
CabiNet: Scaling Neural Collision Detection for Object
Rearrangement with Procedural Scene Generation

Adithyavairavan Murali
NVIDIA

admurali@nvidia.com

Arsalan Mousavian
NVIDIA

amousavian@nvidia.com

Clemens Eppner
NVIDIA

ceppner@nvidia.com

Adam Fishman∗

NVIDIA
afishman@nvidia.com

Dieter Fox∗

NVIDIA
dieterf@nvidia.com

Abstract

We address the important problem of generalizing robotic rearrangement to clutter
without any explicit object models. We first generate over 650K cluttered scenes—
orders of magnitude more than prior work—in diverse everyday environments,
such as cabinets and shelves. We render synthetic partial point clouds from this
data and use it to train our CabiNet model architecture. CabiNet is a collision
model that accepts object and scene point clouds, captured from a single-view
depth observation, and predicts collisions for SE(3) object poses in the scene. Our
representation has a fast inference speed of 7µs/query with nearly 20% higher
performance than baseline approaches in challenging environments. We use this
collision model in conjunction with a Model Predictive Path Integral (MPPI)
planner to generate collision-free trajectories for picking and placing in clutter.
CabiNet also predicts waypoints, computed from the scene’s signed distance field
(SDF), that allows the robot to navigate tight spaces during rearrangement. This
improves rearrangement performance by nearly 35% compared to baselines. We
systematically evaluate our approach, procedurally generate simulated experiments,
and demonstrate that our approach directly transfers to the real world, despite
training exclusively in simulation. Robot experiments in completely unknown
scenes and objects are shown in the supplementary video.

1 Introduction

Object rearrangement is an important challenge in robotic manipulation and decision making [2, 21].
It requires the skills of picking, placing and generating complex collision-free motions in a cluttered
environment. The Task-And-Motion-Planning (TAMP) [22, 49] and Embodied AI literature [13,
36, 52, 57] have reported impressive results of rearrangement in complex human environments like
kitchens. But, they are largely limited to simulation [13, 21, 52] or make the strong assumption of state
estimation of the environment [55] and objects [22] in the real world. Recent neural rearrangement
methods [25, 39, 44, 47] generalize from sensed observations, without requiring state information,
and have been demonstrated in the real world. Yet, they are limited to a specific type of scene that
are not densely cluttered. Overall, there is no rearrangement system that generalizes to different
challenging environments and works out of the box, or with minimal engineering effort, for each new
scene type [27]. The cost of system integration, a major task of which is environment modelling,
comes up to 3X of the price of the robot itself [3]. In this work, we aim to learn a single representation,
trained over 650K scenes in simulation, that enables rearrangement in diverse unknown environments.

∗Author is also affiliated with the University of Washington

Foundation Models for Decision Making Workshop at Neural Information Processing Systems, 2022.

https://youtu.be/HekPtYJfiNU


One of the primary challenges in achieving generalization in object rearrangement is the limited
availability of rearrangement datasets. Large data has been the driving force behind the success of
visual learning [12] and large language models [48]. There have been some recent attempts at large-
scale learning in simulation, such as the Habitat [52] and ManipulaTHOR [13] efforts. However,
these actions are abstract and are not realistic. For example, objects simply stick to the gripper
based on proximity, thereby sidestepping the complex dynamics of pick-and-place that are explicitly
addressed in prior work in the robotic grasping literature [38, 43, 44, 51]. Additionally, the policies
learned in these simulated environments are unproven in the real world. To facilitate performance in a
physical system, our approach is conditioned on 3D point clouds instead of the RGBD representation
commonly used in [13, 52]. Prior work [9, 44] has demonstrated that point clouds are an effective
representation to transfer from simulation-based training to real world observations.

Figure 1: CabiNet is able to perform complex rear-
rangement tasks in novel, cluttered scenes from
just partial point cloud observations without object
or environment models.

In robotic rearrangement, a fundamental compo-
nent for planning is collision detection with an
unknown environment. Classical TAMP meth-
ods typically rely on the complete geometric
model of the scene for planning [21, 46] in the
form of a triangular mesh or Signed Distance
Field (SDF). Visual reconstruction systems such
as SLAM [33], KinectFusion [45] and more
recently NERF [41] are needed to generate a
geometric model of the scene. Each system has
its drawbacks, which may include a long start-up
time [41, 45], multi-view requirements [33, 41],
costly updates in dynamic scenes [33, 41, 45],
or poor generalization [41]. Instead of explic-
itly reconstructing the scene for a traditional
collision checker, recent neural methods speed
up collision detection with learning [10, 32]
and generalize to partial real-world observations
[9, 44]. [44] proposed the CollisionNet model
to predict collisions from scene point clouds for
6-DOF grasping. [9] extended this to an archi-
tecture that allowed fast collision checking from
point clouds, enabling fast sampling-based plac-
ing in cluttered tabletop scenes. In this work, we
extend this 3D implicit representation to scale
to multiple cluttered environments, which we call CabiNet and learn a SDF-based waypoint sampler
from this 3D representation. We then apply a Model Predictive Path Integral (MPPI) [19] algorithm
on the GPU to use our CabiNet model to generate pick-and-place motion trajectories in clutter. In
summary, our contributions are as follows:

• Scaling up neural collision checking by 30X compared to prior work [9], training over
nearly 60 billion collision queries. We also learn from over 650K cluttered scenes generated
procedurally, which is six orders of magnitude more scene data than prior work on learning
rearrangement in simulation [13]. We train a implicit 3D scene encoder CabiNet from this
dataset.

• We demonstrate that CabiNet achieves fast collision detection inference of around 7µs/query
and is 19.7% mAP higher than baselines when tested on 2.5 million queries in five diverse
sets of environments. Using the same CabiNet encoding, we learn a scene SDF-based
waypoint sampler and show that it is crucial for transitioning between pick and place actions.

• We demonstrate sim2real transfer for our model on completely unknown scenes and objects
in the real world.

2 Related Work

Collision Detection from Point Clouds: There are a variety of options to check for collision
with known object meshes or fully visible point clouds. One can use computational geometry
libraries [46] if the object mesh is known. Alternatively, one can voxelize or spherize [29] the point

2



clouds and formulate the collision checking problem as evaluating whether any of the elements
is in collision with robot links. However, voxel-based approaches suffer from occlusion which is
mitigated through use of multiple views. This unfortunately constraints the robot workspace or
requires mapping of the the environments which needs to be dynamically updated as objects are
moving around. SceneCollisionNet [9] frames the collision checking problem as a hybrid of classical
voxel based method and data driven methods. It encodes the scene to coarse voxels where each
voxel is represented by a deep embeddding vector. Each collision query is defined as a pair of query
object and scene point clouds. Collision checking is done with a binary classifier which takes as
input the scene voxel embedding, object embedding, and the relative SE(3) transformation to that
voxel. SceneCollisionNet was trained on only the table top scenes. In this paper, we build on top
of SceneCollisionNet. By scaling up the training data to go beyond table top settings, we observe a
boost in performance and generalization across variety of different scenes.

Neural Rearrangement Planning: Traditionally, solutions to object rearrangement have been domi-
nated by model-based methods, such as TAMP [21] which use an explicit 3D world representation
estimated from sensor observations. More recently, there has been an increase in learning-based
vision-centric rearrangement approaches [2], although the majority assumes simplified action spaces
that abstract away the actual grasping and placing motion and often focus on navigation. In [35]
a learned visual state estimator is combined with a Monte-Carlo tree search planner, to efficiently
solve planar tabletop rearrangements. When goals are provided as target images, transporter net-
works [60], their equivariant version [28] or goal-conditioned transporter networks [56] can be used
for pick-and-place. The problem of matching object instances between goal and initial image can
also be simplified with vision-language models [24]. Closest to our approach for rearrangement are
NeRP [47] and IFOR [25].

Figure 2: CabiNet is trained with over 650K syn-
thetic scenes. We show that CabiNet transfers well
to real-world settings, where we evaluated 24 dif-
ferent rearrangement problems on the real robot,
each from a unique, cluttered scene.

Large-scale Procedural Scene Generation:
Probabilistic models for indoor scene genera-
tion have been originally developed in computer
graphics [15, 40, 58]. Apart from appealing
visually, simulating scenes physically requires
more care when arranging objects. As a result
most data available for learning robot manipu-
lation in simulation is limited to a fixed number
of artist designed scenes: iGibson [36], Meta-
World [59], RLBench [30], Sapien [57], Habi-
tat [52], or AI2 ManipulaTHOR [13]. Those
scenes mostly consist of assets and arrange-
ments from datasets such as PartNet [42], Repli-
caCAD [50], and 3D-Front [17]. More recently,
ProcTHOR [11] has shown to procedurally gen-
erate large amounts of entire apartment layouts
with room-specific object arrangements. Nev-
ertheless, our use case focuses on smaller-scale
clutter for which ProcTHOR’s scenes are not
dense enough. We will present our procedural
scene generation pipeline next.

3 Procedural Data Generation

Synthetic Scene Generation: We procedurally generate synthetic data in simulation. To generate
our cluttered scenes, we first assemble a set of environment assets E , object assets O and fixed
robot manipulator R (Franka Panda in our case). We have a probabilistic grammar [31] P which
dictates how the assets can be organized into random scene graphs S ∼ P (E ,O,R). This grammar
is composed of the following key components: 1) sampling potential supports surfaces γ in an
environment asset to place objects 2) rejection sampling to sequentially place objects on these
surfaces without colliding with the scene and 3) fixing the robot base in a region where there is
sufficient intersection over union (IoU > 0.8) between the workspace of the robot (approximated by a
cuboid volume) and γ. Once the scene S is generated, collision queries are sampled with free-floating
object meshes (computed in a straight-line trajectory) and the scene. The synthetic point clouds X

3



Figure 3: An example of a procedurally generated CabiNet rearrangement scene. The target object
(here in purple) is chosen if it has a selection of valid collision-free grasp poses. The green region
represents the placement shelf, which is chosen if a) it is different from the shelf the object originates
from and b) has a valid placement pose for the target object.

are rendered online during training. The code for the scene generation will be publicly released upon
publication.

Dataset: Our dataset of object assets for training comes from ACRONYM [14], that contains wide
range of object geometries from 262 categories as well as high-quality SE(3) grasps which we
use for picking objects. We split the dataset for training and testing. Fig 2 depicts examples of
our environment assets, which we chose from common categories such as shelves, cubby, cabinet,
drawers and table. All the assets are procedurally generated with the exception of shelves. For
shelves, we aggregate the shelf categories from ShapeNetCore[5] and filter assets which cannot be
made watertight or if proper support surfaces cannot be extracted. Nonetheless, the object placements
on all the environments, including the shelves, are procedurally generated. We include more examples
of scenes in the appendix. For testing, we only consider assets from the shelf environment dataset
and the objects are from a novel dataset [43] unseen during training.

Rearrangement Problem Generation: A valid rearrangment problem needs a scene, a target object
that the robot needs to grasp and the placement shelf that the robot needs to place the object. Given
a scene, a target object is sampled if there exists a set of ground truth grasps associated with that
object where they do not collide with the environment and have valid collision free inverse kinematic
configuration. Once the target object is sampled, we check if a collision free placement pose for the
target object exists within the placement shelf. To make sure that our rearrangement problems are
challenging, the placement shelf is going to be different from the shelf that has the pick object. A
problem is chosen if it passes both stages of sampling target object and also having a valid placement
location. Overall, this process has a success rate of 20.8% in finding successful problems. An
example of rearrangement problem is shown in Fig 3.

4 Neural Rearrangement Planning

Our approach and model architecture is summarized in Fig 4. We first learn a implicit 3D encoding
of the scene point cloud. We use the encoded scene feature along with learned object features for
fast point-cloud based collision detection with CabiNet. The same scene feature is then used for
predicting waypoints for the rearrangement task with a simple feedforward network. Both these
models are then used to generate robot trajectories for object rearrangement with a Model Predictive
Path Integral (MPPI) policy [19].

Collision Prediction: This is a learned collision model that accepts as input the scene point cloud
XS and the object point cloud XO. The point cloud is encoded with voxelization and 3D convolution
layers ΨS = Enc(XS). This is followed by a MLP binary classifier c = gθ(ΨS ,ΨO, TO→S) that

4



Figure 4: Our CabiNet architecture first encodes the scene point cloud with voxelization and 3D
convolutions, shown in the top. The robot is only used for visualization and the robot point cloud
is removed from the scene in practice. The scene features are then used with the object features
to predict scene-object collision queries. We also predict waypoints (points colored in blue) for
rearrangement, conditioned on latent vector z and the current gripper position (shown in green).

predicts if the object collide with the scene, where TO→S is the relative transformation between the
object and the scene and ΨO are the object features encoded with PointNet++ [6] layers akin to [9].
We adopt the model architecture of prior work [9] but it was only trained on table top scenes which
results in poor generalization to other type of scenes such as shelves. We showed that by scaling up
the training data to more diverse set of environments the model generalizes to different type of scenes.
CabiNet is trained with binary cross entropy loss and with SGD with constant learning rate. Overall,
we train CabiNet for two weeks, considering over 650K scenes and for 60 billion query pairs. We
also modified the architecture of [9] by increasing the voxel sizes.

Waypoint Prediction: Object rearrangement in more constrained environments such as shelves
imposes new challenges. Some of the approaches that work quite reliably in table top settings fail
in navigating the tight spaces between shelves. One such approach is the work of [9] that finds the
collision free path by rolling out multiple trajectories in configuration space (C-space) between the
current configuration of the robot and the closest goal G in the C-space. These rollouts are sampled
around a straight line that connects the current robot configuration to G. Given the nominal line
between the robot configuration and G, different lines are sampled where the slope of the lines are
gaussian distribution centered at the slope of nominal trajectory with a predefined variance. Each
rollout is trimmed at the point of collision using SceneCollisionNet and ranked based on the distance
of the rollout’s final point to G. The success of this approach hinges on the quality of the sampled
trajectory. The simple sampling explained above, works quite well for table top scenes where there is
more free space. However, it fails to sample promising trajectories for shelves and more constrained
environments, such as when the robot needs to move from one compartment of the shelf to another.
The majority of the sampled trajectories around the nominal trajectory would go through the divider
between shelves.

To address this shortcoming, we propose to use CabiNet to sample waypoints with a larger signed
distance value. Given the current end-effector position of the robot and the scene point cloud, it
samples goals that gets the robot out of tight spaces. More formally, these waypoints w ∈ R3 are
defined as to be in the set {w|τmin ≤ SDF (S,w) ≤ τmax ∩ ∥w − pgripper∥ ≤ D}, where S is
the scene mesh, pgripper is the end-effector position. The CabiNet waypoint sampler is modelled
as a conditional generator ŵ = fθ(ΨS , pgripper, z) as in Generative Adversarial Networks [23].
Instead of using adversarial training, we train the sampler with Implicit Maximum Likelihood
Estimation (IMLE) [37] which attempts to make each generated sample similar to a ground truth
sample. We empirically found that making the loss bidirectional improved the generated samples

5



- enforcing that ground truth samples are also similar to the set of nearest predicted samples. Let
z1, . . . , zm ∼ N (0, I) denote randomly sampled latent input noise vectors and wi the ground truth
waypoints. The IMLE loss is as follows:

LIMLE =
1

n

n∑
i=1

min
j

|ŵj − wi|+
1

m

m∑
j=1

min
i

|ŵj − wi| (1)

In our experiment, we let τmin = 0.40, τmax = 0.45 , D = 0.40 and both m and n are 70. We let z
have two dimensions and train with SGD with a constant learning rate.

Object Rearrangement: We use contact graspnet [51] to sample 6-DOF grasps for the picking
action. For placing objects, we first sample potential object positions based on the scene point cloud
and the support surface. The placement orientation is set to the current object pose while it is being
grasped. The poses are filtered by CabiNet for collisions with the environment and followed by
whether a kinematic solution can be found for the manipulator.

5 Experimental Evaluation

5.1 Evaluation on Collision Benchmark

We evaluate CabiNet on a collision benchmark against four baseline point cloud-based collision
detection algorithms. We want to emphasize that our setting only requires a point cloud observation
from a single view. We sample synthetic scene/object point cloud pair where the objects move in 64
linear trajectories in a scene. The collision ground truth information is computed with FCL [46] in
simulation. For each experiment, we have a balanced set of 256K collision and collision-free queries
for a total of 512K queries/experiment. We evaluated on five environments (1000 scenes each) from
Fig 2 and the results are averaged across them in Table 1.

Quantitative Metrics: We report the following 1) mean Average Precision (mAP) score for the
classifier, averaged across the five environment test sets 2) collision prediction accuracy and 3)
time/query in s. Our baselines are as follows:

• SceneCollisionNet [9]: We directly evaluated the pretrained model from prior work. This
approach was just trained on a single environment (Tabletop) with a fixed robot-to-tabletop
transformation, and directly infers collision from point clouds without any preprocessing.

• Occupancy Mapping [7]: This is one of the most commonly used geometric collision
checking heuristic representation used in the robotics community [1, 4, 7]. We use the open
source implementation from Open3D [61] to convert the sensed point cloud to a occupancy
map representation. Voxels are specified to be of 1cm in size and are labelled to be either
collision free or occupied.

• Marching Cubes + FCL [46]: We first convert the scene and object point clouds to a mesh
with the marching cubes algorithm and use FCL to compute the collision between the scene
and object meshes. We parallelize this baseline across 10 processes for a fairer comparison.

• Marching Cubes + SDF [18]: The scene point cloud is first converted to a mesh and we fit
a SDF to it using the GPU implementation from [18]. Each point in the object point cloud is
computed for its SDF value from the scene. If any of the points have a negative distance
(due to a penetration), the entire scene/object point cloud is considered to be in collision.

Baseline Comparisons: Overall CabiNet outperforms the baselines methods in terms of both
accuracy and inference speed. It has the highest mAP across the five environment test sets. It is
nearly 24% and 15% higher mAP and accuracy respectively compared to OccupancyMap [7] which
is a popular method in the community, while being nearly 25x faster with a 7µs inference time.
OccupancyMap performance has direct correlation with the coverage of point cloud over occluded
part of the scenes. The more occluded areas in the scene, the less accurate it becomes. CabiNet, on the
other hand, does not suffer from the occlusion issue since it is trained with single camera and has been
learned to extrapolate to occluded parts in order to solve collision queries. CabiNet also generalizes
to more diverse environments and point data compared to the pretrained SceneCollisionNet [9] which
shows the importance of training on diverse set of scenes and objects. Our approach is also about 4X
faster than the parallelized FCL baseline with a 20.4% higher mAP score.

6



Table 1: Results on Collision Benchmark
Collision Model mAP Accuracy (%) Time/Query (µs)
CabiNet (Ours) 0.971 89.0 6.41 ± 3.58

SceneCollisionNet [9] 0.706 69.9 7.03 ± 3.89
OccupancyMap [7] 0.732 74.1 174.5 ± 61.9

MC + FCL [46] 0.767 78.8 27.5 ± 6.82
MC + SDF [18] 0.773 80.0 168.6 ± 46.4

Table 2: CabiNet Generalization to Environments

Train Set Test Set (AP)

Tabletop Shelf Cubby Drawers Cabinet mAP
Tabletop 0.989 0.910 0.855 0.861 0.855 0.894

Shelf 0.924 0.985 0.978 0.956 0.972 0.963
Cubby 0.930 0.974 0.977 0.961 0.990 0.966

Drawers 0.923 0.856 0.848 0.972 0.914 0.903
Cabinet 0.924 0.971 0.961 0.961 0.990 0.961
All Envs 0.971 0.969 0.965 0.971 0.979 0.971

Ablation on Environments: We show in Table 2 that CabiNet generalizes to diverse environments by
training with more in-distribution data. We notice that the model generalizes to similar environments
even without any training, such as cabinets and shelves. The model trained on all the environments
performed the best on all the test sets.

5.2 Object Rearrangement Evaluation in Simulation

We evaluate our collision model in simulated rearrangement trials in IssacGym [54] as shown in
Table 3. To focus more on the rearrangement aspect of the problem, we used the ground truth grasp
poses from [43]. We adopt a standard state-machine for rearrangement tasks used in prior works
[8, 25, 47]. The objects are chosen from bowl, box, and cylinder categories of [43] and are held out
from training data. For the environment assets, we use the seven shelves (from ShapeNet) in our test
set to construct 30 scenes. We only use one fixed scene camera for all experiments and each scene
gets two rearrangement trials, for a total of 60 experiments for each method.

Quantitative Metrics: We report three metrics on this task: 1) overall success rate is the success
rate for the whole pick and place operation where the robot picks the target object and place it in the
designated shelf without any failures. 2) individual success rate is the success rate of each state given
the number of times the policy state machine reaches to each particular state and 3) total time taken
for each experiment. There are three stages in rearrangement: pick, transitioning to a placing pose
and place. A pick is considered a success if the object is grasped after lifting the object from the
support surface. The same is true for transition. The placement is considered a success if the object is
detected to be resting on the place support surface, regardless of its final orientation. We emphasize
that rearrangement is a long-horizon task and conditional success rates for each state are based on the
performance of the previous state. As a result, even if the performance of individual state success
rates are high, errors accumulate over time leading to a lower overall success rate.

Collision Representation for Planning: We compared to Occupancy Mapping since it a popular
heuristic collision representation used in the community[7]. The performance of all planners using
this collision model significantly deteriorated compared to our CabiNet model. This shows the benefit
of data driven approaches where they reason beyond the part of the point cloud that is visible and

Table 3: Simulated Rearrangement Experiments

Planner Collision Model Waypoint Type

CabiNet (Ours) Reverse Approach No Waypoints
MPPI CabiNet (Ours) 36.6%/159s 16.7%/158s 4.3%/201s
MPPI OccupancyMap [7] 15.0%/289s 11.0%/234s 7.5%/307s

AIT* [20, 26] OccupancyMap [7] 21.0%/808s 18.5%/380s 5.0%/451s
RRTConnect [34] OccupancyMap [7] 26.4%/357s 18.1%/380s 5.8%/389s

7



Table 4: Success Rate by States

Waypoint Strategy States

Pick Transition Place Overall
CabiNet (Ours) 61.0% 80.0% 75.0% 36.6%

Reverse Approach 54.8% 43.5% 70.0% 16.7%
No Waypoints 60.9% 21.4% 33.3% 4.3%

implicitly reason about occlusions as well. Occupancy maps is also significantly slower, increasing
the rearrangement time by about 80% for the MPPI planner using the CabiNet waypoint sampler.

Comparison to Global Planning pipeline: We compare to the standard off-the-shelf motion
planning pipeline used in the community with a Occupancy Mapping [7] representation. Specifically,
we compare to the state-of-the-art configuration space planner [20], which is an almost-surely
asymptotically optimal planner. We also compare to RRTConnect[34], which commonly is used to
find feasible, though not necessarily optimal, paths. We give a timeout of 60s to find a solution for
both planners. After planning, we apply spline-based, collision-aware trajectory smoothing [26] to
the solutions. If the planner fails to find a valid solution, we simply execute the greedy solution to the
goal to continue with the rearrangement process. Overall, the MPPI planner with our CabiNet model
outperforms RRTConnect and AIT* by about 10% and 15% respectively and is also significantly
faster.

Importance of Waypoints: We demonstrate that learning waypoints are crucial for rearrangement
to navigate out of tight spaces. We compare to a common heuristic used in the motion generation
literature to move robots out of tight spaces [53], which is to move the gripper in the reverse of
the approach direction. We noticed that this approach, while proficient for primitive shapes (e.g.
cylinders) it does not scale to more complex shapes like bowls, which have more complicated 6-DOF
grasps. Hence, retracting in the reverse of the approach direction with an object in hand, the grasped
object could collide with neighbouring support surfaces while transitioning from the pick to the place
poses. As shown in Table 4, our CabiNet waypoint sampler improves the transition success rate by
nearly 60% compared to when having no waypoints and about 35% when compared to the strategy
of retracting in the opposite of the approach direction.

5.3 Real Robot Experiments

We run experiments to show that our model transfers to a real robot despite only being trained in
simulation.

Hardware Setup: Experiments are done on a 7-DOF Franka Panda Robot with a parallel-jaw
gripper. The system is equipped with two cameras: 1) Wrist mounted camera, which is an Intel
Realsense D415 RGB-D camera, that is used for grasping 2) External camera, which is an Intel L515
RGB-D camera, that is used for generating the point cloud for CabiNet. Grasps are generated using
Contact-GraspNet [51] and placement shelf is manually annotated for each problem by labeling the
region that belongs to the desired placement shelf. Instance segmentation is run on both cameras.
The user selects the target object by clicking on the external camera image. Upon user selection of
target object, the robot takes a closer look at the object and find the object in the wrist camera through
relative camera pose between wrist camera and external camera. This step is crucial for grasp success
since the wrist camera provides denser points on the object and it mitigates the effect of calibration
imperfections. CabiNet has access to only the external camera point cloud and the inference is run on
NVIDA Titan RTX gpu.

Experiment Setup: We test our approach in novel environments, with unseen shelf and objects
assets in unknown poses. We experiment with three objects from different object categories and two
tasks. In the vertical transport task the robot has to pick an object from the top shelf and place it
in the bottom one or vice versa. Similarly for horizontal transport task the shelf compartments are
horizontally next to each other. For each task-object pair, we attempt four trials, two of which go
from one support compartment to the next and two in the opposite direction. In total we have 24
experiments and each task-object pair has a unique environment, where the object has to be picked
and placed amidst clutter.

Discussion: Results are reported in Table 5 and the vertical and horizontal transfer tasks have 75%
and 58% success rates respectively. There were 2/24 pick failures due to incorrect grasps. One

8



Figure 5: Examples of failure cases, left: roof partially occluded leading to collision with wrist
camera during grasping, middle: grasped object collided with barrier, right: pick failure.

Table 5: Real Robot Experiments

Task Object Category

Bowl Box Bottle Overall
Vertical Transport 75.0% 50.0% 100.0% 75.0%

Horizontal Transport 50.0% 25.0% 100.0% 58.0%

attempt failed during placing and 5/24 attempts failed when transitioning from pick to place states.
The horizontal transfer task was relatively more challenging due to two reasons - the transitioning was
over a longer distance leading to a greater chance of collision and the leftmost shelf compartment was
not entirely visible from our static scene camera. Three failures were specifically due to occlusion
and the CabiNet model not seeing enough of the leftmost cubby geometry from our camera setup, as
shown in Fig 5. The real robot executions are included in the supplementary video.

6 Conclusion

We present an effort in scaling up neural rearrangement in clutter. We train our CabiNet model to
predict collisions and motion waypoints from point cloud observations. It outperforms baseline
approaches in terms of collision predicted, simulated experiments and also transfers well to real
world clutter despite being only trained in simulation. A limitation of our architecture is that the
3D voxelization enforces queries to be within the model workspace which can sometimes be out of
bounds during manipulation. Potential extensions could also explore more complicated scenes or
learning to generate synthetic scenes [31]. One could also explore hybrid architectures leveraging
recent learned motion policies [16] that are faster than traditional planners, along with CabiNet.

References
[1] M. Bennewitz C. Stachniss A. Hornung, K. M. Wurm and W. Burgard. Octomap: An efficient

probabilistic 3d mapping framework based on octrees. In Autonomous Robots, 2013.

[2] Dhruv Batra, Angel X Chang, Sonia Chernova, Andrew J Davison, Jia Deng, Vladlen Koltun,
Sergey Levine, Jitendra Malik, Igor Mordatch, Roozbeh Mottaghi, Manolis Savva, and Hao Su.
Rearrangement: A challenge for embodied ai. 2020.

[3] Mathieu Belanger-Barrette. What is an average price for a collaborative robot? 2021.

[4] Constantinos Chamzas, Carlos Quintero-Pena, Zachary Kingston, Andreas Orthey, Daniel
Rakita, Michael Gleicher, Marc Toussaint, and Lydia E. Kavraki. Motionbenchmaker: A tool to
generate and benchmark motion planning datasets. In IEEE Robotics and Automation Letters.
IEEE, 2021.

[5] A.X. Chang, T. Funkhouser, L. Guibas, Pat Hanrahan, Q. Huang, Z Li, S. Savarese, M. Savva,
S. Song, H. Su, J. Xiao, L. Yi, and F. Yu. Shapenet: An information-rich 3d model repository.

9

https://youtu.be/HekPtYJfiNU


Technical report, Stanford University — Princeton University — Toyota Technological Institute
at Chicago, 2015.

[6] Hao Su Charles R Qi, Li Yi and Leonidas J Guibas. Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. Neural Information Processing Systems (NeurIPS),
2017.

[7] Sachin Chitta, Ioan Sucan, and Steve Cousins. Moveit![ros topics]. IEEE Robotics & Automation
Magazine, 19(1):18–19, 2012.

[8] Michael Danielczuk, Matthew Matl, Saurabh Gupta, Andrew Li, Andrew Lee, Jeff Mahler,
and Ken Goldberg. Segmenting unknown 3d objects from real depth images using mask r-cnn
trained on synthetic data. In IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2019.

[9] Michael Danielczuk, Arsalan Mousavian, Clemens Eppner, and Dieter Fox. Object rear-
rangement using learned implicit collision functions. 2021 IEEE International Conference on
Robotics and Automation (ICRA), pages 6010–6017, 2021.

[10] Nikhil Das and Michael Yip. Learning-based proxy collision detection for robot motion planning
applications. 2021.

[11] Matt Deitke, Eli VanderBilt, Alvaro Herrasti, Luca Weihs, Jordi Salvador, Kiana Ehsani, Winson
Han, Eric Kolve, Ali Farhadi, Aniruddha Kembhavi, et al. Procthor: Large-scale embodied ai
using procedural generation. arXiv preprint arXiv:2206.06994, 2022.

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, and
Jakob Uszkoreit andNeil Houlsby. Attention is all you need. In In International Conference on
Learning Representations, 2021.

[13] Kiana Ehsani, Winson Han, Alvaro Herrasti, Eli VanderBilt, Luca Weihs, Eric Kolve, Aniruddha
Kembhavi, and Roozbeh Mottaghi. Manipulathor: A framework for visual object manipulation.
In CVPR, 2021.

[14] Clemens Eppner, Arsalan Mousavian, and Dieter Fox. ACRONYM: A large-scale grasp dataset
based on simulation. In 2021 IEEE Int. Conf. on Robotics and Automation, ICRA, 2020.

[15] Matthew Fisher, Daniel Ritchie, Manolis Savva, Thomas Funkhouser, and Pat Hanrahan.
Example-based synthesis of 3d object arrangements. ACM Transactions on Graphics (TOG),
31(6):1–11, 2012.

[16] Adam Fishman, Adithyavairavan Murali, Clemens Eppner, Bryan Peele, Byron Boots, and
Dieter Fox. Motion policy networks. 2022.

[17] Huan Fu, Bowen Cai, Lin Gao, Ling-Xiao Zhang, Jiaming Wang, Cao Li, Qixun Zeng, Chengyue
Sun, Rongfei Jia, Binqiang Zhao, et al. 3d-front: 3d furnished rooms with layouts and semantics.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 10933–
10942, 2021.

[18] Clement Fuji Tsang, Maria Shugrina, Jean Francois Lafleche, Towaki Takikawa, Jiehan Wang,
Charles Loop, Wenzheng Chen, Krishna Murthy Jatavallabhula, Edward Smith, Artem Rozant-
sev, Or Perel, Tianchang Shen, Jun Gao, Sanja Fidler, Gavriel State, Jason Gorski, Tommy
Xiang, Jianing Li, Michael Li, and Rev Lebaredian. Kaolin: A pytorch library for accelerating
3d deep learning research. https://github.com/NVIDIAGameWorks/kaolin, 2022.

[19] A. Aldrich G. Williams and E. A. Theodorou. Model predictive path integral control: From
theory to parallel computation. Journal of Guidance, Control, and Dynamics, 2017.

[20] Jonathan D. Gammell, Siddhartha S. Srinivasa, and Tim D. Barfoot. Batch informed trees
(bit*): Sampling-based optimal planning via the heuristically guided search of implicit random
geometric graphs. 2015 IEEE International Conference on Robotics and Automation (ICRA),
pages 3067–3074, 2015.

[21] Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay, Beomjoon Kim, Tom Silver, Leslie Pack
Kaelbling, and Tomás Lozano-Pérez. Integrated task and motion planning. Annual Review of
Control, Robotics, and Autonomous Systems, 2021.

[22] Caelan Reed Garrett, Chris Paxton, Tomás Lozano-Pérez, Leslie Pack Kaelbling, and Dieter
Fox. Online replanning in belief space for partially observable task and motion problems. In
IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020.

10

https://github.com/NVIDIAGameWorks/kaolin


[23] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Neural Information
Processing Systems, 2014.

[24] Walter Goodwin, Sagar Vaze, Ioannis Havoutis, and Ingmar Posner. Semantically grounded
object matching for robust robotic scene rearrangement. In 2022 International Conference on
Robotics and Automation (ICRA), pages 11138–11144. IEEE, 2022.

[25] Ankit Goyal, Arsalan Mousavian, Chris Paxton, Yu-Wei Chao, Brian Okorn, Jia Deng, and
Dieter Fox. Ifor: Iterative flow minimization for robotic object rearrangement. 2022.

[26] Kris K. Hauser and Victor Ng-Thow-Hing. Fast smoothing of manipulator trajectories using
optimal bounded-acceleration shortcuts. 2010 IEEE International Conference on Robotics and
Automation, pages 2493–2498, 2010.

[27] John Horst, Jeremy Marvel, and Elena Messina. Best practices for the integration of collaborative
robots into workcells within small and medium-sized manufacturing operations. NIST Advanced
Manufacturing Series, 100(41), 2021.

[28] Haojie Huang, Dian Wang, Robin Walter, and Robert Platt. Equivariant transporter network.
arXiv preprint arXiv:2202.09400, 2022.

[29] Philip M Hubbard. Approximating polyhedra with spheres for time-critical collision detection.
ACM Transactions on Graphics (TOG), 15(3):179–210, 1996.

[30] Stephen James, Zicong Ma, David Rovick Arrojo, and Andrew J. Davison. Rlbench: The robot
learning benchmark & learning environment. IEEE Robotics and Automation Letters, 2020.

[31] Amlan Kar, Aayush Prakash, Ming-Yu Liu, Eric Cameracci, Justin Yuan, Matt Rusiniak, David
Acuna, Antonio Torralba, and Sanja Fidler. Meta-sim: Learning to generate synthetic datasets.
In ICCV, 2019.

[32] J. Chase Kew, Brian Ichter, Maryam Bandari, Tsang-Wei Edward Lee, and Aleksandra Faust.
Neural collision clearance estimator for batched motion planning. 2021.

[33] Matthew Klingensmith, Siddartha Sirinivasa, and Michael Kaess. Articulated robot motion for
simultaneous localization and mapping (arm-slam). In Robotics and Automation Letters. IEEE,
2016.

[34] James Kuffner and Steven M. LaValle. Rrt-connect: An efficient approach to single-query path
planning. In International Conference on Robotics and Automation (ICRA). IEEE, 2000.

[35] Yann Labbé, Sergey Zagoruyko, Igor Kalevatykh, Ivan Laptev, Justin Carpentier, Mathieu
Aubry, and Josef Sivic. Monte-carlo tree search for efficient visually guided rearrangement
planning. IEEE Robotics and Automation Letters, 5(2):3715–3722, 2020.

[36] Chengshu Li, Fei Xia, Roberto Martı́n-Martı́n, Michael Lingelbach, Sanjana Srivastava, Bokui
Shen, Kent Elliott Vainio, Cem Gokmen, Gokul Dharan, Tanish Jain, Andrey Kurenkov, Karen
Liu, Hyowon Gweon, Jiajun Wu, Li Fei-Fei, and Silvio Savarese. igibson 2.0: Object-centric
simulation for robot learning of everyday household tasks. In 5th Annual Conference on Robot
Learning, 2021.

[37] Ke Li and Jitendra Malik. Implicit maximum likelihood estimation. arXiv preprint
arXiv:1809.09087, 2018.

[38] Jeffrey Mahler and Ken Goldberg. Learning deep policies for robot bin picking by simulating
robust grasping sequences. Conference on Robot Learning, 2017.

[39] Jeffrey Mahler, Jacky Liang, Sherdil Niyaz, Michael Laskey, Richard Doan, Xinyu Liu,
Juan Aparicio Ojea, and Ken Goldberg. Dex-net 2.0: Deep learning to plan robust grasps
with synthetic point clouds and analytic grasp metrics. RSS, 2017.

[40] Lucas Majerowicz, Ariel Shamir, Alla Sheffer, and Holger H Hoos. Filling your shelves:
Synthesizing diverse style-preserving artifact arrangements. IEEE transactions on visualization
and computer graphics, 20(11):1507–1518, 2013.

[41] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi,
and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV,
2020.

11



[42] Kaichun Mo, Shilin Zhu, Angel X. Chang, Li Yi, Subarna Tripathi, Leonidas J. Guibas, and
Hao Su. PartNet: A large-scale benchmark for fine-grained and hierarchical part-level 3D object
understanding. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2019.

[43] Arsalan Mousavian, Clemens Eppner, and Dieter Fox. 6-DOF GraspNet: Variational grasp
generation for object manipulation. International Conference on Computer Vision, 2019.

[44] Adithyavairavan Murali, Arsalan Mousavian, Clemens Eppner, Chris Paxton, and Dieter Fox.
6-dof grasping for target-driven object manipulation in clutter. In IEEE International Conference
on Robotics and Automation (ICRA), 2020.

[45] Richard Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David Kim, Andrew J.
Davison, Pushmeet Kohli, Jamie Shotton, Steve Hodges, and Andrew Fitzgibbon. Kinectfusion:
Real-time dense surface mapping and tracking. 2011 10th IEEE International Symposium on
Mixed and Augmented Reality (ISMAR), 2011.

[46] Jia Pan, Sachin Chitta, and Dinesh Manocha. Fcl: A general purpose library for collision and
proximity queries. 2012 IEEE International Conference on Robotics and Automation (ICRA),
2012.

[47] Ahmed H Qureshi, Arsalan Mousavian, Chris Paxton, Michael Yip, and Dieter Fox. Nerp:
Neural rearrangement planning for unknown objects. RSS, 2021.

[48] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and
Ilya Sutskever. Learning transferable visual models from natural language supervision. In
arXiv:2103.00020, 2021.

[49] Siddharth Srivastava, Eugene Fang, Lorenzo Riano, Rohan Chitnis, Stuart Russell, and Pieter
Abbeel. Combined task and motion planning through an extensible planner-independent
interface layer. In IEEE International Conference on Robotics and Automation (ICRA), 2014.

[50] Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen, Erik Wijmans, Simon Green, Jakob J.
Engel, Raul Mur-Artal, Carl Ren, Shobhit Verma, Anton Clarkson, Mingfei Yan, Brian Budge,
Yajie Yan, Xiaqing Pan, June Yon, Yuyang Zou, Kimberly Leon, Nigel Carter, Jesus Briales,
Tyler Gillingham, Elias Mueggler, Luis Pesqueira, Manolis Savva, Dhruv Batra, Hauke M.
Strasdat, Renzo De Nardi, Michael Goesele, Steven Lovegrove, and Richard Newcombe. The
Replica dataset: A digital replica of indoor spaces. arXiv preprint arXiv:1906.05797, 2019.

[51] Martin Sundermeyer, Arsalan Mousavian, Rudolph Triebel, and Dieter Fox. Contact-graspnet:
Efficient 6-dof grasp generation in cluttered scenes. 2021.

[52] Andrew Szot, Alex Clegg, Eric Undersander, Erik Wijmans, Yili Zhao, John Turner, Noah
Maestre, Mustafa Mukadam, Devendra Chaplot, Oleksandr Maksymets, Aaron Gokaslan,
Vladimir Vondrus, Sameer Dharur, Franziska Meier, Wojciech Galuba, Angel Chang, Zsolt Kira,
Vladlen Koltun, Jitendra Malik, Manolis Savva, and Dhruv Batra. Habitat 2.0: Training home
assistants to rearrange their habitat. In Advances in Neural Information Processing Systems
(NeurIPS), 2021.

[53] Karl Van Wyk, Mandy Xie, Anqi Li, Muhammad Asif Rana, Buck Babich, Bryan Peele, Qian
Wan, Iretiayo Akinola, Balakumar Sundaralingam, Dieter Fox, Byron Boots, and Nathan D.
Ratliff. Geometric fabrics: Generalizing classical mechanics to capture the physics of behavior.
IEEE Robotics and Automation Letters, 7(2):3202–3209, 2022.

[54] Yunrong Guo Michelle Lu Kier Storey Miles Macklin David Hoeller Nikita Rudin Arthur
Allshire Ankur Handa Gavriel State Viktor Makoviychuk, Lukasz Wawrzyniak. Isaac gym:
High performance gpu-based physics simulation for robot learning. arXiv:2108.10470, 2021.

[55] Kentaro Wada, Stephen James, and Andrew J. Davison. ReorientBot: Learning object reori-
entation for specific-posed placement. In IEEE International Conference on Robotics and
Automation (ICRA), 2022.

[56] Hongtao Wu, Jikai Ye, Xin Meng, Chris Paxton, and Gregory Chirikjian. Transporters with
visual foresight for solving unseen rearrangement tasks. arXiv preprint arXiv:2202.10765,
2022.

[57] Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu,
Hanxiao Jiang, Yifu Yuan, He Wang, Li Yi, Angel X. Chang, Leonidas J. Guibas, and Hao

12



Su. SAPIEN: A simulated part-based interactive environment. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2020.

[58] Lap-Fai Yu, Sai-Kit Yeung, and Demetri Terzopoulos. The clutterpalette: An interactive
tool for detailing indoor scenes. IEEE transactions on visualization and computer graphics,
22(2):1138–1148, 2015.

[59] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and
Sergey Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement
learning. In Conference on Robot Learning (CoRL), 2019.

[60] Andy Zeng, Pete Florence, Jonathan Tompson, Stefan Welker, Jonathan Chien, Maria Attarian,
Travis Armstrong, Ivan Krasin, Dan Duong, Vikas Sindhwani, et al. Transporter networks:
Rearranging the visual world for robotic manipulation. arXiv preprint arXiv:2010.14406, 2020.

[61] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A modern library for 3D data
processing. arXiv:1801.09847, 2018.

13


	Introduction
	Related Work
	Procedural Data Generation
	Neural Rearrangement Planning
	Experimental Evaluation
	Evaluation on Collision Benchmark
	Object Rearrangement Evaluation in Simulation
	Real Robot Experiments

	Conclusion

