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Abstract

An in-depth understanding of deep neural network
generalization can allow machine learning prac-
titioners to design systems more robust to class
balance shift, adversarial attacks, and data drift.
However, the reasons for better generalization are
not fully understood. Recent works provide empir-
ical arguments suggesting flat minima generalize
better. While recently proposed contrastive pre-
training methods have also been shown to improve
generalization, there is also an incomplete under-
standing of the loss landscape of these models and
why they generalize well. In this work, we ana-
lyze the loss landscape of contrastive trained mod-
els on the CIFAR-10 dataset by looking at three
sharpness measures: (1) the approximate eigen-
spectrum of the Hessian, (2) (C., A)-sharpness,
and (3) robustness to adversarial gradients (RAG),
a new efficient measure of sharpness. Our find-
ings suggest models fine-tuned after contrastive
training favor flatter solutions relative to base-
line classifiers trained with a supervised objective.
In addition, our proposed metric yields findings
consistent with existing works, demonstrating im-
pacts of learning rate and batch size on minima
sharpness.

1. Introduction

Training models that generalize well is a longstanding ob-
jective for machine learning scientists. Several works have
investigated mechanistic reasons for improved generaliza-
tion in deep neural networks, arguing that solutions in flat
regions generalize better (Keskar et al., 2016; Kaddour et al.,
2022; Foret et al., 2020; Jiang* et al., 2020). Recently, re-
searchers have shown the advantages of contrastive learning
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Figure 1. This figure is a visualization of our main hypothesis.

Sub-figure (a) represents the workflow for training SimCLR, a

SSL approach for learning image representations while (b) is

a traditional supervised learning approach. (c) and (d) show

hypothetical loss landscapes for SSL and supervised learning

respectively. We hypothesize the SSL loss landscape is flatter and

less sensitive to shifts in data distribution.

(CL), a self-supervised learning (SSL) framework, for facil-
itating improved model performance in low data regimes.
Contrastive pre-training methods such as SimCLR (Chen
et al., 2020b), MoCo (He et al., 2020), and BYOL (Grill
et al., 2020) have demonstrated advantages when only a
fraction of the training set is labeled. In addition, the use
of contrastive pre-training has lead to improved generaliza-
tion when fine-tuning a downstream classifier using the CL
embeddings.

Our primary aim is to better understand the loss landscape of
supervised fine-tuning when using representations from pre-
trained contrastive SSL algorithms. In this work, we focus
our analysis on SimCLR pre-training and observe how the
loss landscape curvature of a downstream fine-tuned clas-
sifier changes throughout the optimization dynamics. We
believe that contrastive pre-training helps push the model
weights to solution spaces that favors regions of lower curva-
ture. To this end, we hypothesize that classifiers fine-tuned
on pre-trained contrastive SSL objectives will present opti-
mization and loss landscape characteristics of flatter minima



and lower curvature. Our main contributions are summa-
rized as follows:

1. We train supervised models on CIFAR-10 using stan-
dard supervised learning and fine-tuning of pre-trained
SimCLR models. We then report performance metrics
for both CIFAR-10 test data and on an unseen CIFAR-
10.1 (Recht et al., 2018). We find that SimCLR models
achieve comparable performance on CIFAR-10 but
have smaller generalization gap and improved CIFAR-
10.1 performance.

2. We propose a new metric to characterize the generaliz-
ability of a solution: robustness to adversarial gradient
(RAGQG), based on the idea that a solution that general-
izes well should be robust to small changes in the pa-
rameters. We show this metric is useful for predicting
generalization, highlighting differences in the training
dynamics. We validate the applicability of RAG by
comparing the metric to existing sharpness measures.

3. We analyze the loss landscape curvature and optimiza-
tion dynamics by (a) observing changes in loss land-
scape sharpness during optimization, and (b) comput-
ing final sharpness measures using the eigen-spectrum
of the approximate Hessian, (C, A)-sharpness, and
RAG on the best models. We do this for both super-
vised models and fine-tuned SimCLR models.

2. Methods for Loss Landscape Analysis

We consider three methods to analyze the loss landscape: (1)
approximating the Hessian eigenspectrum using Lanczos
algorithm (Lanczos, 1950) (2) (C., A)-sharpness defined
by (Keskar et al., 2016), and (3) our proposed robustness
to adversarial gradients (RAG) approach. We use all three
methods to assess the curvature at converged solution. We
also measure RAG throughout training to better understand
the learning dynamics of different methods of pre-training.

2.1. Approximate Hessian Spectrum

One approach for determining sharpness is to estimate the
top eigenvalues of the Hessian with respect to the param-
eters. Intuitively, the loss increases more slowly around a
flat minima than a sharp minima and thus the top eigen-
values are smaller. However, computing the full Hessian
for large models is computationally intractable (Jastrzgbski
et al., 2018; Foret et al., 2020). As in prior work (Jastrzebski
et al., 2018; Ghorbani et al., 2019), we instead approximate
the Hessian spectrum via the Lanczos algorithm. A proxy
for sharpness used in the literature (e.g. by Jastrzebski et al.

(2020)) is the absolute ratio of ’\/\L;

Algorithm 1 Computing adversarial gradient

Require: Parameters ¢, objective function L
Require: Step size A, dataset d
Cache initial parameters ¢
r=20
fori=1,2,...,ndo
Load parameters ¢; <— ¢
Sample minibatch of data d = (z,y) ~ D
Compute gradient g = V4 L(fs,(2),y)
Do adversarial update ¢®% < ¢, + A2

lg]l2
Sample minibatch of data d = (z,y) ~ D

r=r-4 ﬁ(f¢adu (2),9)
end for
return -

2.2. (C., A)-sharpness

Although approximating the eigenvalue spectrum of the
Hessian yields insight into the curvature of the loss land-
scape, this approach requires extensive computational over-
head in large models. To deal with this constraint, Keskar
et al. (2016) propose a more efficient approach of mea-
suring sharpness in a local neighborhood, termed (C,, A)-
sharpness and defined as

maxyec, (£(w + Ay) — L(w))
1+ L(w)

Gw. (e, A) = x 100, (1)
where L is the loss function, w are the model parameters,
A € R™*P is a random matrix, and C, is a constrained box
around a minima of the loss L.

2.3. Robustness to Adversarial Gradient

We propose and analyze an efficient measure of sharpness:
robustness to adversarial gradient (RAG). RAG is moti-
vated by the hypothesis that a minima that generalizes well
should not be sensitive to small shifts in the input data dis-
tribution. Therefore, one adversarial gradient update should
not have much impact on the loss. This measure can also be
motivated theoretically by Theorem 1 in Foret et al. (2020),
which (informally) states:

Theorem 2.1. For any p > 0 and any distribution D, with
probability 1 — § over the choice of the training set S ~ D,

Lp(w) < max Ls(w+e)+h(|lwl*/p*) ()

T llell2<p

where h is a strictly increasing function. Hence, approxi-
mately maximizing Lg in a local neighborhood via a gra-
dient ascent step offers a bound on the true generalization
performance.

To compute RAG, we sample a random mini-batch and take
one gradient ascent step. We evaluate the loss of these new
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Figure 2. RAG and test accuracy for supervised models throughout training, with varying learning rate (left) and batch size (right). RAG
is computed after every 10 epochs of training. Dashed lines represent learning rate decay by a factor of five.
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Figure 3. Comparison of RAG and test accuracy for supervised
models and models fine-tuned after SImCLR pre-training through-
out optimization. RAG is computed after every 10 epochs of train-
ing. For SimCLR training, we fine-tune the downstream classifier
for 10 epochs before computing RAG on the fine-tuned model. We
found 10 epochs achieved sufficient classification accuracy.

parameters on another random mini-batch. We then reset
the parameters and repeat this procedure. After n such
iterations, we report the average loss on the second random
mini-batch. We summarize our approach in Algorithm 1.
We define our RAG-sharpness measure as %@f;w*)
to be consistent with equation 1. This formulation makes
our sharpness metric contingent on model effectiveness by

normalizing on the current loss.

A similar adversarial gradient-based approach was consid-
ered by (Iyer et al., 2020) to characterize final minima. Al-
though SAM (Foret et al., 2020) has a similar motivation
for their algorithm, to our knowledge, RAG has not been
studied explicitly in the context of understanding training
dynamics. Due to space constraints, we describe additional
details of RAG and related work in Appendix C.5.

3. Results

In this section, we present our results from computing
the three measures of sharpness and our analysis of RAG
throughout training. To better understand the learning dy-
namics and how they may impact transfer on downstream
tasks, we conduct our experiments on three different ap-
proaches to training: (1) standard supervised learning, (2)

fine-tuning the final layer of a random feature extractor (ran-
dom initiliazation of ResNet-18 (Frankle et al., 2020)), and
(3) SSL via a contrastive objective (SimCLR), followed by
fine-tuning .

We use the same ResNet-18 (He et al., 2016) model to
ensure a fair comparison and because residual networks are
commonly used in a variety of deep learning applications.
We follow standard training procedures for all the models
(described in detail in the appendix), except the supervised
learning model is trained for 1000 epochs to match what
is commonly used in contrastive learning. We present the
summary metrics of the best-performing models in Table 1
and the sharpness metrics for different batch sizes in Table
2. We also report results on the CIFAR 10.1 dataset (Recht
et al., 2018), which attempted to produce unseen data that
follow the CIFAR-10 dataset distributions by following the
data collection procedure in the original papers. This is
a better proxy for true generalization performance since
hyperparameters and architectures have not been implicitly
tuned to optimize for such CIFAR 10.1 performance.

In Figure 2, we show how RAG and test accuracy evolve dur-
ing supervised training for various batch sizes and learning
rates. While RAG can scale up to larger models, we found
that the sharpness measure by Keskar becomes numerically
unstable. In Figure 3, we present how the best-performing
SimCLR and supervised model evolve throughout training.
SimCLR has consistently lower sharpness and better gener-
alization.

3.1. Discussion

We find that SimCLR results in a flatter training loss land-
scapes for downstream fine-tuned classifiers, as measured
by the top eigenvalues of the Hessian, RAG, and (C., A)-
sharpness (Table 2). At the same time, the resulting fine-
tuned SimCLR classifiers generalize better (Table 1), espe-
cially on CIFAR 10.1. At the points of learning rate decay
we observe that RAG sharpness increases; this is consistent
with lower learning rate optimization converging to sharper
minima. Conversely, we find that SimCLR is robust to the



L(wg®)—L(w;)

Model Lirain Licst Test Acc (%) C-10.1 Acc (%) 1T 200

ResNet18 0.0007 + 0.0000 0.5374+£0.0234 89.13+0.31 78.12 £0.40 1.44 +0.06
Random-ResNetl8 1.9217 +0.0040 1.9181 +0.0002 31.33 +£0.16 24.46 £ 0.74 5.68 & 0.06
SimClr+ResNet18  0.2538 & 0.0096  0.2992 4 0.0063  89.75 + 0.13 82.05 +0.18 0.08 + 0.01

Table 1. Performance comparison of classifiers trained using supervised objective and downstream classifiers fine-tuned using representa-
tions learned from the self-supervised SImCLR framework. We report the results in this table for the best performing hyperparameter sets
in terms of test accuracy. The downstream fine-tuned classifier appears less sensitive to batch size and its effects on generalization relative
to the baseline classifier. We fine tune the last layer for 10 epochs for SImCLR. (C-10.1 acc refers to accuracy on CIFAR-10.1 test data).

Eigenvalue statistics RAG (Ce, A)-sharpness
adv

Model Armac] Agac|  Lwpd)  ELEDSED g (e, A)
ResNet18512 302.3 £ 78.5 1.6+04 1.64+0.04 1.6 £0.03 131.8 +189.6
ResNet1812g 230.2+41.4 1.5+0.2 1.440.03 1.4 4+0.03 80.8 +30.9
Random-ResNet185;5 1030.5 £133.3 1.6£0.2 5.68 % 0.06 1.29 £ 0.06 463.3 + 1282.7
Random-ResNet18125 1160.3 £243.4 1.8£0.3 5.71+0.08 1.25 £0.07 53.3 + 34.6
SimClr+ResNet18515 48.7£19.8 7.6£35 0.61+0.02 0.21 £0.01 1.8+3.8
SimClr+ResNet1825 11.5 + 3.8 6.7 +2.7 0.41+0.02 0.08 £ 0.01 0.017 £ 0.002

Table 2. Comparison of largest eigenvalues, RAG, and (C., A)-sharpness for models trained via supervised objective only and supervised
models trained via representations learned using contrastive objective. | Amqz| represents the magnitude of the largest eigenvalue and

| Amaz

A5

| is the magnitude of the ratio of the largest eigenvalue and 5" largest eigenvalue, a common proxy for sharpness (Jastrzebski et al.,

2026). The model subscript indicates batch size used for training and fine-tuning classifier. All computations are done on train data.

tendency of lower learning rate optimization to settle in
sharper valleys (Figure 3).

In Figure 2, we observe that higher learning rates and lower
batch sizes yield a lower RAG value throughout the train-
ing trajectory. This agrees with prior work that uses other
metrics to measure sharpness (Keskar et al., 2016; Jastrzgb-
ski et al., 2018). For supervised learning, smaller batch
sizes can act as a regularizer through both noisy optimizer
updates and regularization with batch normalization. For
contrastive learning models, larger batch size can be benefi-
cial for increasing the number of negative samples to avoid
mode collapse. This creates a trade-off where larger batch
size may cause the model to converge to sharper minima
but may also improve the quality of the representation by
increasing number of negative samples. While we do not
observe the phenomena in our work (see Figure 5), it may
occur on larger datasets where it is more difficult to learn a
representation.

We observe that the fine-tuning process from the pre-trained
SimCLR model results in a reduced generalization gap
(Lirain — Liest) between train and test datasets on CIFAR-
10, relative to the supervised learning models. In addition,
we see that the fine-tuned downstream classifier yields im-
proved test accuracy on CIFAR-10.1. Although we cannot
make a casual association, we hypothesize that this is due to
the fine-tuned model finding a flatter solution as supported

by RAG and other flatness metrics, demonstrated in Table
2. In follow-up work, we plan to investigate whether gen-
eralization performance on related datasets such as SVHN,
CIFAR-100, and ImageNet is associated with flatness of
model optima.

4. Conclusion

In this work, we seek to understand why CL-based ap-
proaches such as SImCLR (Chen et al., 2020b) improve
generalization by analyzing properties of the loss landscape
and optimization dynamics. Compared to a classifier trained
by supervised learning, we find that fine-tuning a pre-trained
SSL model, in particular SiImCLR, achieves a minima that
has smaller Hessian eigenvalues, is more robust to adver-
sarial gradient perturbations, and achieves lower (C, A)-
sharpness. We posit this is a reason for its improved gen-
eralization. We also study how RAG evolves over time,
which highlights a difference in how the solution is found
between contrastive learning and supervised learning. We
believe a better understanding of the training dynamics will
inform more principled algorithm design. Since our metric
for sharpness is easy to compute and correlates with general-
ization, we hope to inspire the discovery of new algorithms
and thus achieve better robustness to data distribution shifts
and generalization.
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A. Related work

A.1. Loss landscapes and flat minima

In the deep learning literature, there has been various works
trying to understand the loss landscape and to discover “flat"
minima (Hochreiter and Schmidhuber, 1997). These regions
are hypothesized to generalize better as shifts between the
train and test distributions keep parameters in the flat, low

loss region (Dziugaite and Roy, 2017). One method used to
improve generalization to compute an exponential moving
average of the weights (Polyak and Juditsky, 1992). This
technique has been revisited and demonstrated to work well
with modern neural networks in the Stochastic Weight Av-
eraging (SWA) algorithm (Izmailov et al., 2018). SWA
averages the weights towards the end of training to try to
find a minima in a flatter region. Another technique is
to use sharpness aware minimization (SAM) (Foret et al.,
2020) which seeks to minimize the worst-case perturbation
throughout optimization. Recently, Kaddour et al. (2022)
probe at differences between the two approaches and how
they are potentially complementary. There are criticisms
of the flat minima argument for generalization as one can
increase the sharpness of the Hessian via reparameteriza-
tion (Dinh et al., 2017). However, our minima are found
through an optimization procedure rather than by mathemat-
ical reparametrization.

A.2. Self-supervised Learning

Machine learning scientists have long sought to utilize the
abundance of unlabeled data to improve performance on su-
pervised machine learning tasks (Salakhutdinov et al., 2007,
Van Engelen and Hoos, 2020). Over the last few years there
has been a resurgence of these unsupervised pre-training
techniques, also referred to as self-supervised pre-training.
(Chen et al., 2020c) leverage self-supervised pre-training
using SimCLRv2 to fine-tune a downstream supervised clas-
sifier on ImageNet, beating counterpart state-of-the-art ap-
proaches. Others have sought to improve the downstream
fine-tuning methodology when using self-supervised pre-
trained models (Chen et al., 2020a; Zhang et al., 2021).
However, the analysis conducted by (Ericsson et al., 2021),
comparing 13 different self-supervised pre-training methods
on 40 downstream fine-tuning tasks, demonstrates that there
is yet to be dominant method for self-supervised pre-training
for all around tasks. Further advancement of self-supervised
pre-training and fine-tuning methods may require a deeper
understanding of the loss and optimization landscapes.

Recently there has been a particular focus in using con-
trastive optimization objectives for self-supervised pre-
training. In this training procedure a model is pre-trained us-
ing a self-supervised loss, such as the InfoNCE loss, which
aims to identify the positive sample across a collection of
negative samples by optimizing negative log probability of
identifying the positive sample ;1 x:

Jr(@etrs cr)
ZCI)]‘€X fk(‘rj’ ct) ’
where ¢, is the context vector, and X is a set of negative
samples (van den Oord et al., 2018). SimCLR (Chen et al.,

2020b) attempts to map two different augmented views of
an image to a similar representation, while maximizing the

Ly = —Ex(log

3)
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Figure 4. Top 10 log-eigenvalues of approximate Hessian for loss
landscape on training data. Supervised model trained using CL
representations yields lower magnitudes of eigenvalues, suggesting
CL helps models find solutions in lower curvature regions. Magni-
tude of top eigenvalues for fine-tuned classifier reduce at a quicker
rate relative to baseline model.

distance from the representations of other examples. For
self-supervised frameworks that do not require negative
samples the mode collapse problem is avoided by adding
explicit loss preventing a constant prediction. In the case of
BYOL this is accomplished through one network being an
exponential moving average of the other’s weights resulting
in distributional differences between two representations
(Tian et al., 2021). In contrast, VICReg accomplishes the
latter explicitly by containing a loss term that penalizes the
degenerate collapsed distributions for each dimension in the
learned representation (Bardes et al., 2021).

A.3. Unseen test data

(Recht et al., 2018; 2019) have attempted to produce unseen
data that follow the CIFAR-10 and ImageNet dataset dis-
tributions by following the data collection procedure in the
original papers. They posit there is a danger of machine
learning research repeatedly optimizing the same bench-
marks and thus overfitting to test sets over time by chasing
better benchmark performance. Evaluation on unseen data
from the same distribution helps assess this potential prob-
lem. Surprisingly, they find more recent models with higher
original accuracy show a smaller drop and better overall
performance. We use the CIFAR 10.1 dataset (Recht et al.,
2018) to assess the benefits of CL approaches and whether
metrics associated with sharpness correlate to better gener-
alization performance.

B. Eigen-spectrum of SSL and SL. Models

In Figure 2, we show the log-spectrum of the top 10 egien-
values of the approximate Hessian. We see that the solution
found by fine-tuning a classifier from the CL representations
learned via SimCLR lead to significantly lower eigenvalues,
which means there are fewer high curvature directions.

When reporting the proxy-statistic defined by (Jastrzebski
et al., 2020) (see Table 2) it is important to consider both
the ratio and the value of An,x, in which case a high value
of of A\nux and a ratio close to 1 would imply that there
are several dimensions that exhibit high levels of curvature.
In contrast, a low value of A\, and a higher ratio would
suggest the highest curvature dimension is small and other
dimensions exhibit lower degrees of curvature relative to
the largest eigenvalue. We hypothesise that a downstream
classifier fine-tuned using representations from a contrastive
SSL objective will yield lower values for Ap,x and higher
values for \’\/{%;‘X\ relative to a classifier trained under the
baseline supervised objective. In effect, this result could
suggest that models trained using representations learned by
contrastive objectives in SSL models yield flatter minima
solutions, and thus also leading to improved generalization.

C. Supplementary Results
C.1. Supervised learning

We train the ResNet-18 architecture using SGD with various
learning rates, momentum of 0.9, and weight decay factor
of 0.0005 (He et al., 2016). We drop the learning rate by a
factor of 5 at the end of the 60th, 120th, and 160th epoch. To
assess generalization performance, we use the CIFAR-10.1
dataset (Recht et al., 2018). This dataset acts a proxy for
true generalization performance. We present the results on
the CIFAR10 test data and CIFAR-10.1 dataset in Table
1. We observe that a higher initial learning rate results in
a lower training loss but ends up over-fitting more to the
dataset with a higher test loss and worse performance on
both the test and unseen test set. For the remainder of the
supervised learning experiments, we use a learning rate of
0.1.

C.2. SimClr Self-Supervised Learning

We consider SimClr (Chen et al., 2020b) for CL of repre-
sentation embeddings on CIFAR-10. We used the Adam
optimizer with a fixed learning rate of 0.001 and a batch size
of 128 and train for 1000 epochs. We then use the trained
embedding encoder of the SimClr architecture with an ap-
pended linear layer for the downstream classification task
and fine-tune a supervised model using the cross-entropy
loss. We do this for batch sizes 128 and 512 for the super-
vised task and report the final model train loss, test loss, test
accuracy, and unseen data (CIFAR-10.1) test accuracy in
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Figure 5. RAG and test accuracy for self-supervised models
throughout training, with varying batch size. RAG is computed af-
ter every 10 epochs of fine tuning on the classification task. Dashed
lines represent learning rate decay by a factor of five

Table 2. We observe that the supervised models trained us-
ing the representations learned via SimClr lead to improved
generalization on test data and unseen CIFAR-10.1 data
relative to the baseline supervised models.

C.3. Loss Landscape Curvature and Sharpness

To compute the approximate Hessian spectrum we use the
implementation by Golmant et al (Noah Golmant, 2018).
Due to the computational overhead of the method, we com-
pute the eigen-spectrum of the approximate Hessian on
mini-batches of data. Consequently, there is variance in the
computations. Therefore, we evaluate on 10 random trials
and report the mean and standard deviations for |\, 4| and
the ratio \’\g\%| We present the results of this analysis in
Table 3.

We computed RAG values for supervised and self-
supervised models with batch sizes 128 and 512 as reported
in table 4. For the training set we observe the following
three points. First, the supervised models have significantly
lower loss on the training data than the self-supervised mod-
els. This indicates that these models are over-fit to the
training set which is also indicated by model accuracies:
0.98 for supervised and 0.89 for self-supervised. Second,
we replicate the results from (Keskar et al., 2016) where
small batch supervised learning achieves a smaller ratio
in both RAG and magnitude of top Hessian eigenvalues
(Noah Golmant, 2018). We do not observe this discrepancy
for self-supervised models (more in the discussion). Finally,
we find that self-supervised models have significantly lower
RAG values than supervised models, indicating their flatter
loss landscape.

For the test data sharpness evaluation, we identify that the
loss increases for all the models but significantly more for
the supervised models. Consistent with that is the decrease
in the RAG evaluation, highlighting the connection between

the RAG value and how over-fit the model is. We note that
for the hessian eigenspectra metric, the largest eigen value
increases for the supervised models and stays consistent
for self-supervised. Finally we note that the RAG value is
higher for the supervised models than self-supervised for
both training and test datasets.

C.4. RAG Experimental Details

In our experiments, we permute the data and iterate through
mini-batches of data. For the second sampled minibatch,
we can use the batch from the previous iteration to estimate
the loss of the perturbed weights ¢4, This is an unbiased
sample of the loss on the remainder of the dataset. We found
it sufficient to iterate through the entire dataset once for our
experiments, though the computation can be made more
precise with multiple epochs. Computationally, we do two
forward passes through the data and one backward pass, so
computing RAG is marginally more expensive than 1 epoch
of training. This is significantly cheaper in terms of wall
clock time relative to running the Lanzcos algorithm.

C.5. Hyperparameter details

To compare the results of the fine-tuned downstream clas-
sifier from the pre-trained ResNet-18 architecture using
SimCLR, For the random feature extractor (random-ResNet-
18). We do a grid search with three seeds, using SGD with
an initial learning rate € {0.01,0.03}, 0.9 momentum, and
batch size € {32,128, 512}.

We also ran experiments with a convolutional network au-
toencoder that is trained to minimize a mean squared recon-
struction loss. However, using the encoder representations
for fine-tuning only performed slightly better than the ran-
dom features. We suspect the autoencoder performance
can be improved with more recent regularization techniques
such as masking and leave the comparison for future work.

D. Limitations

We are interested in investigating the impact of flatness on
ability of a model to generalize, however we did not causally
test this hypothesis. Although we find that models trained
with self-supervised learning do have flatter landscapes as
shown by adversarial gradient and measuring eigenspec-
trum of the hessian, it is unclear whether the relationship
is causal. In addition in this work we reason about self-
supervised model optima flatness but perform evaluations
only on SimCLR. Our work can benefit from additional
method investigations such as BYOL, VicReg, and MoCo
(Grill et al., 2020; Bardes et al., 2021; He et al., 2020) and
from experiments in other domains and datasets. We aim to
address these in the next version of the work.



