
Under review as a conference paper at ICLR 2023

SWARM PARALLELISM: TRAINING LARGE MODELS
CAN BE SURPRISINGLY COMMUNICATION-EFFICIENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Many deep learning applications benefit from using large models with billions of
parameters. Training these models is notoriously expensive due to the need for
specialized HPC clusters. In this work, we consider alternative setups for training
large models: using cheap “preemptible” instances or pooling existing resources
from multiple regions. We analyze the performance of existing model-parallel
algorithms in these conditions and find configurations where training larger models
becomes less communication-intensive. Based on these findings, we propose
SWARM parallelism1, a model-parallel training algorithm designed for poorly
connected, heterogeneous and unreliable devices. SWARM creates temporary
randomized pipelines between nodes that are rebalanced in case of failure. We
empirically validate our findings and compare SWARM parallelism with existing
large-scale training approaches. Finally, we combine our insights with compression
strategies to train a large Transformer language model with 1B shared parameters
(≈13B before sharing) on preemptible T4 GPUs with less than 200Mb/s network.

1 INTRODUCTION

For the past several years, the deep learning community has been growing ever more reliant on
large pretrained neural networks. Perhaps the easiest example of this trend is natural language
processing, where the parameter count of models grew from hundreds of millions (Vaswani et al.,
2017; Radford et al., 2018; Devlin et al., 2019) to billions (Narayanan et al., 2021; Rosset; Raffel
et al., 2020; Wang & Komatsuzaki, 2021; Sun et al., 2021) to hundreds of billions (Brown et al., 2020;
Lepikhin et al., 2020; Fedus et al., 2021; Chowdhery et al., 2022; Rae et al., 2021) with consistent
gains in quality (Kaplan et al., 2020). Likewise, many models in computer vision are reaching the
billion-parameter scale (Henighan et al., 2020; Ramesh et al., 2021; Zhai et al., 2021; Riquelme et al.,
2021; Dai et al., 2021; Dhariwal & Nichol, 2021).

At this scale, the models no longer fit into a single accelerator and require specialized training
algorithms that partition the parameters across devices (Krizhevsky et al., 2012; Dean et al., 2012).
While these model-parallel algorithms use different partitioning strategies, they all share the need
to perform intensive device-to-device communication (Narayanan et al., 2019; 2021). Furthermore,
if a single device fails, it will cause the entire training process to break down. As a result, model-
parallel algorithms are typically deployed in dedicated high-performance computing (HPC) clusters
or supercomputers (Shoeybi et al., 2019; Rajbhandari et al., 2020; Narayanan et al., 2021).

This kind of infrastructure is notoriously expensive to build and operate, available only to a few
well-funded universities and large corporations (Larrea et al., 2019; Strohmaier et al., 2021; Langston,
2020). Most researchers, especially in developing nations, cannot afford the experiments necessary
for a proper evaluation of their ideas. This ultimately limits the scientific progress for many important
research areas, such as solving NLP problems in “non-mainstream” languages.

Several recent works propose more cost-efficient distributed training strategies leveraging fleets of
temporary “preemptible” instances that can be dynamically allocated in regions with low demand for
hardware and electricity, making them 2–10 times cheaper than their dedicated counterparts (Harlap
et al., 2017). Another solution is to train in “collaborations” by pooling together preexisting resources
or using the help of volunteers (Diskin et al., 2021; Atre et al., 2021; Ryabinin & Gusev, 2020).

1SWARM parallelism is a backronym for Stochastically Wired Adaptively Rebalanced Model Parallelism.

1

Under review as a conference paper at ICLR 2023

However, training in either of those setups requires specialized algorithms that can adapt to the
changing number of workers, utilize heterogeneous devices and recover from hardware and network
failures. While there are several practical algorithms for unreliable hardware (Kijsipongse et al.,
2018; Lin et al., 2020; Ryabinin et al., 2021), they can only train relatively small models that fit into
the memory of the smallest device. This limits the practical impact of cost-efficient strategies, as most
computationally demanding workloads typically train models with billions of parameters.

In this work, we aim to find a practical way of training large neural networks using unreliable
heterogeneous devices and slow interconnect. We begin by studying the impact of model size on
the balance between communication and computation costs of pipeline-parallel training. Specifically,
increasing the size leads computation costs to grow faster, thus rendering the bottleneck of Internet-
grade network speeds negligible. This idea inspires the creation of SWARM parallelism — a pipeline-
parallel approach designed to handle peer failures by using randomized routing that prioritizes stable
peers with lower latency. In addition, this approach periodically rebalances the pipeline stages, which
allows handling devices with different hardware and network speeds.

In summary, we make the following contributions:

• We carefully analyze the existing model-parallel training techniques and formulate the
“Square-Cube Law” of distributed training: a counterintuitive observation that, for some
methods, training larger models can actually decrease the network overhead.

• We develop SWARM parallelism, a decentralized model-parallel algorithm2 that leverages
randomized fault-tolerant pipelines and dynamically rebalances nodes between pipeline
stages. To the best of our knowledge, this is the first algorithm capable of billion-scale
training on heterogeneous unreliable devices with slow interconnect.

• Combining insights from the square-cube law, SWARM parallelism, and 8-bit compression,
we show that it is possible to train a billion-scale Transformer language model with high
throughput on preemptible low-power T4 GPUs with < 200Mb/s network bandwidth.

2 BACKGROUND & RELATED WORK

2.1 MODEL-PARALLEL TRAINING

Over the past decade, the deep learning community has developed several algorithms for training
large neural networks. Most of them work by dividing the model between multiple workers, which is
known as model parallelism. The exact way in which these algorithms divide the model determines
their training performance and the maximum model size they can support.

Traditional model parallelism. Historically, the first general strategy for training large models was
to assign each device to compute a subset of each layer (e.g., a subset of neurons), then communicate
the results between each other (Krizhevsky et al., 2012; Ben-Nun & Hoefler, 2019; Tang et al.,
2020). Since each device stores a fraction of layer parameters, this technique can train models with
extremely wide layers that would not fit into a single GPU. However, applying traditional model
parallelism to deep neural networks comes at a significant performance penalty, as it requires all-to-all
communication after each layer. As a result, while intra-layer parallelism is still widely used (Shazeer
et al., 2018; Rajbhandari et al., 2020), it is usually applied within one physical server in combination
with other strategies (Krizhevsky, 2014; Chilimbi et al., 2014; Jia et al., 2019; Narayanan et al., 2021).

Pipeline parallelism circumvents the need for expensive all-to-all communication by assigning
each device with one or several layers (Huang et al., 2019). During the forward pass, each stage
applies its subset of layers to the inputs supplied by the previous stage, then sends the outputs of the
last layer to the next stage. For the backward pass, this process is reversed, with each pipeline stage
passing the gradients to the same device that previously supplied it with input activations.

To better utilize the available devices, the pipeline must process multiple microbatches per step,
allowing each stage to run in parallel on a different batch of inputs. In practice, the number of
microbatches is limited by the device memory: this results in reduced device utilization when

2The code for our experiments can be found at github.com/iclr2023-submit/swarm

2

https://github.com/iclr2023-submit/swarm

Under review as a conference paper at ICLR 2023

processing the first and the last microbatches, known as the “bubble” overhead (Huang et al.,
2019). To combat this issue, subsequent studies propose using activation checkpointing, interleaved
scheduling, and even asynchronous training (Narayanan et al., 2019; 2021; Huang et al., 2019;
Shoeybi et al., 2019; Yang et al., 2019).

Aside from model parallelism, there two more strategies for training large models: data parallelism
with dynamic parameter loading (Rajbhandari et al., 2020) and model-specific algorithms such as
Mixture-of-Experts (Shazeer et al., 2017). We discuss these algorithms in Appendix B and compare
the performance of offloading with SWARM in Section 4.2 and Appendix E.

2.2 DISTRIBUTED TRAINING OUTSIDE HPC

The techniques described in Section 2.1 are designed for clusters of identical devices with rapid and
reliable communication, making them a natural fit for the HPC setup. As we discussed earlier, such
infrastructure is not always available, and a more cost-efficient alternative is to use “preemptible”
instances (Li et al., 2019; Zhang et al., 2020; Harlap et al., 2017) or volunteer computing (Kijsipongse
et al., 2018; Ryabinin & Gusev, 2020; Atre et al., 2021; Diskin et al., 2021). However, these
environments are more difficult for distributed training: each machine can disconnect abruptly due to
a failure or preemption. Besides, since there is a limited number of available instances per region,
training at scale often requires operating across multiple locations or using different instance types.

To handle unstable peers and heterogeneous devices, the research community has proposed elastic
training and asynchronous distributed methods, correspondingly. We describe these approaches in
more detail in Appendix B; most importantly, they rely on data-parallel training, and thus each node
must be able to run the entire model.

By contrast, the largest models have billions of parameters, which exceeds the memory limits of
most low-end computers. However, model-parallel algorithms are not redundant, which makes them
more vulnerable to hardware and network failures. As far as we know, there are two methods that
allow training large models with unreliable devices (Ryabinin & Gusev, 2020; Thorpe et al., 2022):
however, the first one supports only specific architectures and requires at least 1Gb/s bandwidth,
whereas the second one has no publicly available implementations, relies on redundant computations
for fault tolerance and considers only the homogeneous setup.

2.3 COMMUNICATION EFFICIENCY AND COMPRESSION

In this section, we discuss techniques that address training with limited network bandwidth or high
latency, such as gradient compression or overlapping computation with communication phases. These
techniques are often necessary for distributed training without high-speed connectivity, because
otherwise the performance of the system becomes severely bottlenecked by communication.

Efficient gradient communication. Data-parallel training requires synchronization of gradients
after each backward pass, which can be costly if the model has many parameters or the network
bandwidth is limited. Deep Gradient Compression (Lin et al., 2018) approaches this problem by
sparsifying gradients before synchronizing and correcting the momentum to work with sparse updates.
PowerSGD (Vogels et al., 2019) compresses gradients via factorization and uses error feedback to
compensate the approximation errors over time. Dettmers (2015) uses nonlinear 8-bit quantization to
compress gradients before communication. We evaluate this method along with compression-aware
architectures and leave the exploration of more advanced approaches to future work.

Besides gradient compression, another effective technique is to use layer sharing (Lan et al., 2020),
which reduces the number of aggregated gradients by a factor of how many times each layer is reused.

Overlapping communication and computation. Model, pipeline, and data parallelism all have
synchronization points and require transfer of gradients or activations. One way to reduce the transfer
cost is to overlap communication with computation, hiding the synchronization latency. This overlap
can be achieved by combining parallelization techniques (Krizhevsky, 2014; Rajbhandari et al., 2020),
by synchronizing gradients layer-by-layer in lockstep with backpropagation (Paszke et al., 2019),
or by using pure pipeline parallelism (Huang et al., 2019; Narayanan et al., 2019). However, pure
pipeline parallelism requires many stages to effectively hide the latency. To overcome this problem,
we study inter-layer compression techniques that work well even with relatively few pipeline stages.

3

Under review as a conference paper at ICLR 2023

“input”
n×n

⇒ × = ⇒ ×
“input”

n×n
“weight”

n×n
“output”

n×n

O(n3) computation O(n2) communication

Stage k Stage k+1

Figure 1: (Left) An intuitive explanation of the square-cube law,
(Right) Relative device utilization for Transformer layers using
Tesla V100 and 500Mb/s network bandwidth. See Section 4.1
and Appendix F for a detailed experimental setup.

base
768 units
1 layer

xxlarge
4096 units

1 layer

gpt-3
12288 units

1 layer

ours
4096 units
12 layers

0%

50%

100%

18%

82%

32%

68%

82%

18%

89%

11%

Processing time Idle time

3 COMMUNICATION-EFFICIENT MODEL PARALLELISM

In this section, we outline our approach for training large models with heterogeneous unreliable
poorly-connected devices. To that end, the section is organized as follows:

• Section 3.1 analyzes how existing model-parallel algorithms scale with model size and find
conditions where increasing training large models leads to less intense network usage;

• Section 3.2 describes SWARM parallelism — a decentralized algorithm for training large
models under the challenges outlined in Section 2.2.

3.1 THE SQUARE-CUBE LAW OF DEEP LEARNING

To better understand the general scaling properties of model parallelism, we must abstract away from
the application-specific parameters, such as model architecture, minibatch size, and system design.
To that end, we first consider a simplified model of pipeline parallelism. Our “pipeline” consists of
k stages, each represented by n×n matrices. Intuitively, the first matrix represents input data and
all subsequent matrices are linear “layers”, applied to that data. This model abstracts away from
application-specific details, allowing us to capture general relationships that hold for many models.

During “training”, stages iteratively perform matrix multiplication and then send the output to the
subsequent pipeline stage over a throughput-limited network. These two operations have different
scaling properties. The compute time for naïve matrix multiplication scales as O(n3). While this
can be reduced further in theory (Coppersmith & Winograd, 1990; Alman & Williams, 2021), it is
only used for very large matrices (Zhang & Gao, 2015; Fatahalian et al., 2004; Huang et al., 2020).
Therefore, deep learning on GPUs typically relies on O(n3) algorithms.

In turn, the communication phase requires at most O(n2) time to transfer a batch of n×n activations
or gradients. Therefore, as we increase the model size, the computation time grows faster than
communication time, regardless of which matrix multiplication algorithm we use. We refer to this
idea as the square-cube law after the eponymous principle in physics (Galileo, 1638; Allen, 2013).

This principle applies to many real-world neural network architectures, albeit with some confounding
variables. In convolutional neural networks Fukushima (1980), the computation time scales as
O(BHWC2) and the communication is O(BHWC), where B, H , W and C stand for batch
size, height, width and the number of channels. Recurrent neural networks (Rumelhart et al.,
1986; Hochreiter & Schmidhuber, 1995) need O(BLH2) compute in terms of batch size, sequence
length, and hidden size, respectively, and O(BLH) or O(BH) communication, depending on the
architecture. With the same notation, Transformers (Vaswani et al., 2017) require O(BL2H) compute
for attention layers, O(BLH2) compute for feedforward layers, but only O(BLH) communication.

Based on these observations, we conclude that pipeline parallelism naturally grows more
communication-efficient with model size. More precisely, increasing the hidden dimension will
reduce the communication load per device per unit of time, making it possible to train the model
efficiently with lower network bandwidth and higher latency3. While the exact practical ramifications
depend on the use case, Section 4.1 demonstrates that some of the larger models trained with pipeline
parallelism can already train at peak efficiency with only hundreds of Mb/s bandwidth.

3Latency slows the communication down by a constant factor that also grows less important with model size.

4

Under review as a conference paper at ICLR 2023

T4 T4

T4

T4

T4
T4

T4

T4

T4

T4

T4

T4

A100

T4

T4

T4T4

STAGE 1
SWARM

STAGE 2
SWARM

STAGE 3
SWARM21 3

Pipeline stages

Activation links
Normal
Failure
Rewired A100

T4
device switches stage

state

Workers

Load balancing

move

Alive Dead

Figure 2: An overview of SWARM parallelism, illustrating both normal operation, device failures
and adaptive rebalancing. One of the workers at stage 2 leaves; another peer from stage 3 takes its
place by downloading the latest stage 2 parameters and statistics from peers.

In theory, the square-cube principle also applies to intra-layer parallelism, but using this technique at
500 Mb/s would become practical only for layer sizes of more than 216 units. Data-parallel training
with sharding or offloading (Ren et al., 2021) does not scale as well, as its communication time scales
with the size of model parameters instead of activations. However, it may be possible to achieve
similar scaling with gradient compression algorithms.

3.2 SWARM PARALLELISM

Traditional pipeline parallelism can be communication-efficient, but this alone is not enough for our
setups. Since training devices can have different compute and network capabilities, a pipeline formed
out of such devices would be bottlenecked by the single “weakest link”, i.e., the participant with
the smallest training throughput. As a result, the more powerful nodes along the pipeline would be
underutilized due to either lack of inputs or slow subsequent stages. On top of that, if any node fails
or leaves training prematurely, it will stall the entire training procedure.

In order to overcome these two challenges, we replace the rigid pipeline structure with randomized
temporary “pipelines” that are wired stochastically on the fly during each iteration. Each participant
can send their outputs to any peer that serves the next pipeline stage. Thus, if one peer has significantly
more compute than others, it can process inputs from multiple predecessors and distribute its outputs
across several weaker peers to maximize utilization. Furthermore, if a participant leaves during
training, its predecessors can reroute their requests to its neighbors, and joining peers can download
up-to-date parameters and optimizer statistics from remaining workers at the chosen stage. This
allows the training to proceed as long as there is at least one active participant per pipeline stage (we
elaborate on fault tolerance of SWARM in Appendix A).

The resulting system consists of several consecutive swarms, as depicted in Figure 2. Peers within one
swarm serve the same pipeline stage (i.e., the same subset of layers with the same parameters). We
assume that the model consists of similar “blocks” and thus partition it into evenly sized stages; we
leave the study of better strategies (Huang et al., 2019; Narayanan et al., 2019) for our setting to future
work. During the forward pass, peers receive microbatches of inputs from random predecessors
(determined on each iteration) and send activations to random peers in the next stage. For the
backward pass, peers receive gradients for outputs, compute gradients for layer inputs and accumulate
gradients for parameters. Once enough gradients are accumulated, peers form groups, run All-Reduce
to average gradients within their respective pipeline stages and run a global optimizer step.

SWARM can also use Delayed Parameter Updates (DPU) (Ren et al., 2021) to further improve device
utilization by performing the optimizer step in parallel with processing the next batch. While it
is technically asynchronous, DPU was shown to achieve similar per-iteration convergence as fully
synchronous training, both theoretically (Stich & Karimireddy, 2020; Arjevani et al., 2020) and
empirically (Ren et al., 2021; Diskin et al., 2021).

Each peer has queues for incoming and outgoing requests to maintain high GPU utilization under
latency and to compensate for varying network speeds. Similarly to other pipeline implementa-
tions (Huang et al., 2019; Narayanan et al., 2021), SWARM uses activation checkpointing (Griewank
& Walther, 2000; Chen et al., 2016) to reduce the memory footprint.

5

Under review as a conference paper at ICLR 2023

Stochastic wiring. To better utilize heterogeneous devices and recover from faults, we dynamically
“wire” each input through each stage and pick devices in proportion to their training throughput. To
achieve this, SWARM peers run “trainer” processes that route training data through the “stages” of
SWARM, balancing the load between peers.

For each pipeline stage, trainers discover which peers currently serve this stage via a Distributed Hash
Table (DHT, Maymounkov & Mazieres, 2002). Trainers then assign microbatch to one of those peers
in proportion to their performance. If that peer fails, it is temporarily banned and the microbatch is
sent to another peer within the same stage. Note that trainers themselves do not use GPUs and have
no trainable parameters, making it possible to run multiple trainers per peer.

Each trainer assigns data independently using Interleaved Weighted Round-Robin (Katevenis et al.,
1991; Tabatabaee et al., 2020) scheduler. Our specific implementation of IWRR uses a priority queue:
each peer is associated with the total processing time over all previous requests. A training minibatch
is then routed to the node that has the smallest total processing time. Thus, for instance, if device A
takes half as long to process a sample as device B, the routing algorithm will choose A twice as often
as B. Finally, if a peer does not respond or otherwise fails to process the minibatch, trainer will “ban”
this peer until it reannounces itself, which is done every few minutes.

Curiously, different trainers can have different throughput estimates for the same device based on
the network topology. For instance, if training nodes are split between two cloud regions, a given
peer’s trainer will have a higher throughput estimate for peers in the same data center. In other
words, trainers automatically adjust to the network topology by routing more traffic to peers that are
“nearby”. For a more detailed description of stochastic wiring, please refer to Appendix C.

Adaptive swarm rebalancing. While stochastic wiring allows for automatic rebalancing within a
stage, additional cross-stage rebalancing may be required to maximize throughput, especially when
devices are very unreliable. As we described earlier in Section 2.2, our workers can join and leave
training at any time. If any single pipeline stage loses too many peers, the remaining ones will have
to deal with an increased processing load, which will inevitably form a bottleneck.

SWARM parallelism addresses this problem by allowing peers to dynamically switch between
“pipeline stages” to maximize the training throughput. Every T seconds, peers measure the utilization
rate of each pipeline stage as the queue size. Peers from the most underutilized pipeline stage will
then switch to the most overutilized one (see Figure 2 for an overview and Appendix D for a formal
description and complexity analysis), download the latest training state from their new neighbors and
continue training. Similarly, if a new peer joins midway through training, it is assigned to the optimal
pipeline stage by following the same protocol. As a side effect, if one pipeline stage requires more
compute than others, SWARM will allocate more peers to that stage (see Appendix H).

4 EXPERIMENTS

4.1 COMMUNICATION EFFICIENCY AT SCALE

Before we can meaningfully evaluate SWARM parallelism, we must verify our theoretical observa-
tions on communication efficiency. Here we run several controlled experiments that measure the GPU
utilization and network usage for different model sizes, using the Transformer architecture (Vaswani
et al., 2017) that has been widely adopted in various fields (Lin et al., 2021). To decouple the
performance impact from other factors, we run these experiments on homogeneous V100 GPU nodes
that serve one pipeline stage over the network with varying latency and bandwidth. We use a batch
size of 1 and sequences of 512 tokens; the complete configuration is deferred to Appendix F.

First, we measure how the model size affects the computation to communication ratio at 500 Mb/s
network bandwidth in both directions. We consider 4 model configurations: the base configuration
from the BERT paper (Devlin et al., 2019), “xxlarge" (“large” with dmodel=4096), which is used in
several recent works (Lan et al., 2020; Sun et al., 2021; He et al., 2020), and a GPT-3-scale model
with dmodel=12288 (Brown et al., 2020). We also evaluate a modified Transformer architecture
(“Ours”) as defined in Section 4.3 with dmodel=4096, 3 layers per pipeline stage and 8-bit quantized
activations. As we demonstrate in Appendix K, this compression strategy can significantly reduce
network usage with little effect on convergence. In the first three configurations, the model consists
of 12 Transformer layers placed on 12 servers with a single GPU; in the last one, there are 4 servers,
each hosting 3 layers. Appendix F contains FLOP and parameter counts of each configuration.

6

Under review as a conference paper at ICLR 2023

base
768 units
1 layer

xxlarge
4096 units

1 layer

gpt-3
12288 units

1 layer

ours
4096 units
12 layers

0ms

2000ms

4000ms

6000ms

568ms
1204ms

5317ms

1158ms

7059ms

832ms

66ms/298ms

GPU Computation
Waiting for network

Figure 3: Pipeline computation and idle time per
batch at 500 Mb/s bandwidth.

Table 1: Relative device utilization at 500 Mb/s
bandwidth and varying network latency.

Latency
(RTT)

Relative GPU utilization
(100% - idle time)

base xxlarge GPT-3 Ours

none 18.0% 32.1% 82.1% 89.5%
10ms 11.8% 28.9% 79.3% 87.2%
50ms 4.88% 20.1% 70.3% 79.5%
100ms 2.78% 14.9% 60.2% 71.5%
200ms 1.53% 10.1% 48.5% 59.2%

As depicted in Figure 1 (right) and Figure 3, larger models achieve better GPU utilization rate in the
same network conditions, since their communication load grows slower than computation. More
importantly, even at 500 Mb/s, the resulting GPU idle time can be pushed into the 10–20% range,
either naturally for GPT-3-sized models or through activation compression for smaller models. In
addition, large models maintain most of their training efficiency at the 100ms latency (Table 1), which
is roughly equivalent to training on different continents (Verizon, 2021).

4.2 DETAILED PERFORMANCE COMPARISON

Here we investigate how SWARM parallelism compares to existing systems for training large models:
GPipe (Huang et al., 2019) and ZeRO-Offload (Ren et al., 2021). The purpose of this section is
to compare the training throughput in “ideal” conditions (with homogeneous reliable devices and
balanced layers), as deviating from these conditions makes it infeasible to train with baseline systems.
We benchmark individual SWARM components in preemptible setups in Appendices H and I.

We evaluate training performance for sequences of 4 Transformer layers of identical size distributed
over 16 workers. The pipeline does not contain embeddings or language modeling heads, as it would
result in imbalance between the stages. Similarly to Section 4.1, we use two layer configurations:
“xxlarge” (dmodel=4096, dFFN=16384, 32 heads) and “GPT-3” (dmodel=12288, dFFN=49152, 96
heads). The microbatch size is 4 for “xxlarge” and 1 for “GPT-3”, and the sequence length is 512.

To provide a more detailed view of the training performance, we measure two separate performance
statistics: the training throughput and the All-Reduce time. The training throughput measures the
rate at which the system can process training sequences, i.e., run forward and backward passes. In
turn, the All-Reduce time is the time each system spends to aggregate those accumulated gradients
across devices. The total time per step can be computed as batch_size / throughput +
all_reduce_time. Intuitively, training with small batch sizes is more sensitive to the All-Reduce
time (since the algorithm needs to run All-Reduce more frequently) and vice versa.

Hardware setup: Each worker uses a V100-PCIe GPU with 16 CPU threads (E5 v5-2660v4) and
128 GB RAM. The only exception is for ZeRO-Offload with “GPT-3” layers, where we had to double
the RAM size because the system required 190GB at peak. Similarly to Section 4.1, each worker can
communicate at a 500 Mb/s bandwidth for both upload and download for a total of 1 Gb/s. In terms
of network latency, we consider two setups: with no latency, where workers communicate normally
within the same rack, and with latency, where we inject additional 100± 50ms latency in the kernel4.

GPipe configuration: We use a popular PyTorch-based implementation of GPipe5. The model is
partitioned into 4 stages repeated over 4 model-parallel groups. To fit into the GPU memory for the
“GPT-3” configuration, we offload the optimizer into RAM using ZeRO-Offload. Before averaging,
we use PyTorch’s built-in All-Reduce to aggregate gradients. We evaluate both the standard GPipe
schedule and the 1F1B (Narayanan et al., 2019) schedule.

ZeRO-Offload configuration: Each worker runs the entire model individually, then exchanges
gradients with peers. For “xxlarge”, we use the official implementation from Ren et al. (2021).
However, for “GPT-3”, we found that optimizer offloading still does not allow us to fit 4 layers into
the GPU. For this reason, we also offload the model parameters using the offload_param option.

4More specifically, tc qdisc add dev <...> root netem delay 100ms 50ms
5The source code is available at https://github.com/kakaobrain/torchgpipe

7

https://github.com/kakaobrain/torchgpipe

Under review as a conference paper at ICLR 2023

Table 2: Training performance for different model sizes.

System Throughput, samples/s All-Reduce time, s/round

No latency Latency No latency Latency

“GPT-3”

SWARM 0.619 0.558 441.7 455.4
GPipe 0.633 0.477 403 469.61F1B 0.638 0.482
Offload 0.382 0.382 1527.9 1635.4

“xxlarge”

SWARM 2.358 2.161 45.36 51.269
GPipe 2.541 0.957 44.17 64.8281F1B 2.550 0.987
Offload 3.08 3.08 168.71 252.26

0 10B 20B 30B 40B 50B
Tokens processed

2

3

4

5

6

7

Tr
ai

ni
ng

 lo
ss

SWARM
DDP

Figure 4: Training convergence comparison.

In turn, when training smaller models, ZeRO-Offload outperforms both SWARM and GPipe. This
result aligns with our earlier observations in Figure 1, where the same model spent most of the time
waiting for the communication between pipeline stages.

We also observe that ZeRO-Offload takes longer to aggregate gradients, likely because each peer must
aggregate the entire model, whereas in SWARM and GPipe, peers aggregate a single pipeline stage.
The variation between All-Reduce time in GPipe and SWARM is due to implementation differences.
Overall, SWARM is competitive to HPC baselines even in an idealized homogeneous environment.

4.3 LARGE-SCALE DISTRIBUTED TRAINING

Finally, to verify the efficiency of SWARM parallelism in a practical scenario, we conduct a series of
large-scale distributed experiments using preemptible (unreliable) cloud T4 and A100 GPUs over a
public cloud network. In all experiments below, we train a Transformer language model similar to
prior work (Brown et al., 2020; Wang & Komatsuzaki, 2021; Black et al., 2021) with 1.01 billion
parameters in total: because of layer sharing, it is equivalent to a 13B model from (Brown et al., 2020)
in terms of compute. Our model consists of 3 stages, each containing a single Transformer decoder
block with dmodel = 4096 and 16 layers per pipeline stage. We use 8-bit compression (Dettmers
et al., 2021) for activations and gradients to reduce the communication intensity.

All workers within each stage serve the same group of layers independently of other stages, and all
layers within each group use the same set of parameters, similarly to the ALBERT model (Lan et al.,
2020). On top of this, the first stage also contains the embedding layer, and the last stage includes
the language modeling head. Additional training setup details are covered in Appendix G. SWARM
nodes perform rebalancing every T = 300 seconds, and trainers measure device performance using a
moving average with α = 0.1. However, as we show in Appendix H, the throughput of SWARM is
not very sensitive to the choice of these hyperparameters.

First, to verify that model parallelism with asynchronous updates does not have significant conver-
gence issues, we train the model on the Pile (Gao et al., 2020) dataset with 400 preemptible T4
instances, each hosting one accelerator. As a baseline, we use regular data-parallel training with
offloading on 128 A100 GPUs. We run both experiments for approximately 4 weeks and compare the
learning curves.

Figure 4 shows the results of this experiment: it can be seen that the training dynamics of two
approaches are indeed similar, which demonstrates the viability of SWARM parallelism for het-
erogeneous and poorly-connected devices. We also use the T4 node preemption data of this run
to demonstrate the necessity of adaptive rebalancing in a pipeline of unreliable devices; refer to
Appendix H for the description.

In the next experiment, we aim to measure the pipeline throughput in different hardware conditions
and to compare it with an estimate of best-case pipeline performance. We consider several setups: first,
we use the same 400 preemptible T4 nodes; in another setup, we use 7 instances with 8 A100 GPU
each; finally, we combine these fleets to create a heterogeneous setup. We examine the performance
of the pipeline both with weight sharing and with standard, more common, Transformer blocks.

8

Under review as a conference paper at ICLR 2023

Table 3: Pipeline throughput, layer sharing.

Hardware
setup

Throughput,
samples/s

Optimal
bandwidth, Mb/s

Actual Best-case Upload Download

T4 17.6 19.2 317.8 397.9
A100 16.9 25.5 436.1 545.1
T4 & A100 27.3 — — —

Table 4: Pipeline throughput, default Transformer.

Hardware
setup

Throughput,
samples/s

Actual Best-case

T4 8.8 288.1
A100 8.0 382.5
T4 & A100 13.4 —

We measure the number of randomly generated samples processed by the pipeline both in our
infrastructure and the ideal case that ignores all network-related operations (i.e., has infinite bandwidth
and zero latency). The ideal case is emulated by executing a single pipeline stage 3 times locally on a
single server and multiplying the single-node estimates by the number of nodes.

As demonstrated in the left two columns of Table 3 and Table 4, asynchronous training of compute-
intensive models with 8-bit compressed activations regardless of the architecture specifics allows
us to achieve high performance without a dedicated networking solution. Furthermore, the load
balancing algorithm of SWARM allows us to dynamically and efficiently utilize different hardware
without being bottlenecked by slower devices.

Next, we use the same load testing scenario to estimate the bandwidth required to fully utilize each
device type in the above infrastructure. For this, we measure the average incoming and outgoing
bandwidth on the nodes that serve the intermediate stage of the pipeline. We summarize our findings
in the right two columns of Tables 3 and 4: it turns out that with layer sharing and 8-bit compression,
medium-performance GPUs (such as T4) can be saturated even with moderate network speeds. Based
on our main experiment, the optimal total bandwidth is roughly 100Mb/s higher than the values
reported in Table 3 due to gradient averaging, loading state from peers, maintaining the DHT and
streaming the training data. Although training over the Internet with more efficient hardware might
indeed underutilize the accelerator, this issue can be offset by advanced compression strategies such
as compression-aware architectures or layer sharing, as shown in Table 3.

Lastly, we evaluate the efficiency of adaptive peer rebalancing proposed in Section 3.2. We use
statistics of the number of active T4 nodes from the 32-hour segment of the experiment described in
the beginning of this section. We compare our strategy with a baseline that has no rebalancing and
with an always optimal strategy. Appendix H contains experiment details and analysis of the results
shown in Figure 5 and Table 5; notably, our strategy provides a significant improvement over the
baseline that grows over time. Moreover, this improvement persists even with infrequent rebalancing.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Time, hours

12

13

14

15

16

17

Sa
m

pl
es

/s
ec

on
d

No rebalancing
SWARM, T=60
SWARM, T=300
Optimal

Figure 5: Throughput of rebalancing methods over time.

Table 5: Relative throughput comparison of
pipeline rebalancing methods.

Rebalancing % of optimal

Overall First 1h Last 1h

None 82.7 99.0 45.4
T = 300 95.8 99.4 88.9
T = 60 97.6 99.8 91.7

5 CONCLUSION

In this work, we analyze and evaluate the feasibility of high-throughput training of billion-scale
neural networks on unreliable peers with low network bandwidth. We find that this is feasible by
training very large models with pipeline parallelism. To this end, we propose SWARM parallelism to
overcome the challenges of pipeline parallelism for preemptible devices with heterogeneous network
bandwidths and computational throughputs. We show that SWARM parallelism is highly effective at
rebalancing peers and maximizing the aggregate training throughput. We also show that training large
models with SWARM parallelism and compression-aware architectures enables high utilization
of cheap preemptible instances with slow interconnect. As such, our work makes training of large
models accessible to researchers that do not have access to dedicated compute infrastructure.

9

Under review as a conference paper at ICLR 2023

REPRODUCIBILITY STATEMENT

The core contributions of our work are described either in the paper itself (including the supplementary
material) or in the submitted anonymized code. We also report all key components of the experimental
setup (the models that are evaluated, relevant hyperparameters and the hardware environment) in
the paper. If there are specific aspects of our work with unclear reproducibility that we have not
addressed during submission, we are happy to provide them during the discussion period.

ETHICS STATEMENT

This paper studies several approaches towards making the training of large neural networks more
accessible. In principle, this goal has no negative issues by itself, especially when we compare
collaborative or cost-efficient training to less transparent and more expensive alternatives, such
as proprietary models trained in HPC clusters. However, broader access to pretraining of large
language models may have implications that need to be addressed by further research: for instance,
the existence of bias and toxicity in outputs generated by such models has been observed by several
independent research organizations.

REFERENCES

Alham Fikri Aji and Kenneth Heafield. Making asynchronous stochastic gradient descent work for
transformers, 2019.

David H. Allen. How Mechanics Shaped the Modern World. 2013. ISBN 9783319017013.

Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix multiplica-
tion. In SODA, 2021.

Yossi Arjevani, Ohad Shamir, and Nathan Srebro. A tight convergence analysis for stochastic gradient
descent with delayed updates. In Aryeh Kontorovich and Gergely Neu (eds.), Proceedings of
the 31st International Conference on Algorithmic Learning Theory, volume 117 of Proceedings
of Machine Learning Research, pp. 111–132. PMLR, 08 Feb–11 Feb 2020. URL https://
proceedings.mlr.press/v117/arjevani20a.html.

Medha Atre, Birendra Jha, and Ashwini Rao. Distributed deep learning using volunteer computing-
like paradigm, 2021.

Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. CoRR,
abs/1607.06450, 2016. URL http://arxiv.org/abs/1607.06450.

Alexei Baevski and Michael Auli. Adaptive input representations for neural language modeling.
In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/forum?
id=ByxZX20qFQ.

Mandeep Baines, Shruti Bhosale, Vittorio Caggiano, Naman Goyal, Siddharth Goyal, Myle Ott,
Benjamin Lefaudeux, Vitaliy Liptchinsky, Mike Rabbat, Sam Sheiffer, Anjali Sridhar, and Min
Xu. Fairscale: A general purpose modular pytorch library for high performance and large scale
training. https://github.com/facebookresearch/fairscale, 2021.

Tal Ben-Nun and Torsten Hoefler. Demystifying parallel and distributed deep learning: An in-
depth concurrency analysis. ACM Comput. Surv., 52(4), aug 2019. ISSN 0360-0300. doi:
10.1145/3320060. URL https://doi.org/10.1145/3320060.

Sid Black, Gao Leo, Phil Wang, Connor Leahy, and Stella Biderman. GPT-Neo: Large Scale Autore-
gressive Language Modeling with Mesh-Tensorflow, March 2021. URL https://doi.org/
10.5281/zenodo.5297715. If you use this software, please cite it using these metadata.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,

10

https://proceedings.mlr.press/v117/arjevani20a.html
https://proceedings.mlr.press/v117/arjevani20a.html
http://arxiv.org/abs/1607.06450
https://openreview.net/forum?id=ByxZX20qFQ
https://openreview.net/forum?id=ByxZX20qFQ
https://github.com/facebookresearch/fairscale
https://doi.org/10.1145/3320060
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715

Under review as a conference paper at ICLR 2023

Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Ben-
jamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell,
M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33,
pp. 1877–1901. Curran Associates, Inc., 2020. URL https://proceedings.neurips.
cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174, 2016.

Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman. Project adam:
Building an efficient and scalable deep learning training system. In 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 14), pp. 571–582, Broomfield, CO, October
2014. USENIX Association. ISBN 978-1-931971-16-4. URL https://www.usenix.org/
conference/osdi14/technical-sessions/presentation/chilimbi.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph,
Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M.
Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon
Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean,
Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways, 2022.

Adam Coates, Brody Huval, Tao Wang, David Wu, Bryan Catanzaro, and Ng Andrew. Deep learning
with cots hpc systems. In Sanjoy Dasgupta and David McAllester (eds.), Proceedings of the
30th International Conference on Machine Learning, volume 28 of Proceedings of Machine
Learning Research, pp. 1337–1345, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR. URL
https://proceedings.mlr.press/v28/coates13.html.

Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progressions. Jour-
nal of Symbolic Computation, 9(3):251–280, 1990. ISSN 0747-7171. doi: https://doi.org/
10.1016/S0747-7171(08)80013-2. URL https://www.sciencedirect.com/science/
article/pii/S0747717108800132. Computational algebraic complexity editorial.

Zihang Dai, Hanxiao Liu, Quoc V. Le, and Mingxing Tan. Coatnet: Marrying convolution and
attention for all data sizes. ArXiv, abs/2106.04803, 2021.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Marc’aurelio
Ranzato, Andrew Senior, Paul Tucker, Ke Yang, et al. Large scale distributed deep networks.
Advances in neural information processing systems, 25:1223–1231, 2012.

Tim Dettmers. 8-bit approximations for parallelism in deep learning. ICLR, 2015.

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-
wise quantization. CoRR, abs/2110.02861, 2021. URL https://arxiv.org/abs/2110.
02861.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In NAACL-HLT, 2019.

Prafulla Dhariwal and Alex Nichol. Diffusion models beat gans on image synthesis. CoRR,
abs/2105.05233, 2021. URL https://arxiv.org/abs/2105.05233.

Michael Diskin, Alexey Bukhtiyarov, Max Ryabinin, Lucile Saulnier, Quentin Lhoest, Anton Sinitsin,
Dmitriy Popov, Dmitry Pyrkin, Maxim Kashirin, Alexander Borzunov, Albert Villanova del
Moral, Denis Mazur, Ilia Kobelev, Yacine Jernite, Thomas Wolf, and Gennady Pekhimenko.
Distributed deep learning in open collaborations. CoRR, abs/2106.10207, 2021. URL https:
//arxiv.org/abs/2106.10207.

11

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chilimbi
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chilimbi
https://proceedings.mlr.press/v28/coates13.html
https://www.sciencedirect.com/science/article/pii/S0747717108800132
https://www.sciencedirect.com/science/article/pii/S0747717108800132
https://arxiv.org/abs/2110.02861
https://arxiv.org/abs/2110.02861
https://arxiv.org/abs/2105.05233
https://arxiv.org/abs/2106.10207
https://arxiv.org/abs/2106.10207

Under review as a conference paper at ICLR 2023

ElasticHorovod. Elastic Horovod. https://horovod.readthedocs.io/en/stable/
elastic_include.html. Accessed: 2021-10-04.

Kayvon Fatahalian, Jeremy Sugerman, and Pat Hanrahan. Understanding the efficiency of gpu
algorithms for matrix-matrix multiplication. pp. 133–137, 01 2004. doi: 10.1145/1058129.
1058148.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. arXiv preprint arXiv:2101.03961, 2021.

Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of
pattern recognition unaffected by shift in position. Biological Cybernetics, 36:193–202, 1980.

Galilei Galileo. Discorsi e dimostrazioni matematiche intorno a due nuove scienze. 1638.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The pile: An 800gb
dataset of diverse text for language modeling, 2020.

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. urlhttp://Skylion007. github.
io/OpenWebTextCorpus, 2019.

Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron C. Courville, and Yoshua Bengio.
Maxout networks. In Proceedings of the 30th International Conference on Machine Learning,
ICML 2013, Atlanta, GA, USA, 16-21 June 2013, volume 28 of JMLR Workshop and Conference
Proceedings, pp. 1319–1327. JMLR.org, 2013. URL http://proceedings.mlr.press/
v28/goodfellow13.html.

Andreas Griewank and Andrea Walther. Algorithm 799: revolve: an implementation of check-
pointing for the reverse or adjoint mode of computational differentiation. ACM Transactions on
Mathematical Software (TOMS), 26(1):19–45, 2000.

Aaron Harlap, Alexey Tumanov, Andrew Chung, Gregory R. Ganger, and Phillip B. Gibbons.
Proteus: Agile ml elasticity through tiered reliability in dynamic resource markets. In Proceedings
of the Twelfth European Conference on Computer Systems, EuroSys ’17, pp. 589–604, New
York, NY, USA, 2017. Association for Computing Machinery. ISBN 9781450349383. doi:
10.1145/3064176.3064182. URL https://doi.org/10.1145/3064176.3064182.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2015.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert
with disentangled attention, 2020.

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo
Jun, Tom B. Brown, Prafulla Dhariwal, Scott Gray, Chris Hallacy, Benjamin Mann, Alec Rad-
ford, Aditya Ramesh, Nick Ryder, Daniel M. Ziegler, John Schulman, Dario Amodei, and Sam
McCandlish. Scaling laws for autoregressive generative modeling, 2020.

S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Technical Report FKI-207-95, Fakultät
für Informatik, Technische Universität München, 1995. Revised 1996 (see www.idsia.ch/˜juergen,
www7.informatik.tu-muenchen.de/˜hochreit).

Jianyu Huang, Chenhan D. Yu, and Robert A. van de Geijn. Strassen’s algorithm reloaded on gpus.
ACM Trans. Math. Softw., 46(1), March 2020. ISSN 0098-3500. doi: 10.1145/3372419. URL
https://doi.org/10.1145/3372419.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, HyoukJoong
Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant neural
networks using pipeline parallelism. In Advances in Neural Information Processing Systems, pp.
103–112, 2019.

12

 https://horovod.readthedocs.io/en/stable/elastic_include.html
 https://horovod.readthedocs.io/en/stable/elastic_include.html
http://proceedings.mlr.press/v28/goodfellow13.html
http://proceedings.mlr.press/v28/goodfellow13.html
https://doi.org/10.1145/3064176.3064182
https://doi.org/10.1145/3372419

Under review as a conference paper at ICLR 2023

Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive mixtures
of local experts. Neural Computation, 3(1):79–87, March 1991. ISSN 0899-7667. doi: 10.1162/
neco.1991.3.1.79. URL https://doi.org/10.1162/neco.1991.3.1.79.

Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond data and model parallelism for deep neural
networks. In A. Talwalkar, V. Smith, and M. Zaharia (eds.), Proceedings of Machine Learning and
Systems, volume 1, pp. 1–13, 2019. URL https://proceedings.mlsys.org/paper/
2019/file/c74d97b01eae257e44aa9d5bade97baf-Paper.pdf.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models,
2020.

M. Katevenis, S. Sidiropoulos, and C. Courcoubetis. Weighted round-robin cell multiplexing in
a general-purpose atm switch chip. IEEE Journal on Selected Areas in Communications, 9(8):
1265–1279, 1991. doi: 10.1109/49.105173.

Ekasit Kijsipongse, Apivadee Piyatumrong, and Suriya U-ruekolan. A hybrid gpu cluster and
volunteer computing platform for scalable deep learning. The Journal of Supercomputing, 04 2018.
doi: 10.1007/s11227-018-2375-9.

Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks. CoRR,
abs/1404.5997, 2014. URL http://arxiv.org/abs/1404.5997.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger (eds.), Advances in Neural Information Processing Systems 25, pp.
1097–1105. Curran Associates, Inc., 2012. URL http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.
pdf.

Guillaume Lample, Alexandre Sablayrolles, Marc´ Aurelio Ranzato, Ludovic Denoyer, and Herve
Jegou. Large memory layers with product keys. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. dÁlché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems
32, pp. 8546–8557. Curran Associates, Inc., 2019. URL http://papers.nips.cc/paper/
9061-large-memory-layers-with-product-keys.pdf.

Zhen-Zhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu
Soricut. Albert: A lite bert for self-supervised learning of language representations. In International
Conference on Learning Representations, 2020.

Jennifer Langston. Microsoft announces new supercomputer, lays out vision for future ai work.
https://blogs.microsoft.com/ai/openai-azure-supercomputer/, 2020. Accessed: 2021-10-1.

Verónica Larrea, Wayne Joubert, Michael Brim, Reuben Budiardja, Don Maxwell, Matt Ezell,
Christopher Zimmer, Swen Boehm, Wael Elwasif, Sarp Oral, Chris Fuson, Daniel Pelfrey, Oscar
Hernandez, Dustin Leverman, Jesse Hanley, Mark Berrill, and Arnold Tharrington. Scaling the
Summit: Deploying the World’s Fastest Supercomputer, pp. 330–351. 12 2019. ISBN 978-3-030-
34355-2. doi: 10.1007/978-3-030-34356-9_26.

Dmitry Lepikhin, H. Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Y. Huang, M. Krikun, Noam
Shazeer, and Z. Chen. Gshard: Scaling giant models with conditional computation and automatic
sharding. ArXiv, abs/2006.16668, 2020.

Conglong Li, Minjia Zhang, and Yuxiong He. Curriculum learning: A regularization method for
efficient and stable billion-scale GPT model pre-training. CoRR, abs/2108.06084, 2021. URL
https://arxiv.org/abs/2108.06084.

Shigang Li, Tal Ben-Nun, Giorgi Nadiradze, Salvatore Digirolamo, Nikoli Dryden, Dan Alistarh, and
Torsten Hoefler. Breaking (global) barriers in parallel stochastic optimization with wait-avoiding
group averaging. IEEE Transactions on Parallel and Distributed Systems, pp. 1–1, 2020. ISSN
2161-9883. doi: 10.1109/tpds.2020.3040606. URL http://dx.doi.org/10.1109/TPDS.
2020.3040606.

13

https://doi.org/10.1162/neco.1991.3.1.79
https://proceedings.mlsys.org/paper/2019/file/c74d97b01eae257e44aa9d5bade97baf-Paper.pdf
https://proceedings.mlsys.org/paper/2019/file/c74d97b01eae257e44aa9d5bade97baf-Paper.pdf
http://arxiv.org/abs/1404.5997
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/9061-large-memory-layers-with-product-keys.pdf
http://papers.nips.cc/paper/9061-large-memory-layers-with-product-keys.pdf
https://arxiv.org/abs/2108.06084
http://dx.doi.org/10.1109/TPDS.2020.3040606
http://dx.doi.org/10.1109/TPDS.2020.3040606

Under review as a conference paper at ICLR 2023

Shijian Li, Robert J Walls, Lijie Xu, and Tian Guo. Speeding up deep learning with transient servers.
In 2019 IEEE International Conference on Autonomic Computing (ICAC), pp. 125–135. IEEE,
2019.

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized
algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic
gradient descent. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran As-
sociates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
f75526659f31040afeb61cb7133e4e6d-Paper.pdf.

Jiahuang Lin, Xin Li, and Gennady Pekhimenko. Multi-node bert-pretraining: Cost-efficient approach,
2020.

Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng Qiu. A survey of transformers, 2021.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. Deep Gradient Compression:
Reducing the communication bandwidth for distributed training. In The International Conference
on Learning Representations, 2018.

Petar Maymounkov and David Mazieres. Kademlia: A peer-to-peer information system based on the
xor metric. In International Workshop on Peer-to-Peer Systems, pp. 53–65. Springer, 2002.

Stephen Merity, Caiming Xiong, James Bradbury, and R. Socher. Pointer sentinel mixture models.
ArXiv, abs/1609.07843, 2017.

Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R. Devanur, Gre-
gory R. Ganger, Phillip B. Gibbons, and Matei Zaharia. Pipedream: Generalized pipeline
parallelism for dnn training. In Proceedings of the 27th ACM Symposium on Operating Sys-
tems Principles, SOSP ’19, pp. 1–15, New York, NY, USA, 2019. Association for Com-
puting Machinery. ISBN 9781450368735. doi: 10.1145/3341301.3359646. URL https:
//doi.org/10.1145/3341301.3359646.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary, Vijay
Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro, et al.
Efficient large-scale language model training on gpu clusters. arXiv preprint arXiv:2104.04473,
2021.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. In NAACL-HLT, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems,
pp. 8024–8035, 2019.

Bharadwaj Pudipeddi, Maral Mesmakhosroshahi, Jinwen Xi, and Sujeeth Bharadwaj. Training
large neural networks with constant memory using a new execution algorithm. arXiv preprint
arXiv:2002.05645, 2020.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language
understanding by generative pre-training. 2018. URL https://cdn.openai.com/
research-covers/language-unsupervised/language_understanding_
paper.pdf.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, Eliza Rutherford, Tom Hennigan,
Jacob Menick, Albin Cassirer, Richard Powell, George van den Driessche, Lisa Anne Hendricks,
Maribeth Rauh, Po-Sen Huang, Amelia Glaese, Johannes Welbl, Sumanth Dathathri, Saffron
Huang, Jonathan Uesato, John Mellor, Irina Higgins, Antonia Creswell, Nat McAleese, Amy Wu,

14

https://proceedings.neurips.cc/paper/2017/file/f75526659f31040afeb61cb7133e4e6d-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/f75526659f31040afeb61cb7133e4e6d-Paper.pdf
https://doi.org/10.1145/3341301.3359646
https://doi.org/10.1145/3341301.3359646
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf

Under review as a conference paper at ICLR 2023

Erich Elsen, Siddhant Jayakumar, Elena Buchatskaya, David Budden, Esme Sutherland, Karen
Simonyan, Michela Paganini, Laurent Sifre, Lena Martens, Xiang Lorraine Li, Adhiguna Kuncoro,
Aida Nematzadeh, Elena Gribovskaya, Domenic Donato, Angeliki Lazaridou, Arthur Mensch,
Jean-Baptiste Lespiau, Maria Tsimpoukelli, Nikolai Grigorev, Doug Fritz, Thibault Sottiaux,
Mantas Pajarskas, Toby Pohlen, Zhitao Gong, Daniel Toyama, Cyprien de Masson d’Autume,
Yujia Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin, Aidan Clark, Diego de Las Casas,
Aurelia Guy, Chris Jones, James Bradbury, Matthew Johnson, Blake Hechtman, Laura Weidinger,
Iason Gabriel, William Isaac, Ed Lockhart, Simon Osindero, Laura Rimell, Chris Dyer, Oriol
Vinyals, Kareem Ayoub, Jeff Stanway, Lorrayne Bennett, Demis Hassabis, Koray Kavukcuoglu,
and Geoffrey Irving. Scaling language models: Methods, analysis & insights from training gopher,
2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020. URL
http://jmlr.org/papers/v21/20-074.html.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimization
towards training a trillion parameter models. In SC, 2020.

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong He. Zero-infinity:
Breaking the gpu memory wall for extreme scale deep learning. arXiv preprint arXiv:2104.07857,
2021.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. arXiv preprint arXiv:2102.12092, 2021.

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A lock-free approach to
parallelizing stochastic gradient descent. In Advances in neural information processing systems,
pp. 693–701, 2011.

Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyan Yang, Minjia
Zhang, Dong Li, and Yuxiong He. Zero-offload: Democratizing billion-scale model training, 2021.

Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André Su-
sano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of experts.
CoRR, abs/2106.05974, 2021. URL https://arxiv.org/abs/2106.05974.

Corby Rosset. Turing-nlg: A 17-billion-parameter language model by microsoft.
https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-
model-by-microsoft/.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by
back-propagating errors. Nature, 323:533–536, 1986.

Max Ryabinin and Anton Gusev. Towards crowdsourced training of large neural networks using
decentralized mixture-of-experts. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and
H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 3659–3672. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/
file/25ddc0f8c9d3e22e03d3076f98d83cb2-Paper.pdf.

Max Ryabinin, Eduard Gorbunov, Vsevolod Plokhotnyuk, and Gennady Pekhimenko. Moshpit sgd:
Communication-efficient decentralized training on heterogeneous unreliable devices, 2021.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1715–1725, Berlin, Germany, August 2016. Association
for Computational Linguistics. doi: 10.18653/v1/P16-1162. URL https://aclanthology.
org/P16-1162.

Noam Shazeer. GLU variants improve transformer. CoRR, abs/2002.05202, 2020. URL https:
//arxiv.org/abs/2002.05202.

15

http://jmlr.org/papers/v21/20-074.html
https://arxiv.org/abs/2106.05974
https://proceedings.neurips.cc/paper/2020/file/25ddc0f8c9d3e22e03d3076f98d83cb2-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/25ddc0f8c9d3e22e03d3076f98d83cb2-Paper.pdf
https://aclanthology.org/P16-1162
https://aclanthology.org/P16-1162
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2002.05202

Under review as a conference paper at ICLR 2023

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538, 2017.

Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani, Penporn Koanantakool,
Peter Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff Young, Ryan Sepassi, and Blake A.
Hechtman. Mesh-tensorflow: Deep learning for supercomputers. CoRR, abs/1811.02084, 2018.
URL http://arxiv.org/abs/1811.02084.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using gpu model
parallelism. arXiv preprint arXiv:1909.08053, 2019.

Sebastian U. Stich and Sai Praneeth Karimireddy. The error-feedback framework: Sgd with delayed
gradients. Journal of Machine Learning Research, 21(237):1–36, 2020. URL http://jmlr.
org/papers/v21/19-748.html.

Erich Strohmaier, Jack Dongarra, Horst Simon, and Martin Meuer. Fugaku.
https://www.top500.org/system/179807/, 2021. Estimated energy consumption 29,899.23
kW. Accessed: 2021-10-4.

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Roformer: Enhanced transformer with
rotary position embedding, 2021.

Yu Sun, Shuohuan Wang, Shikun Feng, Siyu Ding, Chao Pang, Junyuan Shang, Jiaxiang Liu,
Xuyi Chen, Yanbin Zhao, Yuxiang Lu, Weixin Liu, Zhihua Wu, Weibao Gong, Jianzhong Liang,
Zhizhou Shang, Peng Sun, Wei Liu, Xuan Ouyang, Dianhai Yu, Hao Tian, Hua Wu, and Haifeng
Wang. ERNIE 3.0: Large-scale knowledge enhanced pre-training for language understanding and
generation. CoRR, abs/2107.02137, 2021. URL https://arxiv.org/abs/2107.02137.

Seyed Mohammadhossein Tabatabaee, Jean-Yves Le Boudec, and Marc Boyer. Interleaved weighted
round-robin: A network calculus analysis. In 2020 32nd International Teletraffic Congress (ITC
32), pp. 64–72, 2020. doi: 10.1109/ITC3249928.2020.00016.

Zhenheng Tang, Shaohuai Shi, Xiaowen Chu, Wei Wang, and Bo Li. Communication-efficient
distributed deep learning: A comprehensive survey, 2020.

Jakub M Tarnawski, Deepak Narayanan, and Amar Phanishayee. Piper: Multidimensional plan-
ner for dnn parallelization. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34,
pp. 24829–24840. Curran Associates, Inc., 2021. URL https://proceedings.neurips.
cc/paper/2021/file/d01eeca8b24321cd2fe89dd85b9beb51-Paper.pdf.

John Thorpe, Pengzhan Zhao, Jonathan Eyolfson, Yifan Qiao, Zhihao Jia, Minjia Zhang, Ravi
Netravali, and Guoqing Harry Xu. Bamboo: Making preemptible instances resilient for affordable
training of large dnns, 2022.

TorchElastic. PyTorch Elastic. https://pytorch.org/elastic. Accessed: 2021-10-04.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural
Information Processing Systems 30, pp. 5998–6008. Curran Associates, Inc., 2017. URL http:
//papers.nips.cc/paper/7181-attention-is-all-you-need.pdf.

Verizon. Monthly ip latency data, 2021. Accessed: 2021-10-05.

Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. Powersgd: Practical low-rank gradi-
ent compression for distributed optimization. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
14236–14245, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
d9fbed9da256e344c1fa46bb46c34c5f-Abstract.html.

16

http://arxiv.org/abs/1811.02084
http://jmlr.org/papers/v21/19-748.html
http://jmlr.org/papers/v21/19-748.html
https://arxiv.org/abs/2107.02137
https://proceedings.neurips.cc/paper/2021/file/d01eeca8b24321cd2fe89dd85b9beb51-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/d01eeca8b24321cd2fe89dd85b9beb51-Paper.pdf
https://pytorch.org/elastic
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://proceedings.neurips.cc/paper/2019/hash/d9fbed9da256e344c1fa46bb46c34c5f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/d9fbed9da256e344c1fa46bb46c34c5f-Abstract.html

Under review as a conference paper at ICLR 2023

Ben Wang and Aran Komatsuzaki. GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model.
https://github.com/kingoflolz/mesh-transformer-jax, May 2021.

Shang Wang, Yifan Bai, and Gennady Pekhimenko. Bppsa: Scaling back-propagation by parallel scan
algorithm. In I. Dhillon, D. Papailiopoulos, and V. Sze (eds.), Proceedings of Machine Learning
and Systems, volume 2, pp. 451–469, 2020. URL https://proceedings.mlsys.org/
paper/2020/file/96da2f590cd7246bbde0051047b0d6f7-Paper.pdf.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations, pp. 38–45, Online, October 2020. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos.6.

Bowen Yang, Jian Zhang, Jonathan Li, Christopher Ré, Christopher R. Aberger, and Christopher De
Sa. Pipemare: Asynchronous pipeline parallel dnn training. ArXiv, abs/1910.05124, 2019.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes, 2020.

Binhang Yuan, Yongjun He, Jared Quincy Davis, Tianyi Zhang, Tri Dao, Beidi Chen, Percy Liang,
Christopher Re, and Ce Zhang. Decentralized training of foundation models in heterogeneous
environments, 2022. URL https://arxiv.org/abs/2206.01288.

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
CoRR, abs/2106.04560, 2021. URL https://arxiv.org/abs/2106.04560.

Peng Zhang and Yuxiang Gao. Matrix multiplication on high-density multi-gpu architectures:
Theoretical and experimental investigations. volume 9137, pp. 17–30, 06 2015. doi: 10.1007/
978-3-319-20119-1_2.

Xiaoxi Zhang, Jianyu Wang, Gauri Joshi, and Carlee Joe-Wong. Machine learning on volatile
instances. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications, pp. 139–
148. IEEE, 2020.

Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen, Yanping Huang, Yida
Wang, Yuanzhong Xu, Danyang Zhuo, Eric P. Xing, Joseph E. Gonzalez, and Ion Stoica. Alpa:
Automating inter- and intra-operator parallelism for distributed deep learning, 2022. URL https:
//arxiv.org/abs/2201.12023.

17

https://github.com/kingoflolz/mesh-transformer-jax
https://proceedings.mlsys.org/paper/2020/file/96da2f590cd7246bbde0051047b0d6f7-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/96da2f590cd7246bbde0051047b0d6f7-Paper.pdf
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://arxiv.org/abs/2206.01288
https://arxiv.org/abs/2106.04560
https://arxiv.org/abs/2201.12023
https://arxiv.org/abs/2201.12023

Under review as a conference paper at ICLR 2023

SUPPLEMENTARY MATERIAL

A ANSWERS TO COMMON QUESTIONS

In this section, we provide answers to several assorted questions about our study and address some of
the limitations of SWARM parallelism.

Why not just use data parallelism with offloading? Regular data parallelism requires all-reduce
steps where peers exchange gradients, which can be prohibitively expensive for large models. For
example, a 1 billion parameter model with 16-bit gradients requires 2 GB of data to be synchronized
between all n devices. We need at least n messages to perform this synchronization. If we have 100
devices with bidirectional communication, each client would need to send 2 GB of data to finish the
synchronization. Thus, with slow interconnects, such synchronizations are not practical.

Why not just use fully sharded data parallelism with elasticity? Sharded data parallelism
requires all-to-all communication of parameter buffers at each layer. Each of these communications
can be done in parallel and has a size of parameter count divided by n; in total, n messages are
required. Thus, for 1B parameters in 16-bit precision, a total of 2 GB need to be synchronized for
both the forward and backward pass. If using low-bandwidth devices with 100 Mb/s speed, this
would entail an overhead of 5.5 minutes per forward/backward pass, which is difficult to overlap with
computation. This is exacerbated further, because all-to-all communication latency is determined by
the slowest peer. Thus, sharded data parallelism can be particularly inefficient for setups where peers
have different network bandwidths.

ZeRO-Offload allows one to train 13B parameters on a single V100, so why do I need SWARM?
Using ZeRO-Offload can slow down training due to the slow data transfer between external memory
and the accelerator. Training with SWARM can accelerate training while also allowing the training
of large models. See Appendix E for a more detailed comparison.

Is it worth using preemptible instances and SWARM from an economic standpoint? Due to a
significantly smaller cost per hour, one can leverage a larger amount of computation when using spot
instances compared to on-demand cloud VMs or dedicated HPC setups. See Appendix J and Table 7
for a comparison of both hourly and total costs for an example large-scale pretraining task.

Should I use SWARM in a supercomputer? By default, SWARM is worse than traditional
parallelism due to extra complexity (see experiments in Section 4.2. However, SWARM can be useful
in case of supercomputers that have heterogeneous devices.

When should I avoid using SWARM? SWARM is very efficient at training large models with more
than 1B parameters. For smaller models, a sharded data-parallel approach can be more optimal. For
HPC environments with homogeneous networking, standard sharded data-parallel or pipeline-parallel
training will be more efficient than SWARM because the environment is stable and predictable, so
rebalancing is not required. For HPC environments which are so extensive that failure of a node is
likely, the practicality of SWARM depends on how many nodes are expected to fail. Elastic sharded
data parallelism is better than SWARM if the number of expected failures is relatively low.

How much failure can SWARM handle? As long as there is at least one operational peer at every
pipeline stage and at least one trainer, SWARM will work without any issues. The key factors defining
the training run state at a given SGD step are the model parameters, the optimizer statistics, the data
loader state, and the step number (required for proper scheduling). The up-to-date parameters and
optimizer statistics, as well as the step number, are naturally located on all active nodes of a given
stage, since they are required for training. Thus, when a peer joins the network, it can download the
checkpoint corresponding to the current training state from other peers.

As we mention in Section 3.2, peer failures do not affect forward and backward passes as long as
there is at least one peer at the required stage: because of rewiring, it is possible to resend activations
or gradients to another worker that has identical model weights by construction. Similarly, the data
loader state can be recomputed from the last known SGD step. However, we do not track the order

18

Under review as a conference paper at ICLR 2023

of examples sampled within the same microbatch; because of the IID assumption in the large-scale
training setup, the distribution of gradients is expected to be the same. Hence, if the peer leaves
from the pipeline stage, other workers can compute gradients and replace those accumulated by the
disconnected peer, so that the number of examples for an SGD step stays the same.

Can I use SWARM without layer sharing or quantization? Yes, SWARM can still be effective
in these scenarios. Our bandwidth experiments in the main paper give some idea what the network
overhead is. By using no quantization, which means using regular 16-bit activations, the network
overhead increases roughly by a factor of two. Without layer sharing, the overhead within each
pipeline stage to synchronize the gradients is increased by the number of layers not being shared. As
such, a rough estimate of the efficiency of SWARM in these scenarios can be estimated by taking our
model size and network bandwidth requirements data and multiplying it by the relevant factor.

How many pipeline stages can SWARM have? While it might theoretically work with any
number of pipeline stages, using long pipelines can result in reduced training throughput. Similarly
to traditional pipeline parallelism, SWARM suffers from the pipeline “bubble” problem (Huang
et al., 2019). More specifically, at the beginning of initial batch processing, peers near the end of
the “pipeline” will be waiting for inputs. Likewise, early layers will be idle after processing the final
microbatch. In theory, this can be circumvented using asynchronous updates (Narayanan et al., 2019;
Yang et al., 2019), but we did not investigate them in this work due to potential convergence issues.

Do the compression-aware architecture modifications apply only to Transformers? Bottleneck
and maxout compression are general compression techniques that can be applied to any layer in any
architecture. However, their effectiveness may vary depending on where in the model they are applied
and what kind of model these are applied to (for example, CNNs vs. RNNs vs. Transformers).

Some configurations in Section 4.1 measure less than 20% GPU idle time, while many HPC
systems only achieve ≈ 80% GPU utilization. Does this mean that SWARM is 30% faster?
No, because these are different measurement types. Narayanan et al. (2021) measures GPU utilization
as a fraction of theoretical peak FLOP/s of their GPUs. In contrast, we only measure what fraction of
time the GPU is running the model, regardless of efficiency. Since no deep learning workload can
achieve 100% peak FLOP/s, 20% GPU idle time for SWARM means that it can reach ≈ 0.8x the
training throughput compared to training with an infinitely fast network. As a rule of thumb, one can
say that SWARM will run at a 20% slower speed than systems described by Narayanan et al. (2021)
using the infrastructure that is several times cheaper.

B ADDITIONAL RELATED WORK

Dynamic parameter loading. Several recent studies propose alternative execution algorithms that
allow training large models with data parallelism. Since neural networks typically use a small fraction
of weights at any given moment, the remaining “inactive” parameters can be sharded (Rajbhandari
et al., 2020) or offloaded to external memory (Pudipeddi et al., 2020; Ren et al., 2021; Rajbhandari
et al., 2021). In sharded data parallelism Rajbhandari et al. (2020), inactive tensors are distributed
across all n devices such that each device stores 1

n th of all parameters. For active layers, the shards
are gathered such that each device holds the entire tensor just-in-time for computation. After the
computation, the parameters’ memory is freed so that only the sharded memory remains (1

n th per
device). This makes it very memory efficient to store model and optimizer states for inactive layers if
many devices are available. Similarly to tensor parallelism, these algorithms can support arbitrary
models without the need for layer partitioning and can, in principle, run a large model on a single
GPU, which is useful for finetuning and inference.

Architecture-specific methods. Finally, some distributed training algorithms take advantage of
specific layers, such as locally connected layers (Dean et al., 2012; Coates et al., 2013), Mixture-of-
Experts (Jacobs et al., 1991; Shazeer et al., 2017; Lepikhin et al., 2020), Switch layers (Fedus et al.,
2021) or Product Key Memory (Lample et al., 2019). These layers contain many near-independent
parts that can be assigned to different devices. They can easily scale to an extremely large number of
parameters with a relatively small increase in compute (Shazeer et al., 2017). However, they are also
less parameter-efficient (Fedus et al., 2021) and may not apply to all architectures.

19

Under review as a conference paper at ICLR 2023

Optimal scheduling for distributed training. When the configuration of each peer is known, it is
possible to significantly optimize the pipeline scheduling by going beyond the greedy approach with
global optimization techniques (Zheng et al., 2022; Tarnawski et al., 2021), even with heterogeneous
hardware (Yuan et al., 2022). However, we consider a setup in which this is not possible: preemptible
and volunteer peers can join at any point of the experiment, and dynamically rescheduling and
orchestrating them in a centralized manner is technically difficult because of the communication and
reliability constraints.

Elastic training. In order to train with a dynamic number of workers, deep learning practitioners
have developed elastic training algorithms (TorchElastic; ElasticHorovod). If a worker leaves or fails
during training, these algorithms rebalance the load between the remaining devices and continue the
training procedure (Harlap et al., 2017; Ryabinin et al., 2021). If new devices join during training,
they download the latest model parameters from their peers and train alongside them.

Asynchronous training. Another important problem is distributed training on devices with uneven
performance. One way to solve this problem is to use asynchronous training, where nodes compute
gradients at their own pace and aggregate them using a parameter server (Recht et al., 2011; Ki-
jsipongse et al., 2018) or a decentralized network (Lian et al., 2017). This idea allows full utilization
of each device, but may reduce the convergence rate due to “stale” gradients (Recht et al., 2011; Aji
& Heafield, 2019). Several studies (Li et al., 2020; Ryabinin et al., 2021; Ren et al., 2021; Diskin
et al., 2021) propose hybrid techniques that remove some synchronization points while maintaining
the per-iteration convergence.

C STOCHASTIC WIRING DETAILS

Our approach uses stochastic wiring, a specialized routing algorithm designed around heterogeneous
unreliable devices and high network latency. The core idea of stochastic wiring is to route each
training microbatch through random devices from each pipeline stage, such that the workload of each
device is proportional to its performance.

From a system design perspective, each worker runs a separate trainer process that forms microbatches
and routes them through pipeline stages (forward and backward pass). As we describe earlier in
Section 3.2, trainers run Interleaved Weighted Round Robin (Katevenis et al., 1991; Tabatabaee et al.,
2020) (IWRR) scheduling to dynamically assign microbatches to peers based on each peer’s training
throughput (“samples per second”) in a balanced way.

An important observation is that stochastic wiring allows SWARM to mitigate network latency. Unlike
existing pipeline algorithms (Huang et al., 2019), SWARM workers do not get blocked if their
neighbors take too long to process a minibatch. Instead, each SWARM device maintains a queue of
microbatches assigned by trainers. In case of a latency spike, workers keep processing previously
queued microbatches, maintaining high device utilization.

D DESCRIPTION AND COMPLEXITY OF ADAPTIVE REBALANCING

Algorithm 1 contains the formal definition of the adaptive rebalancing procedure. As described
previously, each worker of SWARM that hosts model layers continuously updates the information
about its load in parallel with processing the incoming requests. Each T seconds, the peers measure
the total load for all stages of the pipeline, and the peer with the lowest queue size from the stage with
the minimum load moves to the stage with the maximum load. In principle, the algorithm could be
extended to support moving multiple peers simultaneously; however, as we show in Appendix H, even
in the current form the algorithm bridges most of the gap between the optimally balanced pipeline
and the system without any rebalancing.

The complexity of Algorithm 1 can be estimated as follows: for M as the highest number of peers
over all stages, we have O(M) operations in Lines 9–11 and Lines 22–24, and all other operations
take constant time for a single stage. These operations are nested in the loop over all stages, which
means that the total complexity of the algorithm is O(MS). For practical numbers of both peers
(e.g., < 10,000) and stages (fewer than 100), this incurs a negligible overhead on performance, as
all communication and computation is conducted in parallel with processing the actual forward and
backward passes.

20

Under review as a conference paper at ICLR 2023

Also, notice that only one migrating peer needs to stop processing requests and download the weights
and optimizer statistics of the pipeline stage it starts serving: this means that the overall network load
of this procedure is relatively small, as all DHT requests handle scalar data and do not exceed the
number of active peers for each worker.

In practice, the algorithm handles slight deviations in local time and network/DHT latencies by
allowing the peers to wait for straggling nodes in Line 9 for a predefined timeout. If a node does not
join the rebalancing procedure by reporting its load in time or joins the network too late, it is omitted
from the current iteration.

Algorithm 1 Adaptive rebalancing for SWARM parallelism

input peer index i, current peer stage scur, total number of stages S, rebalancing period T
1: while active do
2: Sleep for T seconds
3: Measure qi as the local request queue size
4: Write (i, qi) as the key-subkey pair to DHT[scur]
5: Initialize minimum and maximum load stages: smin = smax := −1,
6: lmin := ∞, lmax := −∞
7: for s in 1, . . . , S do
8: Initialize the load buffer L = 0
9: for (j, qj) in DHT[s] do

10: L := L+ qj
11: end for
12: if L > Lmax then
13: smax := s, Lmax := L
14: end if
15: if L < Lmin then
16: smin := s, Lmin := L
17: end if
18: end for
19: if scur = smin then
20: // Migrate to the maximum load stage
21: Initialize the minimum load peer imin := −1, qmin := ∞
22: for (j, qj) in DHT[s] do
23: if qj < qmin then
24: imin := j, qmin := qj
25: end if
26: end for
27: if imin = i then
28: // This peer should migrate
29: scur := smax

30: Download up-to-date parameters from peers in smax

31: end if
32: end if
33: end while

E ON THE RELATION BETWEEN SWARM AND ZERO-OFFLOAD

In this section, we argue that depending on the use of DPU, SWARM-parallel training is equivalent to
either fully synchronous training or the semi-synchronous training proposed in ZeRO-Offload (Ren
et al., 2021). That is, SWARM produces exactly the same stepwise updates as conventional distributed
training algorithms and will therefore achieve a solution in the same number of steps.

This observation is similar to how many advanced distributed training techniques (Huang et al.,
2019; Rajbhandari et al., 2020) are computationally equivalent to regular synchronous training on a
single device. For instance, despite using advanced distributed computation strategies, GPipe (Huang
et al., 2019) computes exactly the same mathematical expression to obtain gradients and applies
those gradients in the same order as any other synchronous training algorithm. On the other hand,

21

Under review as a conference paper at ICLR 2023

PipeDream (Narayanan et al., 2019) changes the order in which the updates are applied, introducing
the so-called stale gradients (Recht et al., 2011). This allows PipeDream to improve device utilization
but has been shown to reduce the final model quality in some setups (Wang et al., 2020).

Despite using randomized routing and asynchronous communication between pipeline stages,
SWARM still performs optimizer steps synchronously after peers collectively reach the required
global batch size (which is a hyperparameter). While different peers may accumulate a different
number of samples, they will all use the same gradient after averaging. Any peer that fails or does not
meet this condition is considered a straggler and must reload its state from neighbors before it can
resume training. This procedure ensures that all surviving peers use non-stale aggregated gradients
over the specified batch size when performing the optimizer step.

The only deviation from fully synchronous training is that SWARM uses the same approach for CPU
offloading as ZeRO-Offload, and by extension, delayed parameter updates (DPU). While DPU was
shown not to affect convergence (Ren et al., 2021; Stich & Karimireddy, 2020; Arjevani et al., 2020),
one can disable this functionality and make SWARM fully equivalent to standard training.

Naturally, these guarantees come at the cost of reduced hardware utilization, as a small portion of
devices will need to wait after every step. However, as we show in Section 4.3, SWARM can still
train with competitive training throughput due to the fact that large models are trained with increased
batch sizes (Brown et al., 2020).

F ADDITIONAL DETAILS FOR SECTION 4.1

We benchmark four versions of the Transformer layer:

• “base”: dmodel = 768, dFFN = 3072, 12 heads;

• “xxlarge”: dmodel = 4096, dFFN = 16384, 32 heads;

• “GPT-3” (Brown et al., 2020): dmodel = 12288, dFFN = 49152, 96 heads.

• “Ours”: dmodel = 4096, dFFN = 16384, 32 heads, 3 layers per pipeline stage.

In Table 6, we report FLOP and parameter counts of each version based on the expressions from Ka-
plan et al. (2020). For simplicity, we set up each experiment with 12 Transformer layers using 12
servers (4 for “Ours”) with a single V100-PCIE GPU each. The servers communicate at 500Mbps
under 3–6ms latency.

Due to modest communication bandwidth, smaller models spend most of the time waiting for the
network. However, that same bandwidth allows for > 80% GPU utilization when dealing with
GPT-3-sized layers. If we co-locate 3 GPT-3 layers per pipeline stage, the GPU utilization can further
improved to > 90%.

The time reported in Section 4.1 is the time required to run forward and backward pass for all
layers with a batch of 1x512 tokens, not including the Adam updates. All results are averaged
over 1000 consecutive batches; the standard deviations are below 0.1%. All four GPUs are in
the same data center but on different servers. Each layer is a TransformerEncoderLayer
from PyTorch 1.7.0 (Paszke et al., 2019) wrapped with activation checkpointing. We use
hivemind==0.8.15 (Ryabinin & Gusev, 2020) with a single synchronous trainer based on
the BERT training code from Transformers (Wolf et al., 2020). However, these results are not specific
to hivemind and are likely reproducible in FairScale (Baines et al., 2021) or PyTorch RPC. The

Table 6: Parameter and FLOP counts.

Architecture Parameters FLOP count

“base” 7.08M 2.2× 1010
“xxlarge” 201M 6.2× 1011
“GPT-3” 1.81B 5.5× 1012
“Ours” 201M 1.8× 1012

22

Under review as a conference paper at ICLR 2023

only important detail is that the training code should run as much communication as possible in the
background while the GPUs are busy processing batches. It is important to reuse the same connection
for multiple RPC calls so that the TCP buffer does not have to warm up during each call. Also, our
implementation performs quantization asynchronously with communication and other computations.

G ADDITIONAL DETAILS FOR SECTION 4.3

We use the standard Transformer architecture with two modifications: Rotary Positional Embed-
dings (Su et al., 2021) and GeGLU activations (Shazeer, 2020). Similarly to other models trained
on Pile (Gao et al., 2020; Wang & Komatsuzaki, 2021), we use the tokenizer of GPT-2 (Radford
et al., 2019). Following Li et al. (2021), we linearly increase training sequence length during the
initial phase. More specifically, we begin training with sequences of up to 256 tokens and increase
them to the maximum length of 2048 over the first 12, 000 optimizer steps. We train the model with
LAMB (You et al., 2020), following the configuration from the original paper for a batch size of
16384. On top of that, we set η = 10−3 and β2 = 0.95 to account for the increased model size.

H ADAPTIVE REBALANCING EVALUATION DETAILS

In this experiment, we evaluate the efficiency of adaptive peer rebalancing between stages proposed in
Section 3.2. We use actual statistics of the number of active T4 nodes from the 32-hour segment of the
experiment described in Section 4.3 for a representative sample of training dynamics with unstable
participation. We use these data to simulate training dynamics as follows: we use a sequence of
events, each consisting of a timestamp and the change in the number of peers (which can be positive
or negative). When a worker is removed from the pipeline, we randomly choose the stage it was
removed from: that is, removing N peers corresponds to N samples from the uniform distribution
over four pipeline stages. To compare our method with the baseline without rebalancing, we run 10
simulations over different random seeds and average the resulting trajectories.

The results of this evaluation are available in Figure 5; for reference, we also provide the performance
of a theoretically optimal rebalancing strategy that maintains the highest possible throughput at every
moment. It can be seen that even with the rebalancing period T = 300, adding dynamic rebalancing
helps significantly improve the overall throughput of the pipeline. When the total number of peers is
approximately stable, the rebalanced pipeline also reaches the optimal one in terms of throughput,
which shows the efficiency of our strategy even when moving only one node at a time.

In addition, we observed that for some brief periods, the performance of the unbalanced pipeline
exceeded the throughput of the balanced one due to random choice of disconnecting peers (dropping
more from the “overrepresented” stages affects the imbalanced pipeline less). However, this held true
only for ≈ 4.5% of the experiment and was quickly mitigated by adaptive rebalancing.

As expected, decreasing T from 300 to 60 seconds improves both the overall throughput and the
speed of convergence to optimal pipeline performance. However, the effect is not as drastic compared
to the increase in DHT data transfer. This is also demonstrated by Table 5, which shows the
relative throughput of the three configurations compared to the optimal one. Furthermore, the table
displays that although initially there is little difference between rebalancing choices, it becomes more
pronounced later on as the imbalanced version “drifts further” from the optimal state.

Finally, we analyzed the scaling properties of rebalancing with respect to number of stages. To do
this, we conducted experiments in the same setup as above (T = 300) while changing the number of
pipeline stages from 4 to {4, 8, 16, 32}. To ensure the consistency of total throughput across all
experiments, we also increased the starting number of peers accordingly while keeping the preemption
rate constant. As a baseline, we also evaluate the throughput of the strategy without rebalancing.

Figure 6 shows the outcome of this experiment. As displayed in the plots, both strategies drop in
performance with the increase in the stage count: while all stages should drop in performance equally
in expectation, in practice, the variances are too large while the number of peers is relatively too small
for the asymptotic properties to take place. This effect results in more outliers (large drops in the
number of peers) in the preemption distribution for more stages. Still, rebalancing allows to partially
mitigate the issue: while we observe a more consistent downward trend for the baseline strategy, the
rebalanced pipeline regains its performance over time and achieves higher overall throughput.

23

Under review as a conference paper at ICLR 2023

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Time, hours

13

14

15

16

17

Sa
m

pl
es

/s
ec

on
d

4 stages
8 stages
16 stages
32 stages

(a) Adaptive rebalancing of SWARM parallelism.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Time, hours

10

12

14

16

Sa
m

pl
es

/s
ec

on
d

4 stages
8 stages
16 stages
32 stages

(b) No rebalancing.

Figure 6: Scaling of pipeline-parallel strategies with respect to the number of stages.

I ADDITIONAL SCALING EVALUATION

In this experiment, we investigate the influence of the number of nodes training with SWARM
parallelism on the throughput of the pipeline. Specifically, we measure the performance of training
the same model as in Section 4.3 in several configurations that differ in the size of the data-parallel
group at each pipeline stage, with the number of single-GPU instances ranging from 8 to 128 (the
highest quantity of preemptible nodes that we could reliably maintain for a long time). To isolate
the effect of worker heterogeneity, here we use only the T4 accelerators and measure the average
performance over 30 minutes of training.

8 32 64 128
Number of nodes

1

2

3

4

Th
ro

ug
hp

ut
, s

am
pl

es
/s

Figure 7: Scaling of SWARM throughput with the number of peers.

Figure 7 shows the results of our evaluation. It can be seen that the training performance exhibits
an approximately linear scaling pattern, which can be explained by the high efficiency of both the
stochastic wiring strategy and the auxiliary training components such as the DHT and the All-Reduce
protocol used for gradient averaging.

J TIME TO SOLUTION

In this section, we evaluate the compression-aware techniques proposed in Appendix K.1 from a
practitioner’s point of view. A natural way to compare these techniques is in terms of “the time to
solution”, i.e., the wall-clock time it takes to achieve the desired validation objective. In practice, this
time depends on three main factors: the compression strategy, the distributed training algorithm, and
the computational infrastructure.

In order to disentangle these factors, we first address the relationship between the training algorithm
and the infrastructure. As we discuss in Section 3.2 (and later in Appendix E), SWARM parallelism
has the same per-iteration behavior as other synchronous methods. Theoretically, the choice of
an optimal training system should come down to whichever algorithm has the highest training
throughput.

To verify this argument in practice, we compare the per-iteration and per-hour performance of
SWARM against fully synchronous training. For this experiment, we train the ALBERT model (Lan
et al., 2020) on the WikiText-103 dataset (Merity et al., 2017). We use the ALBERT-Large architecture
with 4 layer groups that correspond to 4 SWARM stages without the architecture modifications from

24

Under review as a conference paper at ICLR 2023

Appendix K.1. We follow the exact hyperparameters from the original paper: for example, we use the
LAMB optimizer (You et al., 2020) with the batch size of 4096 and the sequence length of 512. We
train this model in three setups: traditional distributed training with 8 V100 workers, SWARM with 8
preemptible V100 GPUs, and SWARM with 32 preemptible T4 workers.

To quantify the time to solution, we measure the wall time required to achieve the ALBERT objective
equal to 1.5. Additionally, we report the per-hour cost of each experimental setup and the total cost
of achieving a loss of 1.5 using public cloud provider pricing estimates in Table 7.

0 7.5K 15K 22.5K 30K
Steps

2

4

6

8

10

A
LB

ER
T

ob
je

ct
iv

e

DDP, 8xV100
SWARM, 8xV100

0 24 48 72 96 120 144 168
Hours

2

4

6

8

10 DDP, 8xV100
SWARM, 8xV100
SWARM, 32xT4
Target loss value

Figure 8: Convergence curves of ALBERT with SWARM
and standard data-parallel training.

Table 7: Training time and costs.

Setup Time, hrs
Cost, $

Hourly Total

8× V 100 175.4 7.834 1374reliable

8× V 100 192.6 5.383 1037preemptible

32× T4 140.8 3.536 497.8preemptible

Figure 8 (left) demonstrates that SWARM matches the per-iteration learning curves of traditional
distributed training (PyTorch DistributedDataParallel) up to the variation comparable to caused
by changing the random seed. However, SWARM parallelism can achieve the loss of 1.5 more
cost-efficiently and faster by using preemptible instances. In turn, when forced to use homogeneous
and reliable GPUs, SWARM would have slightly inferior performance compared to conventional
algorithms, which was first demonstrated in Section 4.2.

K COMPRESSION-AWARE ARCHITECTURES

Since pipeline parallelism has several distinct points of communication, the network overhead can be
reduced considerably by reducing the size of data at these communication points. To exploit this, we
develop compression-aware architectures that apply extreme compression at these points. We study
two distinct communication bottleneck layers: (1) compression through a linear bottleneck layer, and
(2) compression through a bottleneck induced by the maxout activation function (Goodfellow et al.,
2013). We also study how compressing the activations and gradients at the communication points to
8 bits affects the predictive performance.

K.1 DESCRIPTION

Fully connected layers (baseline): Fully connected layers in models such as Transformers consist
of a multilayer perceptron with a single hidden layer and a nonlinear activation function. Without
biases and with a residual connection (He et al., 2015) from the inputs to the outputs, this can be
described as MLP(x,w1,w2) = σ(xw1)w2+x, where x ∈ Rb×s×m, w1 ∈ Rm×h, w2 ∈ RTh×m,
and σ(·) is a nonlinear activation function such as ReLU (Krizhevsky et al., 2012); b, s, m, and h are
the batch, sequence, model, and hidden dimensions of the neural network. To compress the output of
the MLP layer, we want to apply a compression layer between two consecutive stages. For example,
if we have 24 layers and 4 stages, we need 3 compression layers at layers 6, 12, and 18.

Quantized activations: A natural way to reduce the communication intensity is to send activations
and gradients with respect to activations in reduced precision. However, simply casting tensors to
a lower precision may slow down convergence and cause instabilities. Instead, we use dynamic
8-bit quantization with blockwise scaling from (Dettmers et al., 2021). This technique reduces
communication by ≈2x and ≈4x for half and full precision, respectively.

On the other hand, quantizing and dequantizing activations can add compute overhead on every
microbatch processed. Our implementation circumvents that overhead by performing quantization
asynchronously on the CPU. However, this is not required, as blockwise (de)quantization takes less
than 1% of total computation time: see Appendix J for details.

25

Under review as a conference paper at ICLR 2023

Bottleneck layers: We experiment with simple bottleneck layers that work by compressing the
output features of the MLP by linear projection:

Bottleneck(x,w1,w2,wc,wd) = LayerNorm(LayerNorm(MLP(x,w1,w2))wc)wd,

where wc ∈ Rm×c, wd ∈ Rc×m are compression and decompression parameters with compression
dimension c < m. We find it critical to use layer normalization Ba et al. (2016) to ensure training
without divergence. The parameter matrix wc resides in one stage and its outputs are transferred to
the next stage that holds the parameters wd, which requires m/c times less communication compared
to the original model. Note that adding a bottleneck only adds two linear layers for the forward pass
and decreases the size of MLP activations; thus, its computational overhead is negligible (less than
1% for typical sizes, see Appendix J).

Maxout compression: Compared to bottleneck compression, maxout compression works by
using the maxout activation function (Goodfellow et al., 2013) for compression rather than a linear
projection. The maxout function of factor k takes inputs with a hidden dimension of d and reduces
this dimension by a factor of k by computing the maximum value for each non-overlapping window
of k features. We use maxout compression as follows:

Maxout(x,w1,w2,wd) = LayerNorm(maxoutk(LayerNorm(MLP(x,w1,w2))))wd,

where the output is reduced by a factor of k through the maxout function in the previous stage, and
then sent to the next stage which holds the decompression matrix wd∈Rm/k×m.

K.2 EVALUATING THE SPEED-QUALITY TRADEOFF

While compression techniques reduce the communication overhead, they might also degrade the
perplexity reached in a certain time and the final perplexity after a specific number of steps. To
study these tradeoffs, we train a Transformer language model with adaptive inputs (Baevski & Auli,
2019) on the WikiText-103 dataset and measure how compression-aware architecture variants affect
convergence.

Our setup follows that of (Baevski & Auli, 2019) with one difference: we use a sequence length of
2048 instead of 3072 to fit this model into our smaller GPUs. To measure the time to solution, we
look at the number of iterations it takes to converge to the training perplexity of 22. We evaluate the
baseline model and three compression-aware modifications from Section K.1: bottleneck, maxout,
and block-wise dynamic 8-bit quantization, each with 2 pipeline stages and each a compression factor
of 2x.

Table 8: Performance of compression methods for a Transformer language model with adaptive
inputs on WikiText-103. The asterisk denotes that the difference is not statistically significant. For
downstream experiments, see Table 9 (Appendix K.3)

Method Ppl after
286K steps

Steps to
ppl 22

Data
transfer

Extra compute

Absolute Relative

No compression 21.02 1x 1x 0 None
8-bit compression 21.13 0.97x∗ 0.5x 1.2ms None (overlapped)

Bottleneck 21.76 1.26x 0.5x 1.96ms ≤ 1%
Maxout 21.83 1.28x 0.5x 2.04ms ≤ 1%

The results can be seen in Table 8. We can see that 8-bit compression does not degrade the time to
22 perplexity and maintains close to the final perplexity of the baseline. The compression-aware
bottleneck and maxout architectures perform equal to each other, but degrade final perplexity slightly
and increase time to a perplexity of 22 by 26–28%.

Using these results, one can determine which method is optimal for their hardware setup. For instance,
training with maxout with 2 pipeline stages needs 28% more steps, but accelerates the communication
phase by 2x. If communication is the limiting factor, using maxout or bottleneck compression layers
will offer improved time to perplexity despite the performance degradation. However, the same two
techniques would result in slower training in a setup where network bandwidth is unlimited.

26

Under review as a conference paper at ICLR 2023

Table 9: Training of language models on the OpenWebText Corpus (OWT). The baseline model has
253M parameters and is trained for 8 GPU-days. We apply bottleneck and maxout compression to
our baseline in 2 and 4 stages with a compression factor between 2–4x. WT=WikiText, PTB=Penn
Treebank, 1BW=Billion word corpus.

Validation perplexity

Model Stages Compression OWT LAMBADA WT2 WT103 PTB 1BW

Baseline – – 19.7 86.4 56.2 35.4 133.0 80.9

8-bit Quantization 2 2x 19.6 89.1 56.0 35.0 132.7 79.8
Bottleneck 2 2x 19.5 87.7 56.5 35.2 129.8 79.2
Maxout 2 2x 19.6 85.4 56.6 35.2 126.8 78.8
8-bit Quantization 4 2x 19.7 87.9 56.3 35.2 133.9 79.8
Bottleneck 4 2x 21.7 100.0 66.4 40.0 149.6 89.5
Maxout 4 2x 21.4 89.9 63.9 39.5 142.1 86.2

Bottleneck 2 4x 21.6 99.8 64.8 39.6 145.6 88.3
Maxout 2 4x 20.5 89.6 60.0 37.1 141.7 83.5
Bottleneck 4 4x 28.9 141.6 100.2 58.1 235.5 118.3
Maxout 4 4x 21.3 93.5 63.6 39.2 147.7 89.1

In turn, 8-bit quantization reduces communication cost without slowing down per-iteration conver-
gence, making it a “safe bet” for situations where the per-iteration convergence must be preserved. In
our large-scale experiments (Section 4.3), we opt to using quantization since it was enough to fully
saturate the GPUs. If network bandwidth is still a limiting factor, one can combine quantization with
bottleneck or maxout compression to further reduce communication.

We conduct a more systematic evaluation of these compression techniques in Appendix K.3. One
important observation is that, despite requiring more optimization steps, the bottleneck and maxout
techniques can achieve the same or similar quality on standard LM evaluation tasks (see Table 9).

K.3 ADDITIONAL EXPERIMENTS

The additional experiments in this section have two purposes: (1) to evaluate how compression
methods vary with the number of stages and (2) to evaluate an additional setting that is closer to
modern pretraining setups such as GPT-2/3.

While (1) has further implications for scaling, (2) is helpful to account for confounding factors that
might have been overlooked in the main experiments on WikiText-103. The WikiText-103 baseline
uses non-BPE vocabulary, a long sequence length, and uses adaptive inputs (Baevski & Auli, 2019),
all of which are not frequently used in modern pretrained transformers since GPT-2 (Radford et al.,
2019).

Experimental setup: As a baseline, we train a Transformer language model (Vaswani et al., 2017)
on the OpenWebText corpus (Gokaslan & Cohen, 2019). We use the following hyperparameters:
sequence size 512, 16 layers with model dimension 1024, and hidden dimension 4096 for a total of
253M parameters. We use byte pair encoding (Sennrich et al., 2016; Radford et al., 2019) with a
vocabulary size of 50264 symbols. We do not use dropout or other regularization, since our models
underfit. We run these experiments in Fairseq (Ott et al., 2019).

We test bottleneck and maxout compression for a compression factor of 50% and 75% compared to the
original size over two and four stages. We look at how using these compression-aware architectures
affects the performance compared to the compression that they achieve.

Results: The results of our compression-aware architectures are shown in Table 9. We can see that
while the bottleneck architecture is competitive with maxout for a compression factor of 2x with
two stages, maxout has better perplexities if more stages or a higher compression ratio is used. The
out-of-distribution perplexities vary consistently with the in-distribution perplexity, which suggests

27

Under review as a conference paper at ICLR 2023

compression-aware architectures do not degrade the out-of-distribution performance more than the
in-distribution performance. As such, the maxout compression is an effective technique to reduce the
bandwidth requirements of pipeline parallel training further.

While the 8-bit blockwise quantization can only compress the activations by a factor of two (16-bit
→ 8-bit), it does not affect the quality as much when compared to the baseline. As such, the 8-bit
quantization appears to be a reliable default choice to reduce the communication overhead for pipeline
parallelism.

When considered together with the square-cube law for distributed training and SWARM parallelism,
compression-aware architectures allow for better scaling of large neural networks trained over
preemptible low-bandwidth peers. Thus, compression-aware architectures improve the accessibility
and affordability of training large models outside HPC environments.

28

	Introduction
	Background & Related Work
	Model-parallel training
	Distributed training outside HPC
	Communication efficiency and compression

	Communication-efficient model parallelism
	The square-cube law of deep learning
	SWARM parallelism

	Experiments
	Communication efficiency at scale
	Detailed performance comparison
	Large-scale distributed training

	Conclusion
	Answers to common questions
	Additional Related Work
	Stochastic wiring details
	Description and complexity of adaptive rebalancing
	On the relation between SWARM and Zero-Offload
	Additional details for Section 4.1
	Additional details for Section 4.3
	Adaptive rebalancing evaluation details
	Additional scaling evaluation
	Time To Solution
	Compression-aware architectures
	Description
	Evaluating the speed-quality tradeoff
	Additional experiments

