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Abstract

We systematically study the query complexity of learning geodesically convex
halfspaces on graphs. Geodesic convexity is a natural generalisation of Euclidean
convexity and allows the definition of convex sets and halfspaces on graphs. We
prove an upper bound on the query complexity which is linear in the treewidth and
the minimum hull set size but only logarithmic in the diameter. We show tight lower
bounds along well-established separation axioms and identify the Radon number
as a central parameter of the query complexity and the VC dimension. While
previous bounds typically depend on the cut size of the labelling, all parameters in
our bounds can be computed from the unlabelled graph. We provide evidence that
ground-truth communities in real-world graphs are often convex and empirically
compare our proposed approach with other active learning algorithms.

1 Introduction

We systematically characterise active learning of geodesically convex halfspaces on graphs. While
unlabelled graphs such as social networks are readily accessible, obtaining many labels is tedious and
labour intensive. Active learning reduces the labelling effort by iteratively selecting informative data
points to be labelled. Graph-based active learning, in particular, has been successfully applied on
communication [Regol et al., 2020] and protein-protein-interaction networks [Vazquez et al., 2003,
Xiong et al., 2014]. While most previous approaches assume that the number of edges with differently
labelled vertices, the cut size, is small [Afshani et al., 2007, Guillory and Bilmes, 2009, Dasarathy
et al., 2015], we take a different approach and instead assume geodesic convexity: For every pair
of vertices with the same label it holds that every vertex on every shortest path between them also
has that label. This assumption is used, for example, by biologists on gene similarity networks
[Zhou et al., 2002] and cancer-related protein-protein-interaction networks [Li et al., 2012, 2013].
It also typically holds for connected subgraphs of collaboration networks [Marc and Šubelj, 2018,
Šubelj et al., 2019] and our preliminary experiments confirmed that many communities in community
detection datasets are convex. We derive bounds on the number of queries required to determine all
labels, that is, the query complexity, using concepts from convexity theory and geodesic convexity
spaces, which naturally generalise the regular Euclidean convexity. While learning convex sets and
halfspaces in Euclidean spaces has been intensively investigated in the machine learning community
for over half a century, geodesic convexity on graphs is understudied. For a concise presentation of
our theoretical results in this paper, we concentrate on active learning of halfspaces on graphs, that is,
the vertex set is partitioned into two classes which are both geodesically convex.

After introducing the concepts of graph and abstract convexity theory in Section 2, we derive general
label-independent upper and lower bounds on the query complexity. We discuss that such general
bounds can be loose on specific graphs and derive tighter lower bounds along the separation axioms
of abstract convexity theory in Section 3. This allows us to substantially reduce the gap between our
upper and lower bounds. Note that Euclidean spaces cannot be structured in a similar way: while
the separation axioms partition the space of all graphs into non-empty sets, all separation axioms
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hold in all real vector spaces including the Euclidean spaces. We discuss related topics like previous
active learning bounds that depend on the cut size between the classes, active learning of halfspaces
in Euclidean spaces, non-active learning of geodesically convex halfspaces, and other related learning
theoretic concepts in Section 4. Notably, we provide a bound on the VC dimension of geodesically
convex halfspaces given by the Radon number. After presenting an empirical validation of our
assumptions and approach in Section 5, we conclude with a discussion of future work.

2 Convexity spaces

In this section, we introduce the required concepts of convexity theory. For a more thorough
introduction on convexity theory we refer the reader to van de Vel [1993] and Pelayo [2013].

For a set X and a family C ⊆ 2X of subsets, the pair (X, C) is a convexity space if (i) ∅, X ∈ C, (ii) C
is closed under intersection, and (iii) C is closed under unions of sets totally ordered by inclusion.
For finite set systems, property (iii) always holds. Any set in C is called convex. If a set C and its
complement X \ C are convex, both are called halfspaces. Two disjoint sets A,B are halfspace
separable if there exists a halfspace C such that A ⊆ C and B ⊆ X \C. A mapping σ : 2X → 2X is
a convex hull (or closure) operator if for all A,B ⊆ X with A ⊆ B (i) σ(∅) = ∅, (ii) σ(A) ⊆ σ(B),
(iii) A ⊆ σ(A), and (iv) σ(σ(A)) = σ(A). Any convexity space (X, C) induces a convex hull
operator by σ(A) =

⋂
{C | A ⊆ C ∈ C}. A set A ⊆ X is convex, that is A ∈ C, if and only if is

equal to its convex hull, A = σ(A).

A set H ⊆ X is a hull set if its convex hull is the whole space, σ(H) = X . For A,B ⊆ X , the set
A/B = {x ∈ X | A ∩ σ(B ∪ {x}) 6= ∅} is the extension of A away from B. For a, b ∈ X , the
extension {a}/{b} is also called a ray a/b. Two disjoint sets A1, A2 form a partition of A ⊆ X if
A1 ∪ A2 = A. The partition A1, A2 of A is a Radon partition if σ(A1) ∩ σ(A2) 6= ∅. The Radon
number is the minimum number r such that any subset of X of size r has a Radon partition.

A particular type of convexity is an interval convexity. Apart from the convex hull σ(·) it has an inter-
val mapping I : X×X → 2X such that for all x, y ∈ X , (i) x, y ∈ I(x, y) and (ii) I(x, y) = I(y, x).
I(x, y) is the interval between x and y. We denote I(A) =

⋃
a,b∈A I(a, b). A set C in an interval

convexity space is convex if and only if C = I(C). The convex hull is given by σ(A) =
⋃∞
k=1 I

k(A),
where I1(·) = I(·) and Ik+1(·) = I(Ik(·)), A well-known instance of interval convexity spaces are
metric spaces (X, d). There, the interval contains all the points for which the triangle inequality
holds with equality: Id(x, y) = {z ∈ X | d(x, y) = d(x, z) + d(z, y)}. In Euclidean space this
corresponds to all points on a line segment and leads to the classical notion of convex sets.

We study metric spaces induced by graphs. The geodesic convexity (or shortest path convexity) of a
connected graph G = (V,E) is given by the interval mapping Id, where d : V 2 → R is the shortest
path distance in G. Let x, y ∈ V . For unweighted graphs d(x, y) is the minimum number of edges on
any x-y-path and for graphs with edge weights, w : E → R>0, it is the minimum total edge weight
of any x-y-path. A set of vertices C ⊆ V is, thus, (geodesically) convex if and only if C contains
every vertex on every shortest path joining vertices in C, corresponding again to the Euclidean case.

We denote by V (G) the vertex set of a graph G, the Radon number of the induced geodesic convexity
space of a graph as r(G), and the size of the minimum hull set as h(G). Rays a/b in graphs can be
defined using the shortest path distance d: In unweighted graphs a/b = {v ∈ V | d(a, v) < d(b, v)}
and in weighted graphs a/b = {v ∈ V | d(b, v) = d(b, a) + d(a, v)}. A vertex v is extreme if {v}
forms a halfspace, that is, V \ {v} is convex. We denote the set of extreme vertices of G as Ext(G).
In unweighted graphs, v is extreme if and only if its neighbours form a clique. The diameter d(G) of
a weighted or unweighted graph G is the maximum number of edges in any shortest path in G.

3 Active learning halfspaces on graphs

Having introduced the necessary concepts from convexity theory, we now present the main theoretical
results of the paper. In active node classification, a graph G = (V,E) with unknown vertex labels
λ : V → {0, 1} is given and the goal is to accurately predict all labels using as few as possible
vertex queries. Edges can be weighted or unweighted. The learner queries the vertices one by one:
it iteratively selects vertices v ∈ V and receives their label λ(v). In this paper, we consider active
learning on an undirected connected graph where the vertices with same label form geodesically
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convex sets. The classes are, thus, halfspaces and we call the labelling halfspace separable. Our
results in this section are upper and lower bounds on the number of queries required to deduce all
labels λ of the graph. We denote the number of queries required to identify any halfspace separable
labelling in the worst-case, the query complexity, by qc(G). We derive two general upper bounds
(Proposition 1, Theorem 5) and one lower bound (Theorem 7) on qc(G) that hold for any halfspace
separable labelling. To reduce the gap between the upper and lower bounds (Proposition 8), we derive
increasingly tighter lower bounds along separation axioms (Theorem 10). In this section, we consider
only undirected and connected graphs. Full proofs and a discussion of the multiclass, directed, and
disconnected setting are in the supplementary material.

3.1 Upper bounds on the query complexity

To derive a simple upper bound, we note that one immediate consequence of the halfspace assumption
is that any shortest path P can have at most one cut edge, that is, an edge with differently labelled
endpoints. To deduce all labels of P , we first query its endpoints. If they have the same label, we
know that all vertices on P have this label. Otherwise, we find the cut edge by binary search with at
most dlog d(G)e queries, as the length of P is at most the diameter |V (P )| − 1 ≤ d(G). Here, log is
the base 2 logarithm. We can generalise this approach to the whole graph using shortest path covers
[Thiessen and Gärtner, 2020], which is a set S of shortest paths whose vertices cover the graph:⋃
P∈S V (P ) = V (G). Performing binary search on each path in S gives our first upper bound.

Proposition 1. For any weighted graph G with minimum shortest path cover S∗ the query complexity
can be bounded as qc(G) ≤ |S∗|(2 + dlog d(G)e).

By considering a complete graph with edge weights such that the position of the cut edges on all
shortest path in the minimum shortest path cover can be chosen independently of each other, we can
show that this bound is tight:
Proposition 2. For any `, s ∈ N, there exists a weighted graph G with diameter d(G) = ` and
minimum shortest path cover S∗ of size s such that qc(G) ≥ |S∗| log d(G).

However, the graph in Proposition 2 is an artificial worst-case example. For most graphs, we can
do much better as the labels of vertices on different paths in the cover can typically not be chosen
independently of each other. Consider a cubic hypergrid graph G, that is, the Cartesian product of k
paths with ` vertices each. More than |V (G)|/d(G) + 1 ≥ `k/k` shortest paths are needed to cover G but
2 + dlog(k`)e queries suffice to identify all labels, as fixing one cut edge determines all others.

Our main idea to improve the bound and derive a better algorithm for active learning of geodesically
convex halfspaces is to deduce additional labels using convex hulls and extensions after each query.
Algorithm 1 realises this idea. It first queries the vertices of a hull set (line 1). If all labels in the hull
set are the same, we conclude that all vertices in the graph have the same label (line 2-3). Otherwise,
it performs binary search on a shortest path between two vertices with different labels to identify
a cut edge {a, b} (line 4-5). Finally, Algorithm 1 queries the remaining vertices. It initialises the
sets A and B with the convex hull of the rays a/b and b/a, respectively, corresponding to vertices
with already known labels (line 6). In each iteration of the main loop, the algorithm queries a vertex
v in the set Ŵ=ab = V (G) \ (σ(a/b) ∪ σ(b/a)), consisting of all vertices whose labels we cannot
directly deduce through convex hulls and extensions, and updates the sets A and B using the new
vertex (line 7-12). The number of queries spend in the first five lines are summarised in Lemma 3.
Lemma 3. Let G be a weighted graph with halfspace separable labels. Using h(G) + dlog d(G)e
queries, we can either find a cut edge or determine that all vertices of the graph have the same label.

Proof. The convex hull of any minimum hull set is the whole graph. If all vertices in a hull set have
the same label, then all vertices in the graph have this label. If not, we can take two vertices with
different labels and find a cut edge on a shortest path between them with dlog d(G)e queries.

Lemma 4 shows that the initialisation and updates of A and B in Algorithm 1 are indeed valid.
Lemma 4. Let G be a weighted graph with halfspace separable labels given by a halfspace C and
let A ⊆ C and B ⊆ V (G) \ C. It holds that σ(A/B) ⊆ C.

Proof sketch. A/B ⊆ C as A ∩ σ(B ∪ {x}) ⊆ C ∩ (V (G) \ C) = ∅ for all x ∈ V (G) \ C. This
implies σ(A/B) =

⋂
{C ′ | A/B ⊆ C ′, C ′ convex} ⊆ C by definition.
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Algorithm 1: Ray-based Active Halfspace Learning on Graphs
Input: graph G, oracle access to labels λ
Output: halfspaces corresponding to both classes

1 Compute a hull set H and query its vertices
2 if ∀h, h′ ∈ H : λ(h) = λ(h′) then
3 return (∅, V (G))

4 Choose h, h′ ∈ H such that λ(h) 6= λ(h′)
5 Perform binary search queries on any shortest h-h′-path to find a cut edge {a, b}
6 A := σ(a/b), B := σ(b/a)
7 while A ∪B 6= V (G) do
8 query any vertex v ∈ V (G) \ (A ∪B)
9 if λ(v) = λ(a) then

10 A := σ((A ∪ {v})/B), B := σ(B/(A ∪ {v}))
11 else
12 A := σ(A/(B ∪ {v})), B := σ((B ∪ {v})/A)

13 return (A,B)

We can bound the remaining number of vertices queried by Algorithm 1 using the following set

W ∗=ab = {v ∈ Ŵ=ab | @w ∈ Ŵ=ab \ {v} such that v ∈ (w/a) ∩ (w/b)}

as it is enough to know the labels of the vertices in W ∗=ab to deduce all labels of Ŵ=ab. Theorem 5
shows that Algorithm 1 is correct and summarises our main upper bound.
Theorem 5. Let G be a weighted graph. For the query complexity it holds that:

qc(G) ≤ h(G) + dlog d(G)e+ max
{a,b}∈E(G)

|W ∗=ab| .

Proof sketch. By Lemma 3, we can use h(G) + dlog d(G)e queries to find the first cut edge {a, b}.
Every time Algorithm 1 queries a vertex v ∈ Ŵ=ab \W ∗=ab there is a w ∈W ∗=ab by definition such
that v ∈ (w/a)∩ (w/b). It holds that w /∈ A∪B, as otherwise v ∈ (w/a)∩ (w/b) ⊆ A∪B, which
contradicts line 8 of Algorithm 1, v ∈ V (G) \ (A ∪ B). Thus, in each iteration at least one new
vertex from W ∗=ab will be added to A or B. This bounds the number of iterations by |W ∗=ab|.

Comparing our two upper bounds, we see that Theorem 5 is preferable to Proposition 1, as long as
|W ∗=ab| is small. To see this, note that the endpoints of paths in a minimum shortest path cover S∗
form a hull set, implying h(G) ≤ 2|S∗|. If |W ∗=ab| is small, the bound of Theorem 5 is additive in the
dominating terms h(G) + dlog d(G)e ≤ 2|S∗|+ dlog d(G)e, not multiplicative as in Proposition 1.

To state the bound for the unweighted case in more common parameters, we relate |W ∗=ab| to the
well-studied treewidth tw(G) [Bodlaender, 1996], which measures the ‘tree-likeness’ of a graph. It is
known, that the largest k ∈ N, such that the complete bipartite graph K2,k is a minor of a graph G, is
at most twice the treewidth [Bodlaender et al., 1997]: k ≤ 2 tw(G). This bounds the size |W ∗=ab| ≤
2 tw(G) for any edge {a, b}, as the vertices {a, b} ∪W ∗=ab form a minor K2,|W∗

=ab|. Consequently,
graphs with small treewidth like molecules [Horváth and Ramon, 2010] and infrastructure-based
networks [Maniu et al., 2019] have small W ∗=ab. Corollary 6 summarises this result.
Corollary 6. Let G be an unweighted graph. For the query complexity it holds that qc(G) ≤
h(G) + dlog d(G)e+ 2 tw(G).

3.2 Lower bounds under separation axioms

Having discussed our upper bounds on the query complexity, we now turn to a simple lower bound
based on the extreme vertices Ext(G) of the graph, recall each of them is a halfspace by definition.
Theorem 7. For any weighted graph G, it holds that qc(G) ≥ |Ext(G)|.

Considering a graph containing paths that all coincide only in the same two endpoints, we can show
that this bound is tight and that the gap between it and our upper bound can be arbitrarily large.
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Table 1: Tight bounds for common unweighted graph families.

graph family sep. axiom bound on qc(G) remark

trees S4 Θ(log d(G) + |Ext(G)|) Ext(G) are exactly the leaves
K2,3 minor-free S4 Θ(log d(G) + h(G)) including outerplanar graphs
partial cubes S3 Θ(log d(G) + h(G)) O(·) holds for all bipartite graphs
weakly median S4 Θ(log d(G) + h(G) + r(G)) O(·) holds for meshed graphs

Proposition 8. For any `, s, k, e ∈ N, there exists an unweighted graph G with d(G) ≥ `, minimum
shortest path cover S∗ of size at least s, h(G) ≥ k, |Ext(G)| = e, and qc(G) ≤ max{2, e}.

This shows that this lower bound is best possible in general, even if d(G), h(G), and S∗ are large.
One main insight of our work is that we achieve increasingly tighter lower bounds by structuring
the set of all graphs along separation axioms, which characterise the ability of a convexity space to
separate sets via halfspaces. This follows a related notion in topological spaces.

Definition 9 (Separation axioms [van de Vel, 1993]). A convexity space (X, C) is:

S1 if and only if each singleton x ∈ X is convex.

S2 if and only if each pair of distinct elements x, y ∈ X is halfspace separable.

S3 if and only if each convex set C and elements x ∈ X \ C are halfspace separable.

S4 if and only if any two disjoint convex sets are halfspace separable.

If S1 holds, which is the case for the geodesic graph convexity, the remaining axioms are increasingly
stronger, that is, S2 ⇐ S3 ⇐ S4. We call a graph Si, for i = 1, . . . , 4, if the induced geodesic
convexity space satisfies the respective separation axiom. While real vector spaces such as the
Euclidean space satisfy all four separation axioms [Kakutani, 1937], there are graphs that are Si but
not Si+1 for i = 1, 2, 3 [Bandelt, 1989], see supplementary material for some examples. Structuring
all graphs along these separation axioms gives us increasingly stronger lower bounds.

Theorem 10. For every weighted graph G the following holds for the query complexity qc(G):

• if G is S2, then qc(G) ≥ max{log d(G), |Ext(G)|},

• if G is S3, then qc(G) ≥ max{log d(G), h(G)}, and

• if G is S4, then qc(G) ≥ max{log d(G), h(G), r(G)− 1}.

Each bound is tight in the respective family and stronger axioms lead to tighter bounds.

Proof sketch. In S2 graphs, any edge in a fixed but arbitrary shortest path with size of the diameter
can be bisected with a halfspace. Thus, log d(G) queries are required to find the chosen edge. In S3

graphs, any point h ∈ H∗ can be separated from the remainder of a minimum hull set H∗, thus the
whole hull set H∗ must be queried in the worst-case. In S4 graphs, any set that has no Radon partition
can be labelled arbitrarily. To see that the bounds are increasingly tighter, notice that all extreme
vertices are by definition contained in any hull set and hence |Ext(G)| ≤ h(G). As there are graphs
with h(G) = k and r(G) = t for any k, t ∈ N with k, t ≥ 4, both parameter can be dominating.

Theorems 5 and 10 imply tight bounds (Table 1) for graph families in metric graph theory [Bandelt
and Chepoi, 2008], convexity theory [Chepoi, 1994], and machine learning [Seiffarth et al., 2019].

3.3 Computational aspects

Above, we derived lower and upper bounds on the query complexity of learning halfspaces on graphs
G = (V,E). We now discuss computational aspects of our algorithms and bounds.
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Shortest-path-cover-based bound To achieve the bound of Proposition 1, we need to compute
a minimum shortest path cover of the given graph, which is an open problem [Manuel, 2021]. We
show that greedily covering the graph with longest shortest paths gives a logarithmic approximation:
Theorem 11. For a given weighted graph G, we can compute an (1 + ln(d(G) + 1))-approximation
for the minimum shortest path cover S∗ in time O(|V |4).

Thus, using this approximation we achieve the query complexity bound qc(G) ≤ |S∗|(2 +
dlog d(G)e)2 in polynomial time. To evaluate this bound, we also need to compute the diame-
ter d(G), which can be achieved by a generalised Dijkstra algorithm, see supplementary material.

Hull-set-based bound The main computational bottleneck of Algorithm 1 is the computation
of a minimum hull set. Computing the minimum hull set size h(G) is APX-hard [Coelho et al.,
2015]. For many graph families however, such as distance-hereditary [Kanté and Nourine, 2016],
interval, and cographs [Dourado et al., 2009] the problem is solvable in polynomial time. Moreover,
the problem can be solved in polynomial time if any of the following parameters is bounded by
a constant: the treewidth [Kanté et al., 2019], the vertex cover size, the neighbourhood diversity
[Araujo et al., 2013b], and the number of induced paths in bounded vertex subsets [Araujo et al.,
2013a]. The remaining runtime of Algorithm 1 is dominated by the computation of convex hulls
and extensions. A single convex hull computations can be performed in time O(|V |3) by first
computing the full distance matrix and then evaluating the triangle inequality for each triplet of
vertices. Extensions can be computed through |V | convex hull evaluations. Algorithm 1 achieves,
thus, the bound of Theorem 5 in polynomial time, as long as we can efficiently compute a minimum
hull set. On unweighted graphs we additionally achieve the bound in Corollary 6 efficiently in this
case. Alternatively, we can compute any, possibly non-optimal, hull set H in polynomial time to
achieve the bound |H|+ dlog d(G)e+ max{a,b}∈E(G) |W ∗=ab|.

Lower bounds To evaluate our lower bounds in Theorem 10, we also need to compute |Ext(G)| and
r(G). Computing the set of extreme vertices Ext(G) is possible in time O(|V ||E|) by evaluating the
neighbourhood of each vertex. Computing the Radon number of a graph is even hard to approximate
within any factor sublinear in |V | [Coelho et al., 2015]. However, Duchet and Meyniel [1983]
bounded the Radon number in terms of the size of the largest clique minor, that is, the Hadwiger
number, which in turn can be upper bounded by the treewidth.
Proposition 12. For any weighted graph G, it holds that r(G) ≤ 2 tw(G) + 2.

Thus r(G) is computable in polynomial time for bounded treewidth graphs. To decide which lower
bound applies for a given graph, we need to check if the graph is Si, for i = 1, . . . , 4. For the cases
i = 1, 2, 3, it is unclear whether this is possible in polynomial time. Only for S4 an algorithm with
runtime O(|V (G)|7) is known [Seiffarth et al., 2019]. Just deciding whether a graph has a proper
halfspace, which is neither empty nor the full graph, is NP-hard [Artigas et al., 2011]. Both problems
are efficiently decidable on planar and bipartite graphs [Glantz and Meyerhenke, 2017].

4 Discussion

In this section, we discuss our assumptions as well as results related to our learning problem.

Convexity in real-world datasets In some applications convexity-based assumptions are already
implicitly or explicitly used. For example, it is well-known that shortest paths in gene similarity
networks largely preserve functional relationships [Zhou et al., 2002]. Similarly on protein-protein-
interaction networks, shortest paths between cancer-related genes are used to identify a candidate
set of novel genes, which are likely to be cancer-related, as well [Li et al., 2012, 2013]. Aside from
biological networks, Marc and Šubelj [2018] and Šubelj et al. [2019] recently found that connected
subgraphs of certain real-world graphs like collaboration networks are often convex. To provide
further evidence for convexity in real-world graphs, we performed preliminary experiments on
different networks with ground truth communities. Table 2 shows the number of convex communities
in six datasets from SNAP [Leskovec and Krevl, 2014]. We found that on the DBLP scientific
collaboration dataset more than 85% of the 5000 communities are convex, supporting the results of
Šubelj et al. [2019]. On the Amazon product network we have similar results with roughly 80%. On
the Youtube network we found that roughly 60% of the communities are convex. On the remaining
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Table 2: Number of convex communities.

dataset convex communities dataset convex communities

DBLP 4308/5000 Amazon 3999/5000
Youtube 2990/5000 LiveJournal 1649/5000
Orkut 363/5000 Eu-core 7/42

three datasets, however, less than a third of the communities are convex. Clearly, convexity on graphs
is application dependent and further study with real-world networks is necessary.

Relationships to Euclidean convexity Learning halfspaces in Euclidean space is one of the oldest
learning problems initiating algorithms like the perceptron [Rosenblatt, 1958, Novikoff, 1962] and
support vector machines [Boser et al., 1992, Cortes and Vapnik, 1995], and is still an active research
area [Daniely, 2016, Diakonikolas et al., 2019, Hopkins et al., 2020]. A simple lower bound for
the number of queries required to learn the labels of a finite set X ⊆ Rm labelled accordingly to a
halfspace is Ω(m log |X|) [Hopkins et al., 2020]. However, for worst-case instances such as points on
the circle, already Ω(|X|) queries are required to identify all labels [Dasgupta, 2005], corresponding
to our hull set lower bound. The query complexity can be improved through membership query
synthesis [Angluin, 1988], which allows the learner to query additionally any point in Rm \X . Using
them, Hopkins et al. [2020] showed that in expectation O(m log2(m) log |X|) + m1+o(1) queries
are enough to infer all labels, essentially matching the lower bound. There is no direct equivalent
of membership queries in the transductive graph setting. It is in general not possible to embed a
graph into Rm or the other way around while preserving halfspaces. An example can be seen in
Figure 1c and further discussion can be found in the supplementary material. Together with the fact
that Euclidean convexity spaces are always S4 while graphs do not have to be, there is no immediate
way to transform general bounds on the query complexity from one setting to the other.

Previous cut-based bounds Most previous bounds for active learning on graphs are linear in the
number of cut edges C or cut vertices ∂C, which are the vertices incident to the cut edges. Therefore,
these bounds can become vacuous when the cut is large, independent of halfspace separable labels.
We will illustrate the bounds on the unweighted 2×k grid, that is, the Cartesian product of a path with
k vertices and a path with 2 vertices. On the one hand, our upper bound of Theorem 5 yields a query
complexity of 2 + log(k + 1). On the other hand, the bounds of Afshani et al. [2007] and Dasarathy
et al. [2015] result in at least |∂C| queries even under additional balancedness assumptions on the
labels. Thus, the bounds are at least |V | for the halfspace corresponding to the 1× k grid. The bound
of Guillory and Bilmes [2009] is for the non-iterative active setting, where a set L ⊆ V of vertices
is queried all at once. Let δ(T ) denote the set of edgs with exactly one endpoint in T ⊆ V . They
bound the error by |C|/Ψ(L) using the min-cut-based prediction strategy [Blum and Chawla, 2001],
where Ψ(L) = min∅6=T⊆(V \L) |δ(T )|/|T |. As long as |L| ≤ |V |/8, we will have Ψ(L) ≤ 4/8 and
for the previously mentioned halfspace |C| = k. Thus, the error bound will be at least 2k = |V |.
This shows that the three discussed previous bounds can be vacuous and exponentially worse than
our achieved bound. All three are particularly sensible to large cut sizes. The sole cut is thus not
sufficient to measure the complexity inherent in the labelling.

Margin-based bounds Bressan et al. [2021] study the query complexity of identifying convex
clusters in the ε-nearest-neighbour of a semi-metric space (X, d). Even though they rely on additional
assumptions, like a large margin, their upper bound is very similar to our main result. However,
they only provide lower bounds on the query complexity on specific worst-case instances, while
our lower bounds hold in general under the different separation axioms. They use same-cluster
queries, which are binary queries on a pair of vertices to test whether they belong to the same cluster.
Same-cluster queries and regular vertex queries are equivalent in terms of the query complexity up
to a multiplicative factor given by the number of classes. To derive a bound they use restrictions
beyond our halfspace assumption. In particular, Bressan et al. [2021] assume that the weight of any
cut edge is > βε for a β ∈ (0, 1] and use an interval Iγ(x, y) with margin γ ∈ (0, 1], which consists
of all vertices that lie on a path at most (1 + γ) as long as the shortest x-y-path, to define convex
sets. The regular geodesic convexity corresponds to γ = 0. They also require a constant number of
so-called seed queries that take a class label and a set U ⊆ X as input and return a vertex from U
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with the specified label or certify that U does not contain such a vertex. Under these assumptions
they derive an O

(
log |X|+ (6/βγ)

dens(X)
)

upper bound on the query complexity, where dens(X)

is the density dimension of the space [Gottlieb and Krauthgamer, 2013]. Even though Bressan et al.
[2021] consider a more restricted hypothesis space, there exist graph families where our bound in
Theorem 5 is exponentially better. For example, on the 2× k grid, the halfspace corresponding to the
1× k grid enforces a margin of γ < 2/k. This results in a bound of at least log(2k) + (3k)dens(X)

with dens(X) ≥ 1 while our bound (Theorem 5) predicts that 2 + log(k + 1) queries are enough.
Even with a large γ our bound remains better on this example.

Alternatives to hull sets As computing minimum hull sets is APX-hard in general [Coelho et al.,
2015], we discuss two alternatives to perform the first step in Algorithm 1, that is, finding two
vertices with different labels. For that, Afshani et al. [2007] and Dasarathy et al. [2015] assume
that the labels are balanced, that is, the relative size β of the smallest labelled class is close to 1/2.
This assumption is in their case required to find two vertices with different labels query-efficiently
with high probability 1 − α, for α ∈ (0, 1). We do not require this assumption as we can use any
hull set to achieve the same deterministically. However, if β is known, we can state an alternative
probabilistic upper bound. Instead of spending h(G) queries we can sample a set L of size

⌈
log(βα)
log(1−β)

⌉
uniformly at random from V (G) to find two differently labelled vertices with probability 1 − α
[Dasarathy et al., 2015]. This means that with probability 1− α the query complexity is bounded
by qc(G) ≤

⌈
log(βα)
log(1−β)

⌉
+ dlog d(G)e+ max{a,b}∈E(G) |W ∗=ab|. The other alternative is using the

mentioned seed queries of Bressan et al. [2021]. Spending only two seed queries to find two vertices
with different labels and dlog d(G)e+ max{a,b}∈E(G) |W ∗=ab| label queries using Algorithm 1 from
line 5 on is enough. We note that both bounds can be achieved algorithmically in polynomial time.

Non-active learning of convex sets and halfspaces Non-active learning of halfspaces on graphs
was studied by Seiffarth et al. [2019, 2020] and de Araújo et al. [2019]. Seiffarth et al. [2019] rely
on the separation axiom S4 to bound the number of convex hull evaluations needed to construct a
halfspace. Anthony and Ratsaby [2018] study the problem of learning large-margin halfspaces on a
set equipped with an arbitrary dissimilarity measure d, which generalises shortest path distances of
graphs. However, their notion of halfspace, {x | d(x, p+) ≤ d(x, p−)} based on the dissimilarity to
two prototypes p+, p− is in general not convex. Stadtländer et al. [2021] investigate the problem of
learning weakly convex sets in a metric space (X, d). Here, weakly convex sets with parameter θ ≥ 0
are given by the interval mapping Iθ(a, b) = {x ∈ X | d(a, x)+d(x, b) = d(a, b) ≤ θ}∪{a, b}. The
regular geodesic convexity corresponds to θ ≥ maxa,b∈X d(a, b). Gärtner and Garriga [2007] and
Missura and Gärtner [2011] studied monotone classes in directed acyclic graphs, which corresponds
to an interval mapping containing the vertices on all directed paths instead of just shortest paths.
Moran and Yehudayoff [2019] established that the VC dimension of halfspaces of any convexity space
is smaller than the Radon number of the space. Building on that, we can show that VC dimension is
exactly determined by the Radon number in S4 convexity spaces. This corresponds to the classical
result that in Rm the VC dimension of halfspaces is m+ 1 and the Radon number is m+ 2.
Proposition 13. The VC dimension of the hypothesis class of halfspaces of an S4 convexity space is
exactly one less than the Radon number of the space.

For S4 graphs, r(G) determines the VC dimension and gives a lower bound on the query complexity
(Theorem 10), establishing the Radon number as a central parameter for learning geodesically convex
halfspaces. Proposition 12 together with the above bound of Moran and Yehudayoff [2019] gives:
Proposition 14. The VC dimension of halfspaces in a weighted graph G is at most 2 tw(G) + 1.

5 Experiments

Having discussed our bounds on the query complexity and the conceptual benefits of the halfspace
assumption in terms of theoretical upper bounds, we want to see whether we also get empirical
benefits on data, as well. We propose two practical versions of Algorithm 1: greedy and selective
sampling. The greedy strategy tries to maximise the number of known vertex labels with each
query. For that, it queries the vertex v that would maximise the minimum number of known labels
after the update of A and B. More precisely, after the update with a vertex v we will know the labels
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(a) Two moons NN-graph. (b) Iris dataset NN-graph. (c) Not separable in R2.

Figure 1: Halfspace separations on different graphs.

of the set σ((A∪ {v})/B) ∪ σ(B/(A∪ {v})) or the set σ(A/(B ∪ {v})) ∪ σ((B ∪ {v})/A). The
greedy strategy thus selects the vertex v that maximises the size of the smaller one of these two
sets. As performing the described greedy maximisation for each query is rather computationally
expensive, we propose a simpler strategy based on selective sampling [Cohn et al., 1994] that
picks a vertex uniformly at random from V (G) \ (A ∪B) in line 8 of Algorithm 1.

To find the first cut edge, Algorithm 1 requires a hull set in the first step. As discussed, computing
a minimum hull set is in general not tractable. Therefore, we propose to use the selection strategy
(greedy or selective sampling) also to iteratively construct a hull set until two vertices with
different labels are found. For that we start with A = ∅ and query a vertex v from V (G) \ A:
either uniformly at random (selective sampling) or by maximising |σ(A ∪ {v})| (greedy).
Afterwards we update A := σ(A ∪ {v}) and repeat until v has a different label than the previous
vertices. Implicitly this process will construct a (typically non-minimum) hull set H . That way the
query complexity bound in Theorem 5 still holds, as it is independent of the specific selection strategy
used; only the h(G) is replaced with the size of the heuristically computed H . We compare these two
strategies with the state-of-the-art graph-based active learning algorithm S2 [Dasarathy et al., 2015],
the classical active label propagation of Zhu et al. [2003b], and baseline non-active random sampling.

As datasets, we use ε-nearest-neighbour graphs of two moons1 and Iris2, see Figures 1a and 1b. The
parameter ε was selected such that the graph is connected and the labels are halfspace separable.
Additionally, we use a 20 × 20 grid and a 210 hypercube labelled with a random halfspace. We
implemented all approaches in python3 and ran the experiments on an Ubuntu 21.04 laptop with
32GB main memory. More details and in-depth experiments are in the supplementary material.

5.1 Query evaluation

Dasarathy et al. [2015] proposed to count the number of found cut vertices after each query as a
measure to compare querying algorithms without relying on any classification method. A query-
efficient graph-based active learner should detect these as fast as possible. The results for 20 iterative
queries in the upper half of Figure 2 show that our approaches identify the cut vertices more efficiently
than S2, active label propagation, and random sampling by deducing many labels after each query.
Our greedy approach requires at most 6 queries to deduce all vertex labels on all four datasets
emphasising the strength of convexity-based assumptions. The selective sampling approach is
only slightly worse using 2-8 queries more. S2, active label propagation, and random sampling can
find at most one cut vertex per query as they do not rely on these assumptions. As can be seen on
the grid dataset, S2 performs better than active label propagation and random sampling finding a cut
vertex on any new query, which is not by coincidence as it was specifically designed for this task.

5.2 Predictive performance

We also evaluated the predictive performance of the chosen queries. Our two approaches predict
the labels of the computed hulls and default to the majority of known labels when they do not know
vertex’s label. The other three approaches perform label propagation [Zhu et al., 2003a] with the
default Gaussian similarity and length-scale σ = 1 for prediction. We check the accuracy on the
whole graph after each query of the 20 queries. In the lower half of Figure 2, we can confirm that

1ε = 0.14, make_moons(noise=0.1, random_state=0) in scikit-learn [Pedregosa et al., 2011]
2ε = 0.3, first class vs the other two [Fisher, 1936]
3https://github.com/maxthiessen/active_graph_halfspaces
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Figure 2: Found cut vertices and accuracy plotted against number of queries.

greedy identifies the vertex labels of the whole graph on all datasets within 6 queries. The predictive
behaviour of the three baselines is worse, even unstable. The main reason is that label propagation
favours small cuts (weighted by the similarity), and thus fails to predict halfspaces, especially on the
grid and hypercube. S2 mitigates this problems to some extent, even though it predicts the labels also
with label propagation, by removing any found cut edge from the graph. Still, it has difficulties to
find the correct halfspace and then stick to these prediction, as can be seen, for example, on the grid.

6 Conclusion and Future Work

In this paper, we introduced active learning of halfspaces on graphs and derived tight bounds on the
query complexity for this problem using concepts from convexity theory. On the one hand, we derived
two general upper bounds: one based on shortest path covers and the other based on the diameter,
hull sets, and the quantity max{a,b}∈E(G) |W ∗=ab|. We showed that the latter term is at most twice the
treewidth of the graph in the unweighted case. On the other hand, we derived a general lower bound
based on extreme vertices and increasingly tighter lower bounds for graph families induced by the
separation axioms. For the strongest separation axiom S4, we achieved nearly tight lower and upper
bounds with only the gap between the Radon number r(G) and max{a,b}∈E(G) |W ∗=ab| remaining.

We compared our bounds to previous cut-based bounds and showed that the halfspace assumption
makes learning with large cuts possible while previous bounds are vacuous in this case. We dis-
cussed that there are inherent differences between Euclidean and graph convexity spaces such that
the respective query complexity bounds do not carry over to the other setting. With preliminary
experiments we confirmed that communities in real-world networks such as collaboration and product
networks are often convex. Based on our algorithm, we proposed two practical variants greedy and
selective-sampling. We empirically compared them with active label propagation [Zhu et al.,
2003b] and S2 [Dasarathy et al., 2015] on datasets with halfspace separable classes and found that our
algorithms require considerably less queries to correctly identify the halfspaces. The main bottleneck
of our variants is the cubic runtime to compute convex hulls. To scale our methods to large datasets
we will investigate efficient approximations of convex hulls [Blum et al., 2019] and distances using
the Nyström [Williams and Seeger, 2001] or other landmark-based methods [Potamias et al., 2009].

To make our results more broadly applicable, we propose to relax our notion of halfspaces and use the
weak convexity of Stadtländer et al. [2021]. They define weak convexity with respect to a parameter
θ ≥ 0 and show that weakly convex sets can be decomposed into weakly convex blocks that are
at least a distance of θ apart. The number of these blocks may serve as a parameter to adapt our
bounds to weakly convex classes. Another promising future research direction is to develop querying
and prediction strategies for general interval convexity spaces by combining our ideas with those of
Seiffarth et al. [2019], Stadtländer et al. [2021], and Bressan et al. [2021]. A promising first step is to
consider geometric interval spaces using base-point orders [van de Vel, 1993]. Finally, we propose to
also investigate regret bounds for online learning of convex sets on graphs.

10



Broader impact statement As this is an early theoretical and algorithmic work, we do not see
any specific immediate societal impact, neither positive nor negative. In the long run the developed
theoretical results might help to reduce the required number of labelled data points in graph-based
learning settings and help with data annotation in general.
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