conclude
this contribution by highlighting some limitations and perspectives for research that we believe are
beneficial to the community. Attribution maps seem to be an efficient proxy for encouraging causal
relationships within policies, but they are strongly grounded in an anthropomorphic point of view of
what a visual policy should be. Extending their definition to more abstract notions of attribution is still
a challenge and begs for important contributions, both theoretical and algorithmic. Similarly, such
attribution maps appear to be relevant self-supervised learning targets, in order to learn good features
for RL agents. Exploring whether this still holds for different tasks than RL is an open question. It is
likely that one could design variations of SGQN that perform better than SG-SAC. The extension
of SGQN agents to discrete action agents (e.g. DQN), or policy gradient methods (e.g. PPO) is a
promising perspective in itself. Although generic and grounded in sound algorithmic mechanisms,
the losses introduced by SGQN lack a formal connection to some measure of the generalization gap.
Such a connection could provide insights to better self-aware, explainable agents with improved
generalization capabilities. Finally, using SGQN as a building brick, among all those required to
bridge the gap between simulation and real-world applications, is an exciting perspective.
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