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ABSTRACT

Large neural models (such as Transformers) achieve state-of-the-art performance
for information retrieval. In this paper, we aim to improve distillation methods
that pave the way for the deployment of such models in practice. The proposed
distillation approach supports both retrieval and re-ranking stages and crucially
leverages the relative geometry among queries and documents learned by the large
teacher model. It goes beyond existing distillation methods in the information re-
trieval literature, which simply rely on the teacher’s scalar scores over the training
data, on two fronts: providing stronger signals about local geometry via embed-
ding matching and attaining better coverage of data manifold globally via query
generation. Embedding matching provides a stronger signal to align the repre-
sentations of the teacher and student models. At the same time, query generation
explores the data manifold to reduce the discrepancies between the student and
teacher where the training data is sparse. Our distillation approach is theoretically
justified and applies to both dual encoder (DE) and cross-encoder (CE) models.
Furthermore, for distilling a CE model to a DE model via embedding matching,
we propose a novel dual pooling-based scorer for the CE model that facilitates a
more distillation-friendly embedding geometry, especially for DE student models.

1 INTRODUCTION

Neural models for information retrieval (IR) are increasingly used to capture the true ranking in var-
ious applications, including web search (Mitra & Craswell, 2018), recommendation (Zhang et al.,
2019), and question-answering (QA; Chen et al. 2017). Notably, the recent success of Transform-
ers (Vaswani et al., 2017)-based pre-trained language models (Devlin et al., 2019; Liu et al., 2019;
Raffel et al., 2020) on a wide range of natural language understanding tasks has prompted their
utilization in IR to capture query-document relevance (see, e.g., Dai & Callan, 2019b; MacAvaney
et al., 2019a; Nogueira & Cho, 2019; Lee et al., 2019; Karpukhin et al., 2020, and references therein).

A typical IR system comprises two stages: (1) A retriever first selects a small subset of potentially
relevant candidate documents (out of a large collection) for a given query; and (2) A re-ranker
then identifies a precise ranking among the candidates provided by the retriever. Dual-encoder
(DE) models are the de-facto architecture for retrievers (Lee et al., 2019; Karpukhin et al., 2020)
Such models independently embed queries and documents into a common space, and capture their
relevance by simple operations on these embeddings such as the inner product. This enables offline
creation of a document index and supports fast retrieval during inference via efficient maximum
inner product search (MIPS) implementations (Johnson et al., 2021; Guo et al., 2020), with query
embedding generation primarily dictating the inference latency. Cross-encoder (CE) models, on
the other hand, are preferred as re-rankers, owing to their excellent performance (Nogueira & Cho,
2019; Dai & Callan, 2019a; Yilmaz et al., 2019). A CE model jointly encodes a query-document
pair while enabling early interaction among query and document text. Employing a CE model for
retrieval is often infeasible, as it would require processing a given query with every document in the
collection at inference time. In fact, even in the re-ranking stage, the inference cost of CE models
is high enough (Khattab & Zaharia, 2020) to warrant exploration of efficient alternatives (Hofstätter
et al., 2020; Khattab & Zaharia, 2020; Menon et al., 2022).

Knowledge distillation (Bucilǎ et al., 2006; Hinton et al., 2015) provides a general strategy to address
the prohibitive inference cost associated with high-quality large neural models. In the IR literature,
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most existing distillation methods only rely on the teacher’s query-document relevance scores (see,
e.g., Chen et al., 2021; Lu et al., 2020; Hofstätter et al., 2020; Ren et al., 2021; Santhanam et al.,
2021) or their proxies (Izacard & Grave, 2021). However, given that neural IR models are inherently
embedding-based, it is natural to ask: is it useful to go beyond matching of the teacher and student
models’ scores, and directly aim to align their embedding spaces?

With this in mind, we propose a novel distillation method for IR models that utilizes an embedding
matching task to train the student. The proposed method supports cross-architecture distillation and
improves upon existing distillation methods for both retriever and re-ranker models. When distilling
a large DE model into a smaller DE model, for a given query (document), one can minimize the dis-
tance between the query (document) embeddings of the teacher and student after compatible projec-
tion layers to account for any dimensionality mismatch. In contrast, defining an embedding matching
task for distilling a CE model into a DE model is not as straightforward. For Transformers-based
CE models, it is common to use the final embedding of a special token, e.g., [CLS] in BERT (De-
vlin et al., 2019), to compute query-document relevance (Nogueira & Cho, 2019). However, as we
note in Sec. 4.2, this token embedding does not capture semantic similarity between the query and
document. To make CE models more amenable to distillation via embedding matching, we propose
a modified CE scoring approach by utilizing a novel dual-pooling strategy: this separately pools
the final query and document token embeddings, and then computes the inner product between the
pooled embeddings as the relevance score.

Our key contributions toward improving IR models via distillation are:

• We propose a novel distillation approach for neural IR models, namely EmbedDistill, that goes
beyond score matching and aligns the embedding spaces of the teacher and student models.

• We consider a novel DE to DE distillation setup to showcase the effectiveness of our embedding
matching approach (Sec. 4.1). Specifically, we consider a student DE model with an asymmet-
ric configuration, consisting of a small query encoder and a frozen encoder inherited from the
teacher. Such a configuration significantly reduces query embedding generation latency during
inference, while leveraging the teachers’ high-quality document index.

• We show that our proposed distillation approach can leverage synthetic data to improve student
by further aligning the embedding spaces of the teacher and student (Sec. 4.3).

• We theoretically justify both embedding matching and query generation components of our pro-
posed method (Sec. 5). Further, we provide a comprehensive empirical evaluation of the method
(Sec. 6) on two standard IR benchmarks – Natural Questions (Kwiatkowski et al., 2019a) and
MSMARCO (Nguyen et al., 2016).

• Finally, we demonstrate the utility of embedding matching for CE to DE distillation on MS-
MARCO by utilizing a novel pooling strategy for CE models, namely dual pooling (Sec. 4.2),
which might be of independent interest.

2 RELATED WORK

Here, we review some existing Transformers-based IR models, and discuss prior work on distillation
and data augmentation for such models. We also cover prior efforts on aligning representations dur-
ing distillation for non-IR settings. Unlike our problem setting where the DE student is factorized,
these works mainly consider distilling a single large Transformer into a smaller one.

Transformers-based architectures for IR. Besides DE and CE models described in Section 1,
intermediate configurations (MacAvaney et al., 2020; Khattab & Zaharia, 2020; Nie et al., 2020;
Luan et al., 2021) have been proposed. Such models first independently encode the query and doc-
ument, and then apply a more complex late interaction between the two. Interestingly, Nogueira
et al. (2020) explore generative encoder-decoder style model for re-ranking, where a T5 (Raffel
et al., 2020) model takes a query-document pair as input and its score for certain target tokens (e.g.,
True/False) defines the relevance score for the pair. In this paper, we focus on basic DE and CE
models to showcase the benefits of our proposed geometric distillation approach. Exploring embed-
ding matching for the aforementioned architectures is an interesting avenue for future exploration.

Distillation for IR. Traditional distillation techniques have been widely applied in the IR literature,
often to distill a teacher CE model to a student DE model (Chen et al., 2021; Li et al., 2020).
Recently, distillation from a DE model (with complex late interaction) to another DE model (with
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Figure 1: Illustration of score-based distillation for IR (cf. Section 3.2). Fig. 1a describes distil-
lation from a teacher [CLS]-pooled CE model to a student DE model. Fig. 1b depicts distillation
from a teacher DE model to a student DE model. Both distillation setup employ symmetric DE
configurations where query and document encoders of the student model are of the same size.

inner-product scoring) has also been considered (Lin et al., 2021; Hofstätter et al., 2021). As for
distilling across different model architectures, Lu et al. (2020); Izacard & Grave (2021) consider
distillation from a teacher CE model to a student DE model. Hofstätter et al. (2020) conduct an
extensive study of knowledge distillation across a wide-range of model architectures. Most existing
distillation schemes for IR rely on only teacher scores; by contrast, we propose a geometric approach
that also utilizes the teacher embeddings. Many recent efforts (Qu et al., 2021; Ren et al., 2021;
Santhanam et al., 2021) show that iterative multi-stage (self-)distillation improves upon single-stage
distillation (Qu et al., 2021; Ren et al., 2021; Santhanam et al., 2021). These approaches use a
model from the previous stage to obtain labels (Santhanam et al., 2021) as well as mine harder-
negatives (Xiong et al., 2021). We only focus on the single-stage training in this paper. Multi-stage
procedures are complementary to our work, as one can employ our proposed embedding-matching
approach in various stages of such a procedure.

Distillation with representation alignments. Outside of the IR context, a few prior works proposed
to utilize alignment between hidden layers during distillation (Romero et al., 2014; Sanh et al., 2019;
Jiao et al., 2020; Aguilar et al., 2020; Zhang & Ma, 2020). Chen et al. (2022) utilize the represen-
tation alignment to re-use teacher’s classification layer. Our work differs from these as it needs
to address multiple challenges presented by an IR setting: 1) cross-architecture distillation such as
CE to DE distillation; 2) partial representation alignment of query or document representations as
opposed to aligning representations for the entire input, i.e., a query-documents pair; 3) catering
representation alignment approach to novel IR setups such as asymmetric DE configuration; and 4)
dealing with negative sampling due to a large number of classes (documents). To the best of our
knowledge, our work is the first in the IR literature that goes beyond simply matching scores (or its
proxies).

Semi-supervised learning for IR. Data augmentation or semi-supervised learning has been previ-
ously used to ensure data efficiency in IR (see, e.g., Zhao et al., 2021; MacAvaney et al., 2019b).
More interestingly, data augmentation via large pre-trained models have enabled performance im-
provements as well. Doc2query (Nogueira et al., 2019b;a) performs document expansion by gener-
ating queries that are relevant to the document and appending those queries to the document. Query
expansion has also been considered, e.g., for document re-ranking (Zheng et al., 2020). Notably,
generating synthetic (query, passage, answer) triples from a text corpus to augment existing training
data for QA systems also leads to significant gains (Alberti et al., 2019; Oğuz et al., 2021). Fur-
thermore, even zero-shot approaches, where no labeled query-document pairs are used, can also
perform competitively to supervised methods. Such methods train a DE model by relying on inverse
cloze task (Lee et al., 2019; Izacard et al., 2021), synthetic query-document pairs given a target text
corpus (Ma et al., 2021), or relevance scores from large pretrained models (Sachan et al., 2022).
Unlike these works, we utilize query-generation capability to ensure tighter alignment between the
embedding spaces of the teacher and student.

3 BACKGROUND

Let Q and D denote the query and document spaces, respectively. An IR model is equivalent to a
scorer s : Q×D→ R, i.e., it assigns a (relevance) score s(q, d) for a query-document pair (q, d) ∈
Q ×D. Ideally, we want to learn an IR model or scorer that is faithful to the true query-document
relevance, i.e., s(q, d) > s(q, d′) iff the document d is more relevant to the query q than document
d′. We assume access to n labeled training examples of the form Sn = {(qi,di,yi)}i∈[n]. Here,
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di = (di,1, . . . , di,L) ∈ DL, ∀i ∈ [n], denotes a list of L documents and yi = (yi,1, . . . , yi,L) ∈
{0, 1}L denotes the corresponding labels such that yi,j = 1 iff the document di,j is relevant to the
query qi. Given Sn, we learn an IR model by minimizing

R(s; Sn) =
1

n

∑
i∈[n]

`
(
sqi,di ,yi

)
, (1)

where `
(
sqi,di := (s(qi, d1,i), . . . , s(qi, d1,L)),yi

)
denotes the loss s incurs on (qi,di,yi). Due to

space constraint, we present a few common choices for the loss function ` in Appendix A.

While this learning framework is general enough to work with any IR models as the scorers, next,
we formally describe two families of IR models that are prevalent in the recent literature.

3.1 TRANSFORMER-BASED IR MODELS: CROSS-ENCODERS AND DUAL-ENCODERS

Let query q = (q1, . . . , qm1) and document d = (d1, . . . , dm2) consist of m1 and m2 tokens, respec-
tively. We now discuss how Transformers-based CE and DE models process a given (q, d) pair.

Cross-encoder model. Let o = [q; d] denote them1+m2 length sequence obtained by concatenating
q and d. Furthermore, let õ be the sequence obtained by adding special tokens such [CLS] and [SEP]
to o at appropriate locations. Now, given an encoder-only Transformer model Enc, the relevance
score for the query-document pair (q, d) is defined as

s(q, d) = 〈w,pool
(
Enc(õ)

)
〉 = 〈w, embq,d〉, (2)

where w is a d-dimensional classification vector, and pool(·) denotes a pooling operation that trans-
form Enc(õ) — contextualized token embeddings produced by Enc — to a joint embedding vector
embtq,d. [CLS]-pooling is a common strategy that simply outputs the embedding of the [CLS] token.

Dual-encoder model. Let q̃ and d̃ be the sequences obtained by adding appropriate special tokens
to q and d, respectively. A DE model comprises two (encoder-only) Transformers EncQ and EncD,
which we call query and document encoders, respectively.1 Let embq = pool

(
EncQ(q̃)

)
and embd

= pool
(
EncD(d̃)

)
denote the query and document embeddings, respectively. Now, one can define

s(q, d) = 〈pool
(
embq, embd〉 to be the relevance score assigned to (q, d) by the DE model.

3.2 SCORE-BASED DISTILLATION FOR IR MODELS

Most distillation schemes for IR (e.g., Chen et al., 2021; Lu et al., 2020; Hofstätter et al., 2020; Ren
et al., 2021; Santhanam et al., 2021) rely on teacher relevance scores (cf. Fig. 1). In particular, given
a training set Sn and a teacher with scorer st, one learns a student with scorer ss by minimizing

R(ss, st; Sn) =
1

n

∑
i∈[n]

`d
(
ssq,di

, stq,di

)
, (3)

where `d captures the discrepancy between ss and st. See Appendix A for common choices for `d.

4 EMBEDDING-MATCHING BASED DISTILLATION

Since modern neural IR models are inherently embedding-based, we propose to explicitly align the
embedding spaces of the teacher and student via a novel distillation method, namely EmbedDistill.
Note that our proposal goes beyond existing distillation methods in the IR literature that only utilize
the teacher scores. Next, we describe EmbedDistill for two prevalent settings: (1) distilling a large
DE model to a smaller DE model;2 and (2) distilling a CE model to a DE model.

4.1 DE TO DE DISTILLATION

Given a (q, d) pair, let embtq and embtd be the query and document embeddings produced by the query
encoder EnctQ and document encoder EnctD of the teacher DE model, respectively. Similarly, let

1It is common to employ dual-encoder models where query and document encoders are shared.
2We focus on DE to DE distillation setup as the CE to CE distillation is special case of the former with the

classification vector w (cf. Eq. 2) being the trivial second encoder.
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embsq and embsd denote the query and document embeddings produced by a student DE model with
(EncsQ,Enc

s
D) as its query and document encoders. Now, EmbedDistill optimizes the following

embedding alignment loss in addition to the score-matching loss from Sec. 3.2:

REmb(t, s; Sn) =
1

n

∑
(q,d)∈Sn

(
‖embtq − proj

(
embsq

)
‖+ ‖embtd − proj

(
embsd)‖

)
, (4)

where proj is an optional trainable layer that is required if the teacher and student produce different
sized embeddings. Alternatively, one can employ other variants of EmbedDistill, e.g., focusing on
only aligning the query embeddings takes the following form (cf. Fig. 2).

REmb,Q(t, s; Sn) =
1

n

∑
q∈Sn

‖embtq − proj
(
embsq

)
‖. (5)

Asymmetric DE. We also propose a novel student DE configuration where the student employs the
teacher’s document encoder (i.e., EncsD = EnctD) and only train its query encoder, which is much
smaller compared to the teacher’s query encoder. For such a setting, it is natural to only employ the
embedding matching loss in Eq. 5 as the document embeddings are aligned by design (cf. Fig. 2).
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Figure 2: Proposed DE to DE distillation with query embed-
ding matching. The figure describes a setting where student
employs an asymmetric DE configuration with a small query
encoder and a large (non-trainable) document encoder in-
herited from the teacher. The smaller query encoder ensures
small latency for encoding query during inference, and large
document encoder leads to a good quality document index.

Note that this asymmetric student DE
does not incur an increase in latency
despite use of large teacher document
encoder. This is because the large
document encoder is only needed to
create a good quality document in-
dex offline, and only the query en-
coder is evaluated at inference time.
Thus, for DE to DE distillation, we
prescribe the asymmetric DE con-
figuration universally. Our theoreti-
cal analysis and experimental results
suggest that the ability to inherit the
document tower from the teacher DE
model can drastically improve the
final performance, especially when
combined with EmbedDistill.

4.2 CE TO DE DISTILLATION

Let Enct denote the single teacher CE model encoder, and (EncsQ,Enc
s
D) denote the student DE

model’s query and document encoders. When distilling from a CE to DE model, defining an effective
embedding matching task is not as straightforward as in Sec. 4.1: since CE models jointly encode
query-document pairs, it is not obvious how to extract individual query and document embeddings.

As a naı̈ve solution, for a given (q, d) pair, one can simply match a joint transformation of the
student’s query embedding embsq and document embedding embsd to the teacher’s joint embeddings
embtq,d. However, we observed that including such an embedding matching task often leads to
severe over-fitting, and results in a poorly generalizable student. Since st(q, d) = 〈w, embtq,d〉,
during CE model training, the joint embeddings embtq,d for relevant and irrelevant (q, d) pairs are
encourage to be aligned with w and−w, respectively. This produces degenerate embeddings that do
not capture semantic query-to-query or document-to-document relationships. We notice that even
the final query and document token embeddings lose such semantic structure. Thus, a teacher CE
model with st(q, d) = 〈w, embtq,d〉 does not add value for distillation beyond score-matching; in
fact, it hurts to include naı̈ve embedding matching. Next, we propose a modified CE model training
strategy that facilitates EmbedDistill.

CE models with dual pooling. We propose dual pooling to produce two embeddings embtq←(q,d)

and embtd←(q,d) from a CE model that serve as the proxy query and document embeddings, respec-
tively. Accordingly, we define the relevance score as st(q, d) = 〈embtq←(q,d), emb

t
d←(q,d)〉. We

explore two variants of dual pooling: (1) special token-based pooling that pools from [CLS] and
[SEP]; and (2) segment-based weighted mean pooling that separately performs weighted averaging
on the query and document segments of the final token embeddings. See Appendix B for details.
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Figure 3: Illustration of CE to DE distillation using
EmbedDistill, with CE model employing dual pooling.

In addition to employing the dual pooling,
we also utilize a reconstruction loss dur-
ing the CE training, which measures the
likelihood of predicting each token of the
original input from the final token embed-
dings. This loss encourages reconstruc-
tion of query and document tokens based
on the final token embeddings and pre-
vents the degeneration of the token embed-
dings during training on the IR task. Given
proxy embeddings from the teacher CE ,
we can perform EmbedDistill with the loss
defined in Eq. 4 or Eq. 5 (cf. Fig. 3).

4.3 TASK-SPECIFIC ONLINE DATA GENERATION

Data augmentation as a general technique has been previously considered in the IR literature (see,
e.g., Nogueira et al., 2019b; Oğuz et al., 2021; Izacard et al., 2021; Ma et al., 2021), especially
in data-limited, out-of-domain, or zero-shot settings. Since EmbedDistill aims to align the embed-
dings spaces of the teacher and student, the ability to generate similar queries or documents can
naturally help enforce such an alignment globally on the task-specific manifold. Given a set of unla-
beled task-specific query and document pairs Um, we can further add the embedding-alignment loss
REmb(t, s;Um) to our training objective (cf. Eq.4). Interestingly, for DE to DE distillation setting,
our approach can even benefit from a large collection of task-specific queries Q′ or documents D′.
Here, as we can independently add the additional embedding matching losses REmb,Q(t, s;Q

′) and
REmb,D(t, s;D

′) that focus on queries and documents, respectively.

5 IMPROVEMENTS IN THE GENERALIZATION OF STUDENT

Note that we motivate EmbedDistill as well as asymmetric DE configuration where the student DE
model inherits the teacher’s document encoder from their potential ability to ensure a better align-
ment between the teacher and student embedding spaces. In this section, we provide a theoretical
justification for both of these proposals by showing that they indeed result in a better generalization
performance for the student and reduce the gap between the teacher and the student. We break our
analysis into two steps: 1) First, we show that, using EmbedDistill and inheriting the document en-
coder from the teacher, the student’s empirical risk (as measured by the distillation objective) gets
closer to the teacher’s population risk; and 2) Second, we argue that both of these techniques have
favorable implications on the distillation loss of the student via uniform deviation bounds.

The following result studies the gap between student’s expected empirical (distillation) risk and
teacher’s population risk (see Appendix C.1 for a formal statement and proof). For simplicity, we
focus on L = 1 (cf. Sec. 3). The result can be extended to L > 1 with more complex notation.

Proposition 1 (Expected risk bound (informal)). Let label y ∈ {0, 1} indicate the relevance of
query-document pair (q, d). Suppose that the score-based distillation loss `d in Eq. 3 is based on
binary cross entropy loss (Eq. 11 in Appendix A). Let one-hot (label-dependent) loss ` in Eq. 1 be
the binary cross entropy loss (Eq. 9 in Appendix A). Assume that all encoders have the same output
dimension. Under regularity conditions, we have

E
[
R(ss, st; Sn)− E`(stq,d, y)

]
= O

(
Ed[‖embsd − embtd‖2] + Eq[‖embsq − embtq‖2]

+ E(q,d,y)

∣∣sigmoid(〈embtq, embtd〉)− y
∣∣).

Proposition 1 can be viewed as the bias of the student wrt. the teacher, as realized by the distillation.
It shows that the bias can be upper bounded by three terms:. 1) the expected difference between
the doc embeddings of the student and the teacher, 2) the expected difference between the query
embeddings, and 3) the teacher’s error in modeling the true label probability. Observe that the
student’s bias is smaller when the embeddings of the student match those of the teacher. In particular,
when the student inherits the document encoder from the teacher (as in Fig. 2), the error in the first
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Method Recall@5 Recall@20 Recall@100
82M 16M 82M 16M 82M 16M

Train student directly 41.9 39.5 64.5 59.9 82.0 76.3
+ Distill from teacher 48.3 44.9 67.2 61.1 80.9 74.8
+ Inherit document embeddings 56.9 47.2 74.3 64.0 85.4 77.0
+ Query embedding matching 61.8 56.7 78.7 74.6 89.0 85.9
+ Query generation 61.7 57.1 79.4 75.2 89.6 86.7

Train student only using embedding
matching and inherit doc embeddings 63.7 57.9 80.3 74.6 90.3 85.7

+ Query generation 64.1 58.9 80.5 76.0 90.4 86.6

Table 1: Full recall performance of various student DE models on NQ dev set, including symmet-
ric DE student model (82M or 16M transformer for both encoders), and asymmetric DE student
model (82M or 16M transformer as query encoder and document embeddings inherited from the
teacher). All distilled students used the same teacher (110M parameter RoBERTa-base models as
both encoders), with the full Recall@5 = 64.6, Recall@20 = 81.7, and Recall@100 = 91.5.

term vanishes. These observations also justify EmbedDistill which either employ Eq. 4 or Eq. 5
(when student inherits teacher’s document encoder).

Now, we analyze the deviation of a student model from its training empirical risk at the test time,
which is typically captured by the uniform deviation bounds based on quantities like Rademacher
complexity. Again, we restrict ourselves to binary cross-entropy loss with L = 1 for simplicity. Due
to space constraints, we present an informal statement of the result (see Appendix C.2 for a more
precise statement and proof).
Proposition 2. Let `d be a distillation loss which is L`d -Lipschitz in its first argument. Let F and G
denote the function classes for the query and document encoders, respectively. Further assume that,
for each query and document encoder in our function class, the query and document embeddings
have their `2-norm bounded by K. Then, we have the following uniform deviation bounds

sup
ss∈F×G

1

n

∑
i∈[n]

`d
(
ssqi,di , s

t
qi,di

)
− E`d

(
ssq,d, s

t
q,d

)
≤ ESn

48KL`d√
n

∫ ∞
0

√
log
(
N(u,F)N(u,G)

)
du; (6)

sup
ss∈F×{g∗}

1

n

∑
i∈[n]

`d
(
ssqi,di , s

t
qi,di

)
− E`d

(
ssq,d, s

t
qi,di

)
≤ ESn

48KL`d√
n

∫ ∞
0

√
logN(u,F) du. (7)

Here, g∗ is a fixed document encoder andN(u, ·) denotes the u-covering number of a function class.

Note that Eq. 6 and Eq. 7 corresponds to uniform deviation when we train without and with a frozen
document encoder, respectively. It is clear that the bound in Eq. 7 is lower than Eq. 6 (due to absence
of N(u,G) term which is always larger than 1), which alludes to desirable impact of employing a
frozen document encoder (in terms of deviation in train and test performance). When we further
employ EmbedDistill (e.g., with the loss in Eq. 5), it regularizes the function class of query encoders;
effectively, reducing it to F′ with |F′| ≤ |F|. This has further desirable implication for reducing the
uniform deviation bounds as N(u,F′) ≤ N(u,F).

6 EXPERIMENTS
We now conduct a comprehensive evaluation of the proposed distillation approach. Specifically, we
highlight the utility of the proposed approach for both DE to DE and CE to DE distillation. We also
showcase the benefits of combining our distillation approach with query generation methods.

6.1 EXPERIMENTAL SETUP

Benchmarks and evaluation metrics. We focus on two popular IR benchmarks — Natural Ques-
tions (NQ; Kwiatkowski et al. 2019b) and MSMARCO (Nguyen et al., 2016), which focus on finding
the most relevant passage/document given a question and a search query, respectively. NQ provides
both standard test and dev sets, whereas MSMARCO has only standard dev set publicly available.
In what follows, we use the terms query (document) and question (passages) interchangeably. For
NQ, we use the standard full recall (strict) as well as the relaxed recall metric (Karpukhin et al.,
2020) to evaluate the retrieval performance. For MSMARCO, we focus on the standard metrics
Mean Reciprocal Rank (MRR)@10, and normalized Discounted Cumulative Gain (nDCG)@10.
See Appendix D for a detailed discussion on these evaluation metrics.
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Method MRR@10 nDCG@10
82M 16M 82M 16M

Train student directly 29.7 26.3 35.2 31.4
+ Distill from teacher 31.6 28.4 37.2 33.5
+ Inherit doc embeddings 32.4 30.2 38.0 35.8
+ Query embedding matching 32.8 31.9 38.6 37.6
+ Query generation 33.0 32.0 38.8 37.7

Train student only using embedding
matching and inherit doc embeddings 32.7 31.8 38.5 37.5

+ Query generation 33.0 31.8 38.9 37.5

Table 2: Performance of various DE models on MSMARCO
dev set. A teacher model (110M parameter RoBERTa-base
models as both encoders) achieving MRR@10 of 33.1 and
nDCG@10 of 38.8 is used. The table shows performance of
the symmetric DE student model (82M or 16M transformer
as both encoders), and asymmetric DE student model (82M
or 16M transformer as query encoder and document embed-
dings inherited from the teacher).

Model architectures. We follow
the standard Transformers-based
IR model architectures similar
to Karpukhin et al. (2020); Qu et al.
(2021); Oğuz et al. (2021). Our CE
model is based on a RoBERTa-base
model (Liu et al. (2019); 12-layer,
768 dim, 124M parameters). We
utilized various sizes of DE models
based on RoBERTa-base, Dis-
tilRoBERTa (Sanh et al. (2019);
6-layer, 768 dim, 82M parameters –
2/3 of base), or RoBERTa-mini (Turc
et al. (2019); 4-layer, 256 dim, 16M
parameters – 1/8 of base). For query
generation (cf. Sec. 4.3), we employ
BART-base (Lewis et al., 2020), an
encoder-decoder model, to generate
similar questions from each training
example’s input question (query). We randomly mask 10% of tokens and inject zero mean Gaussian
noise with σ = {0.1, 0.2} between the encoder and decoder. See Appendix E for details.

6.2 DE TO DE DISTILLATION

For both NQ and MSMARCO, teacher DE models are based on RoBERTa-base model (see Ap-
pendix F for the training details). For DE to DE distillation, we consider two kinds of configurations
for the student DE model: (1) Symmetric. We use identical question and document encoders. We
evaluate DistilRoBERTa and RoBERTa-mini for both datasets. (2) Asymmetric. The student DE
model inherits its document embeddings from the teacher DE model, which are not trained during
the distillation. For query encoder, we use DistilRoBERTa or RoBERTa-mini which are smaller than
the teacher document encoder.

Student DE model training. We train student DE models using a combination of (i) one-hot loss
(cf. Eq. 8 in Appendix A) on training data; (ii) distillation loss in (cf. Eq. 10 in Appendix A); and
(iii) embedding matching loss in Eq. 5. We used [CLS]-pooling for all student encoders. Unlike
DPR (Karpukhin et al., 2020), we do not use hard negatives from BM25 or other models, which
greatly simplifies our distillation procedure.

Results and discussion. To understand the impact of various proposed configurations and losses,
we train models by sequentially adding components and evaluate on NQ and MSMARCO dev set
as shown in Table 1 and 2 , respectively. (See Table 5 in Appendix G.1 for performance on NQ in
terms of the relaxed recall.) We begin by training a symmetric DE without distillation. As expected,
moving to distillation brings in considerable gains.

Next, we swap the student document encoder with document embeddings from the teacher (non-
trainable), which leads to a good jump in the performance. Now we can introduce EmbedDistill with
Eq. 5 for aligning query representations between student and teacher. The two losses are combined
with weight of 1.0 and 5.0 for NQ and MSMARCO, respectively. This improves performance
significantly, e.g., it provides∼ 5 and∼ 9 points increase in recall@5 on NQ with students based on
DistilRoBERTa and RoBERTa-mini, respectively. We further explore the utility of EmbedDistill in
aligning the teacher and student embedding spaces in Appendix H.1.

On top of the two losses (standard distillation and embedding matching), we also employ
REmb,Q(t, s;Q

′) from Sec. 4.3 on 2 additional questions (per input question) generated from BART
for further gain. We also try a variant where we eliminate the standard distillation loss and only
employ the embedding matching loss in Eq. 5 along with inheriting document embedding from
the teacher. This configuration without the standard distillation loss leads to excellent performance
(with query generation again providing additional gains).

It is worth highlighting that DE models trained with the proposed methods (e.g. asymmetric DE
with embedding matching and generation) achieve 99% of the performance in both NQ/MSMARCO
tasks with a query encoder that is half the size of that of the teacher. Furthermore, even with 1/8th
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Method #Layers R@20 R@100
DPR (Karpukhin et al., 2020) 12 78.4 85.4
DPR + PAQ (Oğuz et al., 2021) 12 84.0 89.2
DPR + PAQ (Oğuz et al., 2021) 24 84.7 89.2
ACNE (Xiong et al., 2021) 12 81.9 87.5
RocketQA (Qu et al., 2021) 12 82.7 88.5
MSS-DPR (Sachan et al., 2021) 12 84.0 89.2
MSS-DPR (Sachan et al., 2021) 24 84.8 89.8

Our teacher 12 (2×124M) 80.7 87.3
Student w/ proposed method 6 (82M) 80.4 86.8
Student w/ proposed method 4 (16M) 77.4 85.3

Table 3: Performance of EmbedDistill for DE to DE dis-
tillation on NQ test set. Note that the prior work men-
tioned in the table rely on techniques such as negative
mining and multi-stage training. In contrast, we explore
the orthogonal direction of embedding-matching that im-
proves single-stage distillation, which can be combined
with the aforementioned techniques.

size of the query encoder, our proposal
can achieve 91-97% of the performance.
This is particularly useful for latency
critical applications with minimal im-
pact on the final performance.

Finally, we take our best student mod-
els for NQ based on the dev set, i.e., one
trained using only embedding match-
ing loss with inherited document embed-
ding and using data augmentation from
query generation, and evaluate it on the
NQ test set (cf. Table 3). We compare
with various prior work and note they
worked with considerably bigger models
in terms of depth (12 or 24 layers) and
width (upto 1024 dims), while our ap-
proach obtains competitive performance
with fewer than 50% of the parameters.
Note that, even with 6 layers, our student model is very close (99%) to its teacher.

6.3 CE TO DE DISTILLATION Method MRR@10
[CLS]-pooled teacher 37.1
Dual-pooled teacher 37.0

Standard distillation from [CLS]-pooled teacher 33.0
+Joint matching 32.4

Standard distillation from Dual-pooled teacher 33.3
+Query matching 33.7

Table 4: Performance of DE models distilled
from [CLS]-pooled and Dual-pooled CE models
on MSMARCO. While both teacher models per-
form similarly, embedding matching-based distil-
lation only works with the Dual-pooled teacher.
See Appendix G for nDCG@10 metric.

We consider two CE teachers for MSMARCO:
a standard [CLS]-pooled CE teacher, and the
Dual-pooled CE teacher (cf. Sec. 4.2). Both
teachers are based on RoBERTa-base and
trained on triples in the training set for 300K
steps with cross-entropy loss.

Student DE model training. We consid-
ered the following distillation variants: stan-
dard score-based distillation from the [CLS]-
pooled teacher, and our novel Dual-pooled CE
teacher (with and without embedding matching
loss). For each variant, we initialize encoders of the student DE model with two RoBERTa-base
models and train for 500K steps on the training triples. We performed the naı̈ve joint embedding
matching for the [CLS]-pooled teacher (cf. Sec. 4.2) and employed the query embedding matching
(cf. Eq.5) for the Dual-pooled CE teacher. In either case, embedding-matching loss is added on top
of the standard cross entropy loss with the weight of 1.0 (when used).

Results and discussion. Table 4 evaluates the effectiveness of the dual pooling and the embedding
matching for CE to DE distillation. As described in Sec. 4.2, the traditional [CLS]-pooled teacher did
not provide any useful embedding for the embedding matching (see Appendix H.2 for the further
analysis of the resulting embedding space). However, with the Dual-pooled teacher, embedding
matching does boost student’s performance.

7 CONCLUSION

We propose EmbedDistill — a novel distillation method for IR that goes beyond simple score match-
ing. We specialize it to distill a DE model into another DE model by (a) reusing the teacher’s
document encoder in the student and (b) aligning query embeddings of the teacher and student.
This simple approach delivers immediate quality and computational gains in practical deployments
and we demonstrate them on MSMARCO and NQ benchmarks. We show that query generation
technique further improves the performance of the distilled student. We generalize the proposed
approach to distill a CE model to a DE model and show the benefits on MSMARCO. Finally, our
theoretical analysis alludes to the favorable implications of both embedding matching and inheriting
document encoder in DE to DE distillation setting. A more comprehensive and systematic analysis
of embedding matching-based distillation for IR is an exciting avenue for future research.
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Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. IEEE
Transactions on Big Data, 7(3):535–547, 2021. doi: 10.1109/TBDATA.2019.2921572.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 6769–6781, Online, November 2020. Association for Computational Linguistics.

Omar Khattab and Matei Zaharia. ColBERT: Efficient and Effective Passage Search via Contextual-
ized Late Interaction over BERT, pp. 39–48. Association for Computing Machinery, New York,
NY, USA, 2020. ISBN 9781450380164.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
Petrov. Natural questions: A benchmark for question answering research. Transactions of the
Association for Computational Linguistics, 7:452–466, 2019a. doi: 10.1162/tacl a 00276. URL
https://aclanthology.org/Q19-1026.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:453–466, 2019b.

Michel Ledoux and Michel Talagrand. Probability in Banach spaces. Springer-Verlag, 1991.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova. Latent retrieval for weakly supervised open
domain question answering. In Anna Korhonen, David R. Traum, and Lluı́s Màrquez (eds.),
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A LOSS FUNCTIONS

Here, we state various (per-example) loss functions that most commonly define training objectives
for IR models. Typically, one hot training with original label is performed using softmax-based
cross-entropy loss functions:

`
(
sq,di

,yi
)
= −

∑
j∈[L]

yi,j · log
( exp(s(qi, di,j))∑
j′∈[L]

exp(s(qi, di,j′))

)
. (8)

Alternatively, it’s also common to employ an one-vs-all loss function based on binary cross-entropy
loss as follows:

`
(
sq,di

,yi
)
= −

∑
j∈[L]

(
yi,j · log

( 1

1 + exp(−s(qi, di,j))

)
+

(1− yi,j) · log
( 1

1 + exp(s(qi, di,j))

))
. (9)

As for distillation, one can define a distillation objective based on the softmax-based cross-entropy
loss as3:

`d
(
ssq,di

, stq,di

)
= −

∑
j∈[L]

(
exp(sti,j)∑

j′∈[L] exp(s
t
i,j′)
· log

( exp(ssi,j)∑
j′∈[L] exp(s

s
i,j′)

))
, (10)

where sti,j := st(qi, di,j) and ssi,j := ss(qi, di,j) denote the teacher and student scores, respectively.
On the other hand, the distillation objective with the binary cross-entropy takes the form:

`d
(
ssq,di

, stq,di

)
= −

∑
j∈[L]

(
1

1 + exp(−sti,j)
· log

( 1

1 + exp(−ssi,j)

)
+

1

1 + exp(sti,j)
· log

( 1

1 + exp(ssi,j)

))
. (11)

Finally, distillation based on the meas square error (MSE) loss (aka. logit matching) employs the
following loss function:

`d
(
ssq,di

, stq,di

)
=
∑
j∈[L]

(
st(qi, di,j)− ss(qi, di,j)

)2
. (12)

B DUAL POOLING DETAILS

In this work, we focus on two kinds of dual pooling strategies:

• Special tokens-based dual pooling. Let poolCLS and poolSEP denote the pooling opera-
tions that return the embeddings of the [CLS] and [SEP] tokens, respectively. We define

embtq←(q,d) = poolCLS
(
Enct(õ)

)
,

embtd←(q,d) = poolSEP
(
Enct(õ)

)
, (13)

where õ denotes the input token sequence to the Transformers-based encoder, which con-
sists of { query, document, special } tokens.

• Segment-based weighted-mean dual pooling. Let Enct(õ)|Q and Enct(õ)|D denote the
final query token embeddings and document token embeddings produced by the encoder,
respectively. We define the proxy query and document embeddings

embtq←(q,d) = meanwt

(
Enct(õ)|Q

)
,

embtd←(q,d) = meanwt

(
Enct(õ)|D

)
, (14)

where meanwt(·) denotes the weighted mean operation. We employ the specific weighting
scheme where each token receives a weight equal to the inverse of the square root of the
token-sequence length.

3It is common to employ temperature scaling with softmax operation. We do not explicitly show the tem-
perature parameter for ease of exposition.
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C DEFERRED DETAILS AND POOFS FROM SECTION 5

In this section we present more precise statements and proofs of Proposition 1 and 2 (stated infor-
mally in Section 5 of the main text) along with the necessary background. First, for the ease of
exposition, we define new notation which will facilitate theoretical analysis in this section.

Notation Denote the query and document encoders as f : Q→ Rk and g : D→ Rk for the student,
and F : Q→ Rk, G : D→ Rk for the teacher (in the dual-encoder setting). With q denoting a query
and d denoting a document, f(q) and g(d) then denote query and document embeddings by the
student. We define F (q) and G(d) similarly for embeddings by the teacher.4

C.1 BOUND ON THE EXPECTED RISK

Proposition 3 (Formal statement of Proposition 1). Given an example (q, d, y) ∈ Q ×D × {0, 1},
let sf,g(q, d) = f(q)T g(d) be the scores assigned to the (q, d) pair by a dual-encoder model with
f and g as query and document encoders, respectively. Let ` and `d be the binary cross-entropy
loss (cf. Eq. 9 with L = 1) and the distillation-specific loss based on it (cf. Eq. 11 with L = 1),
respectively. In particular,

`(sF,G(q, d), y) := −y log σ
(
F (q)>G(d)

)
− (1− y) log

[
1− σ

(
F (q)>G(d)

)]
`d(s

f,g(q, d), sF,G(q, d)) := −σ
(
F (q)>G(d)

)
· log σ

(
f(q)>g(d)

)
−

[1− σ
(
F (q)>G(d)

)
] · log

[
1− σ

(
f(q)>g(d)

)]
,

where σ is the sigmoid function. Assume that

1. All encoders f, g, F, and G have the same output dimension k ≥ 1.

2. There exist KQ,KD ∈ (0,∞) such that supq∈Qmax {‖f(q)‖2, ‖F (q)‖2} ≤ KQ and
supd∈Dmax {‖g(d)‖2, ‖G(d)‖2} ≤ KD.

Given a sample {(qi, di, yi)}
i.i.d.∼ P(q, d, y), we have

E

[
1

n

n∑
i=1

`d
(
sf,g(qi, di), s

F,G(qi, di)
)
− E`

(
sF,G(q, d), y

)]
≤ 2KQE [‖g(d)−G(d)‖2] +

2KDE [‖f(q)− F (q)‖2] +KQKDE(q,d,y)

∣∣σ (F (q)>G(d))− y∣∣ .
Proof of Proposition 3. We first note that the distillation loss can be rewritten as

`d
(
sf,g(q, d), sF,G(q, d)

)
=
(
1− σ(F (q)>G(d)

)
f(q)>g(d) + γ(−f(q)>g(d)),

where γ(v) := log[1+ ev] is the softplus function. Similarly, the one-hot (label-dependent) loss can
be rewritten as

`
(
sF,G(q, d), y

)
= (1− y)F (q)>G(d) + γ(−F (q)>G(d)).

As a shorthand, define

R̃(f, g) :=
1

n

n∑
i=1

`d
(
sf,g(qi, di), s

F,G(qi, di)
)
,

R(F,G) := E(q,d,y)∼P(q,d,y)
[
`
(
sF,G(q, d), y

)]
,

as the empirical risk based on the distillation loss, and the population risk based on the label-
dependent loss, respectively. With this notation, the quantity to upper bound can be rewritten as

E
[
R̃(f, g)−R(F,G)

]
= E


:=�1︷ ︸︸ ︷

R̃(f, g)− R̃(f,G)+

:=�2︷ ︸︸ ︷
R̃(f,G)− R̃(F,G)+

:=�3︷ ︸︸ ︷
R̃(F,G)−R(F,G)

 .
(15)

4Note that, as per the notations in the main text, we have (f, g) = (EncsQ,Enc
s
D) and (F,G) =

(EnctQ,Enc
t
D). Similarly, we have (embtq, emb

t
d) = (f(q), g(d)) and (embtq, emb

t
d) = (F (q), G(d)).
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We start by bounding E[�1] as

E[�1] = E

[
1

n

n∑
i=1

`d
(
sf,g(qi, di), s

F,G(qi, di)
)
− 1

n

n∑
i=1

`d
(
sf,G(qi, di), s

F,G(qi, di)
)]

= E
[
`d
(
sf,g(q, d), sF,G(q, d)

)
− `d

(
sf,G(q, d), sF,G(q, d)

)]
= E

[(
1− σ(F (q)>G(d))

)
f(q)>g(d) + γ(−f(q)>g(d))

]
− E

[(
1− σ(F (q)>G(d))

)
f(q)>G(d) + γ(−f(q)>G(d))

]
= E

[
f(q)>(g(d)−G(d))

(
1− σ(F (q)>G(d))

)
+ γ(−f(q)>g(d))− γ(−f(q)>G(d))

]
(a)

≤ E
[
f(q)>(g(d)−G(d))

(
1− σ(F (q)>G(d))

)
+
∣∣f(q)>g(d)− f(q)>G(d)∣∣]

(b)

≤ E
[
‖f(q)‖‖g(d)−G(d)‖

(
1− σ(F (q)>G(d))

)
+ ‖f(q)‖‖g(d)−G(d)‖

]
≤ KQE

[
‖g(d)−G(d)‖2

(
2− σ(F (q)>G(d))

)]
≤ 2KQE [‖g(d)−G(d)‖2] (16)

where at (a) we use the fact that γ is a Lipschitz continuous function with Lipschitz constant 1, and
at (b) we use Cauchy-Schwarz inequality.

Similarly for E[�2], we proceed as

E[�2] = E

[
1

n

n∑
i=1

`d
(
sf,G(qi, di), s

F,G(qi, di)
)
− 1

n

n∑
i=1

`d
(
sF,G(qi, di), s

F,G(qi, di)
)]

= E
[(
1− σ(F (q)>G(d))

)
f(q)>G(d) + γ(−f(q)>G(d))

]
− E

[(
1− σ(F (q)>G(d))

)
F (q)>G(d) + γ(−F (q)>G(d))

]
= E

[
G(d)>(f(q)− F (q))

(
1− σ(F (q)>G(d))

)
+ γ(−f(q)>G(d))− γ(−F (q)>G(d))

]
≤ E

[
‖G(d)‖‖f(q)− F (q)‖+

∣∣f(q)>G(d)− F (q)>G(d)∣∣]
≤ 2KDE [‖f(q)− F (q)‖2] . (17)

E[�3] can be bounded as

E[�3] = E[R̃(F,G)−R(F,G)]
= E(q,d,y)

[
`d
(
sF,G(q, d), sF,G(q, d)

)
− `
(
sF,G(q, d), y

)]
= E(q,d,y)

[(
1− σ(F (q)>G(d))

)
F (q)>G(d) + γ(−F (q)>G(d))

]
− E(q,d,y)

[
(1− y)F (q)>G(d) + γ(−F (q)>G(d))

]
= E(q,d,y)

[{
1− σ(F (q)>G(d))− (1− y)

}
F (q)>G(d)

]
≤ KQKDE(q,d,y)

∣∣σ(F (q)>G(d))− y∣∣ . (18)

Combining (15), (16), (17), and (18) gives the result.

C.2 UNIFORM DEVIATION BOUND

Let F denote the class of functions that map queries in Q to their embeddings in Rk via the query
encoder. Define G analogously for the doc encoder, which consists of functions that map documents
in D to their embeddings in Rk. To simplify exposition, we assume that each training example
consists of a single relevant or irrelevant document for each query, i.e., L = 1 in Section 3. Let

FG = {(q, d) 7→ f(q)>g(d) | f ∈ F, g ∈ G}

Given Sn = {(qi, di, yi) : i ∈ [n]}, let N(ε,H) denote the ε-covering number of a function class H
with respect to L2(Pn) norm, where ‖h‖2L2(Pn)

:= ‖h‖2n := 1
n

∑n
i=1 ‖h(qi, di)‖22. Depending on

the context, the functions in H may map to R or Rd.
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Proposition 4. Let st be scorer of a teacher model and `d be a distillation loss function which is
L`d -Lipschitz in its first argument. Let the embedding functions in F and G output vectors with `2
norms at most K. Define the uniform deviation

En(F,G) = sup
f∈F,g∈G

1

n

∑
i∈[n]

`d
(
f(qi)

>g(di), s
t
qi,di

)
− Eq,d`d

(
f(q)>g(d), stq,d

)
.

For any g∗ ∈ G, we have

ESn
En(F,G) ≤ ESn

48KL`d√
n

∫ ∞
0

√
logN(u,F) + logN(u,G) du,

ESnEn(F, {g∗}) ≤ ESn

48KL`d√
n

∫ ∞
0

√
logN(u,F) du.

Proof of Proposition 4. We first symmetrize excess risk to get Rademacher complexity, then bound
the Rademacher complexity with Dudley’s entropy integral.

For a training set Sn, the empirical Rademacher complexity of a class of functions H that maps
Q×D to R is defined by

Radn(H) = Eσ sup
h∈H

1

n

n∑
i=1

εih(qi, di),

where {εi} denote i.i.d. Rademacher random variables taking the value in {+1,−1} with equal
probability. By symmetrization (Bousquet et al., 2004) and the fact that `d is L`d -Lipschitz in its
first argument, we get

ESn
En(F,G) ≤ 2L`dESn

Radn(FG).

Then, Dudley’s entropy integral (see, e.g., Ledoux & Talagrand, 1991) gives

Radn(FG) ≤
12√
n

∫ ∞
0

√
logN(u,FG) du.

From Lemma 1 with KQ = KD = K, for any u > 0,

N(u,FG) ≤ N
( u

2K
,F
)
N
( u

2K
,G
)
.

Putting these together,

ESnEn(F,G) ≤
24L`d√

n

∫ ∞
0

√
logN(u/2K,F) + logN(u/2K,G) du. (19)

Following the same steps with G replaced by {g∗}, we get

ESnEn(F, {g∗}) ≤
24L`d√

n

∫ ∞
0

√
logN(u/2K,F) du (20)

By changing variable in Eq. 19 and Eq. 20, we get the stated bounds.

For f : Q→ Rk, g : D→ Rk, define fg : Q×D→ R by fg(q, d) = f(q)>g(d).

Lemma 1. Let f1, . . . , fN be an ε-cover of F and g1, . . . , gM be an ε-cover of G in L2(Pn) norm.
Let supf∈F supq∈Q ‖f(q)‖2 ≤ KQ and supg∈G supd∈D ‖g(d)‖2 ≤ KD. Then,

{figj | i ∈ [N ], j ∈ [M ]}
is a (KQ +KD)ε-cover of FG.

Proof of Lemma 1. For arbitrary f ∈ F, g ∈ G, there exist f̃ ∈ {f1, . . . , fN}, g̃ ∈ {g1, . . . , gM}
such that ‖f − f̃‖n ≤ ε, ‖g − g̃‖n ≤ ε. It is sufficient to show that ‖fg − f̃ g̃‖n ≤ (KQ +KD)ε.
Decomposing using triangle inequality,

‖fg − f̃ g̃‖n = ‖fg − fg̃ + fg̃ − f̃ g̃‖n
≤ ‖fg − fg̃‖n + ‖fg̃ − f̃ g̃‖n. (21)
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To bound the first term, using Cauchy-Schwartz inequality, we can write

1

n

n∑
i=1

(
f(qi)

>g(di)− f̃(qi)>g̃(di)
)2
≤ sup

q∈Q
‖f(q)‖22 ·

1

n

n∑
i=1

‖(g − g̃)(di)‖22.

Therefore
‖fg − fg̃‖n ≤ KQ‖g − g̃‖n ≤ KQε.

Similarly
‖fg̃ − f̃ g̃‖n ≤ KD‖f − f̃‖n ≤ KDε

Plugging these in Eq. 21, we get

‖fg − f̃ g̃‖n ≤ (KQ +KD)ε.

This completes the proof.

D EVALUATION METRIC DETAILS

For NQ, we evaluate models with full strict recall metric, meaning that the model is required to
find a golden passage from the whole set of candidates (21M). Specifically, for k ≥ 1, recall@k or
R@k denotes the percentage of questions for which the associated golden passage is among the k
passages that receive the highest relevance scores by the model. In addition, we also present results
for relaxed recall metric considered by Karpukhin et al. (2020), where R@k denotes the percentage
of questions where the corresponding answer string is present in at least one of the k passages with
the highest model (relevance) scores.

For MSMARCO, we follow the standard evaluation metrics Mean Reciprocal Rank(MRR)@10
and normalized Discounted Cumulative Gain (nDCG)@10, which are computed with respect to
BM25 generated 1000 candidate passages for each query. We report 100 × MRR@10 and 100
×nDCG@10, as per the convention followed in the prior works.

E QUERY GENERATION DETAILS

We introduced query generation to encourage geometric matching in local regions, which can aid
in transferring more knowledge in confusing neighborhoods. As expected, this further improves
the distillation effectiveness on top of the embedding matching. To focus on the local regions,
we generate queries from the observed examples by adding local perturbation in the data manifold
(embedding space). Specifically, we employ an off-the-shelf encoder-decoder model (BART). First,
we embed an observed query in the corresponding dataset. Second, we add a small perturbation
to the query embedding. Finally, we decode the perturbed embedding to generate a new query in
the input space. Formally, the generated query x′ given an original query x takes the form x′ =
Dec(Enc(x) + ε), where Enc() and Dec() correspond to the encoder and the decoder from the off-
the-shelf model, respectively, and ε is an isotropic Gaussian noise. Furthermore, we also randomly
mask the original query tokens with a small probability. We generate two new queries from an
observed query and use them as additional data points during our distillation procedure.

As a comparison, we tried adding the same size of random sampled queries instead of the ones
generated via the method described above. That did not show any benefit, which justifies the use of
our query/question generation method.

F ADDITIONAL TRAINING DETAILS

Training for teacher models. For the teacher DE model on NQ, we initialize its question and
document encoders by two pre-trained RoBERTa-base models (12 layers). Following (Oğuz et al.,
2021), the model is further pre-trained on PAQ (Lewis et al., 2021) for 800K steps, and then fine-
tuned on NQ train set with the help of in-batch negatives (Karpukhin et al., 2020) for 40K step.

As for the teacher DE model on MSMARCO, it’s known that directly training a DE model on
MSMARCO training set leads to poor performance (Menon et al., 2022). Thus, we first train a
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[CLS]-pooled CE model on triples in MSMARCO training set by using cross-entropy loss. We
subsequently use the same triples to distill the resulting CE model to a DE model that has two pre-
trained RoBERTa-base models as its two encoders. We utilize cross-entropy based distillation loss
in Eq. 10.

Optimization. For all of our experiments, we use ADAM weight decay optimizer with a short warm
up period and a linear decay schedule. We use the initial learning rate of 10−5 and 2.8 × 10−5 for
experiments on NQ and MSMARCO, respectively. We chose batch sizes to be 128.

G ADDITIONAL EXPERIMENT RESULTS

G.1 ADDITIONAL EXPERIMENT RESULTS ON NQ

See Table 5 for the performance of various DE models on NQ, as measured by the relaxed recall
metric.

Method Recall@5 Recall@20 Recall@100
82M 16M 82M 16M 82M 16M

Train student directly 82.0 61.7 84.4 79.9 93.8 90.6
+ Distill from teacher 69.8 64.6 84.5 79.7 92.4 89.2
+ Inherit document embeddings 76.3 67.5 88.7 81.0 94.3 89.6
+ Query embedding matching 80.6 75.9 91.4 88.1 96.3 94.5
+ Query generation 80.7 77.1 91.6 89.2 96.5 94.9

Train student only using embedding
matching and inherit doc embeddings 81.0 75.5 91.7 87.3 96.4 93.8

+ Query generation 81.5 76.8 91.8 88.5 96.5 94.5

Table 5: Relaxed recall performance of various student DE models on NQ dev set, including sym-
metric DE student model (82M or 16M transformer for both encoders), and asymmetric DE student
model (82M or 16M transformer as query encoder and document embeddings inherited from the
teacher). All distilled students used the same teacher (110M parameter RoBERTa-base models as
both encoders), with the performance (in terms of relaxed recall) of Recall@5 = 82.5, Recall@20 =
92.6, Recall@100 = 97.1.

G.2 ADDITIONAL EXPERIMENT RESULTS ON MSMARCO

See Table 6 for CE to DE distillation results on MSMARCO, as measured by the nDCG@10 metric.

Method nDCG@10
[CLS]-pooled teacher 43.0
Dual-pooled teacher 42.8

Standard distillation from [CLS]-teacher 38.8
+Joint matching 38.0

Standard distillation from Dual-pooling teacher 39.2
+Query matching 39.4

Table 6: Performance of CE to DE distillation on MSMARCO, as measured by the nDCG@10
metric. As for the teacher CE models, we consider two kinds of CE models based on two different
pooling mechanism.

H EMBEDDING ANALYSIS

H.1 DE TO DE DISTILLATION

Traditional score matching-based distillation might not result in transfer of relative geometry from
teacher to student. To assess this, we look at the discrepancy between the teacher and student
query embeddings for all q, q′ pairs: ‖embtq − embtq′‖ − ‖embsq − embsq′‖. Note that the analysis
is based on NQ, and we focus on the teacher and student DE models based on RoBERTa-base
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Figure 4: Histogram of teacher-student distance discrepancy in queries.

q1: macy credit card 
      phone number
q2: phone number to 
     experian credit bureau

q4: is phosphorus diatomic

q5: what is a cancer 
     doctor called 

q3: colloids chemistry 
     definition

q6: physiological disease 
     examples 
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Figure 5: Illustration of geometry expressed by [CLS]-pooled CE and our Dual-pooled CE model
on 6 queries from MSMARCO and 12 passages based on pairwise distance matrix across these 72
pairs. [CLS]-pooled CE embeddings degenerates as all positive and negative query-document pairs
almost collapse to two points and fail to capture semantic information. In contrast, our Dual-pooled
CE model leads to much richer representation that can express semantic information.

and DistilRoBERTa, respectively. As evident from Fig. 4, embedding matching loss significantly
reduces this discrepancy.

H.2 CE TO DE DISTILLATION

We qualitatively look at embeddings from CE model in Fig. 5. The embedding embtq,d from [CLS]-
pooled CE model does not capture semantic similarity between query and document as it is solely
trained to classify whether the query-document pair is relevant or not. In contrast, the (proxy) query
embeddings embtq←(q,d) from our Dual-pooled CE model with reconstruction loss do not degener-
ate and its embeddings groups same query whether conditioned on positive or negative document
together. Furthermore, other related queries are closer than unrelated queries. Such informative
embedding space would aid distillation to a DE model via embedding matching.
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