Sparse is Enough in Scaling Transformers

Sebastian Jaszczur®* Aakanksha Chowdhery Afroz Mohiuddin FEukasz Kaiser*

University of Warsaw Google Research Google Research OpenAl
Wojciech Gajewski Henryk Michalewski Jonni Kanerva
Google Research Google Research Google Research
Abstract

Large Transformer models yield impressive results on many tasks, but are expen-
sive to train, or even fine-tune, and so slow at decoding that their use and study
becomes out of reach. We address this problem by leveraging sparsity. We study
sparse variants for all layers in the Transformer and propose Scaling Transformers,
a family of next generation Transformer models that use sparse layers to scale
efficiently and perform unbatched decoding much faster than the standard Trans-
former as we scale up the model size. Surprisingly, the sparse layers are enough
to obtain the same perplexity as the standard Transformer with the same number
of parameters. We also integrate with prior sparsity approaches to attention and
enable fast inference on long sequences even with limited memory. This results in
performance competitive to the state-of-the-art on long text summarization.

1 Introduction

The field of natural language processing has seen dramatic improvements in recent years due to large
neural networks based on the Transformer architecture. The original Transformer [42] significantly
advanced state-of-the-art in machine translation. BERT [7] surpassed all previous methods on
question answering, language inference and other NLP tasks and was followed by a line of models
like T5 [30] that further improved these results. The GPT line of models [29, 3] elevated language
generation to the point that GPT-2 was invited to write short passages for the Economist and GPT-3
created whole articles almost indistinguishable from human-written ones.

The benefits of this progress are undercut by the huge costs such models incur. Strubell et al. [36]
estimate that training a single base BERT model costs $4k-$12k and emits as much CO5 as one
passenger’s share of a 4-hour flight and later Patterson et al. [27] estimate that training GPT-3 has
three times as much tCOse (metric tons of CO2 equivalent) emissions as a SF-NY round trip flight.
Data and serving costs are also forbidding: a single training run of BERT, for example, processes
128B tokens, and Google Translate reportedly! serves over 143B words per day.

With the growing popularity and size of these models, it is increasingly valuable to make them scale
efficiently. In this work we propose Scaling Transformers with a separate sparse mechanism for the
query, key, value and output layers (QKV layers for short) and combine it with sparse feedforward
blocks to get a fully sparse Transformer architecture.

To quantify the computational complexity of inference in Transformer models, recall the architecture
of a Transformer decoder block. It consists of three parts: a masked self-attention layer, an encoder-
decoder attention layer and a feedforward block. The sizes of these layers are parameterized by dmodel
and dg. The base BERT model sets dpoqe; = 768, the large BERT has dj0qe1 = 1024, the largest

*Work done while at Google Research.
"https://cutt.ly/skkFJ7a

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Params Dec. time Dec. time
per block

1.700 - — Avg of baselines
baseline Transf. ~ 800M 0.160s 5.9ms 1675 - —— Sparse FF, N=64
+ Sparse FF - 0.093s 3.1ms Z 1ss0 - :PB'SG ;’;-VN:DI?
+Sparse QKV - 0.152s 6.2ms § T N S| Sperse QY. multcany
+Sparse FE+QKV - 0.061s 1.9ms g 1o25- S
Speedup 2.62x 3.05x § 1.600 < ~
baseline Transf. 17B 3.690s 0.581s 1575~
+Sparse FF - 1.595s 0.259s 1.550 -
+Sparse QKV - 3.154s 0.554s 1525 -
+Sparse FF+QKV - 0.183s 0.014s 400000 420000 440000 260000 480000 500000
Speedup 20.0x 42.5x Number of steps

Table 1: Decoding speed (in seconds) of a single token. Figure 1: Log-perplexity of Scaling Transformers
For Transformer model (equivalent to TS5 large with ap- (equivalent to TS large with approximately S00M pa-
proximately 800M parameters), Scaling Transformers —rameters) on C4 dataset with proposed sparsity mecha-
with proposed sparsity mechanisms (FF+QKV) achieve nisms (FF, QKV, FF+QKYV) is similar to baseline dense
up to 2x speedup in decoding compared to baseline model. Other models used in this paper are shown in
dense model and 20x speedup for 17B param model. grey lines; raw data is available in the appendix.

GPT-2 has dy0qe1 = 1600 and GPT-3 reaches dipogel = 12288. For both BERT and GPT models the
authors use di = 4 dpodel- While decoding a token, the self-attention layer needs to activate four
matrices of 8ize dmogel X dmodel: ONE each for the queries, keys and values input to the attention and
one for merging the output. In the encoder-decoder attention, the keys and values may already be
cached, so only two matrices of size dpogel X dmodel are activated. The feedforward block consists
of two matrices of size dpodel X dff, Omitting small additional contribution of biases. The total adds
up to: 4 dlﬁode] + 2 drﬁode] ~+ 2 diodel dge- This sum describes both the number of trainable weights of
a single block and approximates well the number of floating-point operations needed for decoding
a single token, except for the attention operations (discussed later). The complexity is quadratic in
dmoder; for example, as dioqe increases 16-fold from base BERT to GPT-3, the complexity of a single
block grows 256-fold.

In comparison Scaling Transformers use only 2d0del vV @model = 2dn116%e, parameters in QKV layers
and yield results as good as the baseline (fully dense) Transformer with the same number of parameters
and complexity: 8d5, + 4dt5, + 4d}5,. We were surprised that the fully sparse Scaling
Transformers are indeed enough to match the results of the baseline Transformer on the large C4
dataset [30] (Figure 1). The improvement in complexity holds not just asymptotically but yields over
2.6x speedup in wall-clock hed decoding time already for a model with 800M parameters and 20x

improvement for a model with 17B parameters, as shown in Table 1.

To verify that Scaling Transformers can be used with other Transformer improvements on real tasks,
we create Terraformer — a Transformer model that uses reversible layers for memory efficiency and
sparse attention to handle long sequences. We pre-train Terraformer on the C4 dataset and fine-tune it
on the challenging task of summarizing arxiv articles. Terraformer yields results competitive to the
state-of-the-art BigBird-Pegasus without using the Pegasus loss in pre-training (Table 5).

2 Related Work

As discussed in the previous section, large Transformer models brings significant improvements in
performance, as seen in models such as GPT-3 [3, 17] or TS5 [44, 30]. Training and inference incur
a high computational cost at the scale of hundreds of billions of parameters. Numerous techniques
improve the efficiency of Transformer models, and Gupta and Agrawal [11] divide them into several
classes, including pruning, knowledge distillation, quantization, parameter sharing, efficient attention,
and efficient feedforward.

Model compression. Model pruning [24, 2] makes matrices smaller by removing unneeded weights
after or during training, however, the gains in computational complexity on sparse matrices often do

>The 800M model has 24 layers of Encoder & Decoder, dmoger = 1024, 16 attn heads, attention-sparsity =
16, ff-sparsity = 64. We scale up this model to approximately 17B parameters with dmoser = 9216 and get up to
20x speedup in decoding compared to baseline dense model. This 17B param model has six layers of Encoder &
Decoder, 96 attn heads, attention-sparsity = 64, ff-sparsity = 256.

not result in inference speedups on actual hardware [9]. Structured pruning based approaches [47, 22,
43] account for this challenge by leveraging sparsity in hardware in CPU and GPU architectures [1].
Our paper is different from pruning approaches in that it relies on dynamic sparsity wherein the
feedforward layer loads only a subset of weights in the layer for each token. Our approach is
complementary to model quantization studies [35, 38, 28] that use fewer bits for the weights.

Model distillation. Several natural language models used for mobile inference [13, 39] rely on
distillation [32] to speed up inference from the pretrained large models. For example, [18] pretrains a
large model and uses knowledge distillation along with pruning to get more than 10x faster inference.
Instead of distilling a large model, our approach speeds up inference by reducing the number of
weights loaded in memory from the model.

Sparse attention. Sparse attention-based approaches have made the attention layer more efficient,
especially for long sequences, by incorporating additional combinatorial mechanisms, as in [40],
or selecting a subset of tokens this layer attends to [31, 5, 19, 37, 15, 4] or other approaches [12].
Our work is complementary to these approaches for sparse attention and reuses the advances on
SOTA therein. Inference speedups in the attention layers also use bottleneck layers [39] or grouped
convolutions [13]. Our work extends beyond the idea of grouped convolutions approach because
each attention head is limited to using only a fixed part of the embedding while our work is able to
permute the embeddings to improve model quality; see Section 3.2 for details.

Tensor Decomposition. The approaches discussed above significantly improve Transformer speed
and handling of long sequences, however none of them addresses the fundamental scaling issue: even
if we distill into a smaller model, quantize it and prune a percentage of the weights, the complexity
still grows quadratically with dy,04e1- The final approach, which does attack this scaling issue, is called
tensor decompositions in [11]. Unluckily, as the authors there note, the approach is most effective
in dealing with large input and output embedding matrices and tends to produce lower performance
than unstructured models if used inside the decoder block.

Sparse feedforward. Mixture of experts approaches have been shown to achieve computational
efficiency in training [33, 21, 34], scaling up to a trillion parameters [8]. The key idea is to partition
the dg-sized dimension into parts (called experts) and retrieve only one part per token, which reduces
the complexity of the feedforward block from 2doge1dss t0 2dmoderdsr/ Nexperts- 1hese speedups are
mostly measured in training speed, and the method focuses on feedforward blocks. In contrast to
prior methods, we train a full weight matrix and then only activate specific parts of it for each input
token during decoding; see Section 3.1.

3 Sparse is Enough

We study how to sparsify every part of the Transformer model—otherwise the non-sparse parts
dominate decoding time and become a bottleneck. This means we need sparse equivalents for the
feedforward blocks, for the dense Q, K, V and output layers in attention, and for the final dense layer
before the softmax and loss.

3.1 Sparse Feedforward Layer

In a baseline Transformer, decoding speed is dominated by the execution cost of the feedforward
block. Recall that this block consists of two fully-connected (dense) layers with a ReLU nonlinearity
in between. The dimensionality of activation vectors between these 2 layers is usually denoted by dg
and is often 4 or 8 times larger than the dimensionality of the activations in other places (dmodel)-

We make use of the structure of the feedforward block to sparsify it. One main observation is that the
ReLU in the middle creates a lot of zeros?>. We impose a fixed structure on this middle activation
vector: only one float in every block of NV will be allowed to be non-zero. Prior techniques prune
weights or blocks from weight matrices and can be referred to as static sparsity. Our proposed
technique will train a full weight matrix but only activate specific parts of it for each input token
during decoding. We call this dynamic sparsity, because the model dynamically selects only a fraction
of its parameters, and the selection is independent for each token.

2GeLU is another non-linearity often used in the Transformer feedforward block. Table 1 in [26] shows the
same final loss for ReLU and GeLU on the C4 dataset, though, so in this work for simplicity, we focus on ReLU.

d_ff

low_rank

d_model

ﬂ{m”;h Ié % d_ff
CITTT T [CTT T e 3 3
activation vector | 2
multipl'y d_model mml o {
B OO " (LT T T
controller’s output mul | activation Straight-Through\
[elel [efelele[] l l l l l vector Gumbel-Softmax
feed-forward output lofe[2]e]e]e]o]a]
(@) (b)

Figure 2: (a) Sparse Feedforward Layer only activates 1 in N rows/columns of each block to reduce the decoding
time. Here only two rows/colums in blocks of size 4 are loaded while the weights in dark red are not loaded
from memory during inference. (b) Sparse Feedforward Controller with the output of 2 blocks of size 4 (1 in 4
sparsity).

‘We train a controller to determine which activation in each block can be non-zero; the rest will be set
to zero. This can be represented as

Yiparse = max(0, W3 + by) ® Controller(z)
SparseFFN(z) = Yiparse W2 + b2

where © is element-wise multiplication. Note that each activation in Ypare corresponds to a single
column in W7 and a single row in W5. Therefore, if we compute Controller(x) output first, we don’t
have to use any columns in W7 or any rows in W5 that correspond to an activation set to zero by the
controller. This allows for much faster decoding, as we have to process only 1 in /N columns in W}
and rows in W5, (see Figure 2(a)).

To design the controller to be computationally inexpensive, we project the input using a low-rank
bottleneck dense layer. Figure 2(b) illustrates the controller which produces the output as follows

Controller(z) = arg max(Reshape(xC1Cs, (—1, N)))

where C; € R X diowrank and Cy € R%ovuk X4t wwith djoyrank usually set to (dmoder/IN).-

During inference the controller uses a discrete argmax function, but during training the model uses a
softmax to calculate and sample from a distribution. The model learns to select which row/column will
be non-zero using the Gumbel-Softmax trick for discretization. To determine the active row/column in
each block, we reparameterize sampling from a Bernoulli distribution by using the Gumbel-Softmax
trick [25]. Instead of using the logits in each block to directly sample a binary value, we add
independent noise from the Gumbel distribution to each of the logits, and then select the binary value
with the highest logit (i.e., argmax) as the sample z. The argmax operation is not differentiable, but
it can be approximated by a softmax with annealing temperature. Therefore, on the forward pass,
we use the argmax to obtain a binary one-hot vector for each block, while on the backward pass,
we approximate it with softmax. This approach is known as the Straight-Through Gumbel-Softmax
estimator [14].

Ablations. We investigate the impact of sparse FF on the model equivalent to T5-large with varying
levels of sparsity, with dpoger = 1024, dg = 4096, and 16 attention heads. When we set the sparsity
level to N (for e.g. N = 64) then every block of size N has one non-zero value activated for
inference. During training, the controller uses the bottleneck layer with djoyrank = 64 and temperature
of Gumbel softmax estimator set to 0.1. To improve training stability, the controller in the forward
pass will use the output of argmax that is a binary one-hot vector for each block with a probability
of 30% and otherwise it uses the output of softmax. Table 2 and Figure 3 show the perplexity and
the decoding time of this model with varying levels of sparsity in feedforward layer. As the level of
sparsity increases from 0 to 128, we observe a significant decrease in the decoding time, while the
neg-log-perplexity of the model with N = 64 sparsity is comparable to the baseline.

1.66 -
1.64 -

1.62 -
— Avg of baselines
—— SFF, N=64

SFF, N=128

log-perplexity

Dec. time
baseline 0.160s 136
Sparse FF 64 0.093s 1‘?1?)01000 420000 440000 460000 480000 500000
Sparse FF 128 0089S Number of steps

Table 2: Decoding time of a singe to- Figure 3: Log-perplexity of Scaling Transformers with

ken decreases with increasing level — Sparse Feedforward layer is very similar to dense base-

of sparsity in the FF layer. line for sparsity level N = 64 but degrades slightly for
N=128.

We also checked the performance of the feedforward block with Mixture-of-Experts [33] style sparsity.
As expected, this technique achieved decoding time comparable to sparse FF — 0.11s instead of 0.09s
— but with its lack of granularity it achieved log-perplexity of 1.64, worse than both our method and
the dense baseline.

3.2 Sparse QKV Layer

The decoding speed for a model with sparse feedforward blocks is dominated next by the query, key,
value and output computation—the dense layers in attention, which we jointly call a QKV layer.
Each of these dense layers has d 2 ., parameters and computation cost. Unfortunately, QKV layers
don’t have ReLUs, so the method used above to sparsify feedforward blocks is not viable here.

To make QKYV layers sparse, we subdivide the dimensionality of the layer, dyodel, into S modules
of size M = diode1/ S, similar to splitting an activation vector into multiple heads. These modules
can be processed with a convolutional layer with fewer weights and faster computation. However,
with naive design each module (and corresponding attention head) could access only a small part of
a given token embedding. To alleviate that, we develop a multiplicative layer that can represent an
arbitrary permutation and has fewer parameters and lower computation time than a dense layer. This
multiplicative layer is inserted right before the convolutional layer, letting each head access any part
of the embedding (see Figure 4(a)). This solution yields well-performing models that also decode
fast.

Multiplicative dense layer. Our new multiplicative dense layer can represent an arbitrary permuta-
tion and has d2 4.,/ S + dmode1S parameters, dependent on the sparsity hyperparameter S. It processes
an input vector x € R modet by splitting it into S “modules” of size M = dmode1/S- It produces output
y € RSXM a5 follows

Yam = Z XiDi s Eim
i
where the two weight matrices are D € RS and E € R XM (see Figure 4(b)). This layer
executes significantly faster during inference because of the decreased number of parameters which
need to be loaded from memory. Unless stated otherwise, we use S = 16.

The multiplicative layer is designed primarily to represent any permutation, so that each attention
head can access information from any part of the embedding. We first verify that the multiplicative
layer can indeed represent an arbitrary permutation (the proof is presented in the Appendix).

Theorem 1. For any bijective function f : {1 dpoger} = {1---S} x {1--- M} there exists a
pair of weights of multiplicative layer D, E such that x; = ys m, for {s,m} = f(i).

Convolutional layer. The output of the multiplicative layer is a tensor of type/shape €
[Rbatchxlengthx SXM = ye process this tensor with a two-dimensional convolutional layer, treating
the length dimension and number of modules S like height and width of an image. This layer uses M
filters and a kernel size of F' x F' so that each filter looks at F' modules (‘S’ axis) of the last F' tokens
(‘length’ axis). Replacing the standard dense layer with such a convolution reduces the parameter

Weight xealtgr:;tE baseline 4M attention m
matrixD 4 model 3 QKV \\\mechanism - \
2 dmodel :) by
i < sparse QKV: [mult —2 ﬁ
__dmodel glement-wise i %\ mit::‘r::‘?:m @l
m \\mUItiplyT mi’l(| sparse QKV: - D
input: x - — n?ult conv A conv)
. im0
output:y oo} \5%
(@ (b)

Figure 4: (a) Multiplicative layer can represent an arbitrary permutation, but has fewer parameters and reduced
computation time compared to a dense layer. (b) Sparse QKV layer replaces Q, K, and V dense layers by
composing multiplicative and convolutional layers and reducing the number of parameters and decoding time.

count and computation time of the QKV layer. At the same time, by convolving over the ‘length’
axis, the model can incorporate more context into this computation [23].

The output of this layer has the same shape as the input. The optimal value of S is less than v/dmodel-
Empirically we set F' to 3, S equal to the number of heads in the attention mechanism and M to be
the dimensionality of a single attention head. In this case, we can feed the output of the convolution
directly to the attention mechanism without reshaping the output. This convolutional layer has
fewer parameters OM? + M = F?(dmodet/S)? + (dmode1/S)), and lower computational complexity
(O(d2 4e1/5))- Unless stated otherwise, we use S = 16 and F' = 3.

Combining multiplicative and convolutional layers. There are four dense layers to replace in
the original attention mechanism: Q, K, V, and output. As shown in Figure 4(b), we replace Q, K,
and V dense layers by composing multiplicative and convolutional layers, but with a multiplicative
layer shared across all three:) = convg(mult(x)), K = convg (mult(x)), V' = convy (mult(x)).
We remove the output dense layer. Note that the combined multiplicative-convolutional variant has
the output dense layer removed, while the other variants have it replaced with their respective sparse
layers. Including this output layer negatively impacts decoding time. We can set the parameter S'to
around /dyode1, getting the number of layer parameters to scale proportionally to d,}:5, , compared
to d?2 ., of standard QKV layer.

mode

Interpretation of QKV layer. Note that when parameter .S in convolutional layer is equal to the
number of heads in the attention mechanism, which is the case in our experiments, then each of the S
modules corresponds to a single attention head. Therefore, the model uses the convolution to process
each head using the same linear projection. Without the multiplicative layer this projection would
operate on a predetermined part of the embedding layer for each head. However, by adding it the
model can perform arbitrary permutation of dimensions, so each head can have access to arbitrary
subset of embedding dimensions, not a predetermined subset of them. This fact helps with keeping
the expressibility of resulting QKV layer despite the reduced number of parameters.

Ablations. We investigate the impact of sparse QKV layers on the model equivalent to T5-large in
Figure 5. We increase the value of dg from 4096 to 6144 to preserve the number of parameters (see
the next subsection for details). The decoding time with sparse QKV layer variants is similar to the
baseline because it is dominated by the dense feedforward layer (details in appendix).

Combined feedforward and QKYV sparsity. Sparse QKV layers lower the total number of model
parameters. To keep the model size matched to the baseline, we increase dy to keep the number of
parameters similar across all models we compare. For the T5-Large equivalent model, we increase
dge from 4096 to 6144. With increased dg, decoding time in the feedforward layer increases and thus,
Sparse QKV layers alone do not speed up the model. However, when we combine Sparse QKV
layers with sparse FF layers, we get a 3.05x speedup in decoding time of each decoding block with

ey
o 158
2
3 156 4 ALvg of baselines
8 7" N— soKv, mult-conv, 5=8, F=3 'M
SQKV, mult-conv, 5=16, F=3 _J W
1.54 - SOKV, mult-conv, 5=16, F=1 ~ N /
—— SQKV, conv, 5=16 \J

152 - SOKV, mult, 5=16, F=3

1 i i i i
400000 420000 440000 460000 430000 500000
Mumber of steps

Figure 5: Log-perplexity of Scaling Transformers with Sparse QKV with different sparsity levels (S) and kernel
sizes (F) is very similar to dense baseline within variance while multi-layer even improves perplexity.

RTE MRPC SST-2 QNLI MNLI-m QQP

Baseline Transformer (dense) 70.1+1.1 83.6+0.72 92.6+0.85 88.6+0.5 785+041 852+0.6
Scaling Transformer (Sparse FF+QKV) 68.4 81.2 91.6 90.1 82.9 89.9
Terraformer (Sparse FF+QKV) 66.1 84.6 92.3 88.3 79.1 85.5

Table 3: Accuracy of Scaling Transformer model and Terraformer model with sparse QKV+FF is comparable to
the baseline Transformer within variance. The results are obtained by fine-tuning on selected downstream tasks
from the GLUE dataset (validation split).

comparable perplexity (see Table 1 and Figure 1). While the baseline these is a vanilla Transformer,
the decoding speed is almost the same for a Reformer model as well.

Table 3 shows the accuracy of fine-tuning the model for downstream tasks from the GLUE dataset.
Note that the model with sparseFF+QKYV achieves accuracy similar to the baseline.

3.3 Sparse loss layer.

A final dense layer maps the model embedding into vocabulary size to compute the loss. We can
sparsify this part of the model by replacing the dense layer with a multiplicative layer similar to
previous sections; this speeds up decoding time but may degrade perplexity. The results are presented
in appendix.

4 Sparsity for Long Sequences

The above gains from sparsifying the dense layers are encouraging, but we omitted one fundamental
issue. When applied to longer sequences, the gains would effectively be lost, as the decoding time
will be dominated by attention operations. Luckily, a number of methods have been proposed to
solve this problem for Transformers, see [41] for a survey. We focus on the LSH (Locality-Sensitive
Hashing) attention from Reformer [19] and show how to integrate this sparse attention mechanism,
as well as recurrent blocks, into a Scaling Transformer, yielding a Terraformer.

4.1 Architecture for Long Sequences

While integrating sparse attention layers into a Scaling Transformer, we notice that the architecture
of the Transformer decoder block is suboptimal and can be redesigned to make a better use of these
layers. In particular, separating decoder self-attention and encoder-decoder attention is not necessary
any more from the perspective of efficiency. We therefore remove the encoder-decoder attention, but
just concatenate the encoder representations before the decoder tokens. Doing this alone isn’t enough
though, since we took away one attention mechanism (encoder-decoder attention). We remedy this
by having two attention mechanisms before the feedforward block. This simple architecture is as fast
as the baseline Transformer while giving better results.

Putting this together, if v, are the encoder activations and vg4.. are the decoder embeddings, the
input to the decoder block x is their concatenation on the length axis, LengthConcat(venc, Udec)-

H (ya \

I1 L X1 ® ~y1 t (0] 1
Attention, 1 (Attention, J FEN]

P ®—X Y, ®Jo,

Figure 6: Reversible decoder block in Terraformer.

Each decoder block can be represented as:

y1 = « + Dropout(Attention(LayerNorm(z)))
y2 = y1 + Dropout(Attention(LayerNorm(y;)))
y = y2 + FFN(y2)

where y becomes the input to the next decoder layer. See the appendix for a full diagram of the
resulting architecture.

4.2 Reversibility for Memory Efficiency

To enable training Terraformer with large batches, and to fine-tune even large models on single
machines, we apply ideas from the Reformer [19], in particular, reversible layers for the encoder and
decoder blocks.

The original Reformer decoder block contained feedforward and attention layers in a 1-1 ratio. In the
Terraformer architecture, as described above, there are two attention layers in the decoder block, so
there are three swaps in the reversible layers in the decoder block (see Figure 6). In our experiments,
this significantly improved performance.

Another issue with reversibility is that it is only formally correct for continuous functions. We find
that this is not just a formal issue, but an important problem in practice. To make reversible layers
train well with sparsity, we need to store the discrete decisions—i.e., the integers saying which rows
to select—and use them for reversing. Recalculating these decisions on the backwards pass leads to
worse results.

4.3 Recurrence for Generalization

In addition to incorporating sparse attention and reversibility, we also add recurrence to the feedfor-
ward block of Terraformer. Recurrent layers allow information to propagate in time, even in a single
decoder block. It is challenging though to use them without decreasing model speed, esp. in training.
For that reason, we use simple recurrent units [20] which parallelize well during training.

SRUs contain dense layers, so their use could negate the benefits of sparsity elsewhere. We tried a few
methods to alleviate that, but it turns out that simply reducing the dimensionality of the SRUs works.
So we first project from dpeqe; to a small dimension (32 in our experiments), then apply the SRU, and
then project back to dpqel and add the result to the feedforward block. This low-rank recurrence is in
our experiments sufficient to transfer enough information through time for the network to generalize.

Since the effects of SRUs on C4 are minimal (as the training and evaluation data are very similar),
we use synthetic tasks to investigate out-of-distribution generalization. We train the models on long
addition and on the task of copying a decimal digit. We train on inputs with at most 128 digits and
evaluate on inputs lengths from 256 to 300, so over 2x longer. As can be seen in the table below,
the baseline Transformer does not generalize well, while Terraformer manages to get a large portion
correctly, even if it is not perfect like the Neural GPU [16].

4.4 Experiments

We designed Terraformer so that the benefits from sparsity would not be lost on long sequences, nor
on downstream finetuning tasks. To test this, we chose the task of summarizing scientific papers

Model | copy copy (seq) add add (seq)
Transformer | 79.8% 0% 36.4% 0%
Terraformer | 99.9% 93.9% 86.9% 32.4%

Table 4: Comparison of out-of-distribution generalization for Terraformer and Transformer on two toy tasks,
long addition and copying on decimal numbers. Under (seq) we report the number of fully correct sequences
generated as answers.

Model R-1 R-2 R-LSum R-LSent
Terraformer 4540 17.86 41.21 26.33
DANCER RUM 4270 16.54 38.44 —
BIGBIRD-RoBERTa 4122 1643 36.96 —
Pegasus Large (C4) 44.21 16.95 38.83 25.67
DANCER PEGASUS 45.01 17.6 40.56 —
BIGBIRD-Pegasus 46.63 19.02 41.77 —

Table 5: Terraformer is competitive with strong baselines [46, 45, 10] on the ArXiv summarization task, without
using the Pegasus loss and without beam search. On R-1, R-2 and R-LSum, Terraformer outperforms all previous
models except for BigBird-Pegasus.

using the dataset of scientific papers from arXiv3[6]. In this task, the input is a whole paper—a long
sequence—and the model is asked to output its abstract. Several recent papers studied this dataset and
tasks and it has been shown [46, 45] that pretraining on C4 yields significant improvements on this
task. We also pretrain Terraformer on C4 (like in all experiments in this paper) and fine-tuned it on
the arXiv summarization task. We find that Terraformer is competitive with the above baselines, even
though we mask single words (we do not use the Pegasus sentence loss) and decode the answers in a
greedy way (no beam search). Note that ROUGE scores are computed using open-source scorer* with
the metrics described in its documentation’. We also observe certain confusion between ROUGE-L
metrics reported. As noted in the open-source scorer, there are two versions of ROUGEL-Sentence-
Level (R-LSent) and ROUGEL-Summary-Level (R-LSum). For clarity, we report both of these
metrics. Furthermore we only report the F1 measure of any ROUGE metric. We include a few
examples of the generated abstracts in the appendix.

We pretrained Terraformer in the same way as all other baselines reported in this paper with the
same number of parameters (§00M), the same dimensions as mentioned before, and loss sparsity 4
to get the fastest model. Compared to the sparse Transformer model from the previous section that
achieves a decoding speed of 0.061s, Terraformer achieves a decoding speed of 0.086s with a similar
performance in terms of perplexity (see appendix for details). We also observe that the Terraformer
model achieves accuracy similar to the Transformer model in Table 3 for selected downstream tasks
on GLUE dataset.

Table 6 shows the speedup in decoding with sparse layers when we scale up Terraformer to 17B
parameters. Note that sparsifying all the layers gives us 37x speedup in decoding.

5 Conclusion

When starting to investigate sparse variants of Transformers, we assumed that there would be a price
to pay for sparsity—that a sparse model would always underperform a dense one with the same
number of parameters. To our surprise, this is not the case: sparse is enough!

In our experiments with large models on the C4 dataset, the sparse models match the performance of
their dense counterparts while being many times faster at inference. And, when scaling the models up,
the benefits of sparsity become even larger. This promises to put Transformers back on a sustainable
track and make large models more useful.

3We provide full details of our datasets, hyperparameters, and everything needed to reproduce the results in
the appendix. The code is open-sourced as part of Trax 1.4.0 at https://github.com/google/trax.

*https://pypi.org/project/rouge-score/

*https://github.com/google-research/google-research/tree/master/rouge

Terraformer Dec. time Speedup

dense 3.651s x The current results have a number of limitations.
Sparse FF 1.595s 2.20x For one, the practical speedups we see are only
SparseFF+QKV O: 183s 1§.98x for inference, not at training time. Moreover, we

SparseFF+QKV+loss 0.097s 37.64x consider unbatched inference on CPUs, while
often inference is ran in batched mode on GPUs.
We believe with more work sparsity can bring
Table 6: Decoding speed of a single token for Ter- improvements in these settings too, as our funda-
raformer with 17B parameters is 37x faster than a dense |01 racilt shows that the sparse models reach

baseline model, requiring less than 100ms/token for in- . .

; Lo . the same perplexity as their dense counterparts
ference. Here attention-sparsity = 64, ff-sparsity = .
956, and loss-sparsity — 4 with the same number of parameters.

So while we demonstrate that Scaling Trans-

formers are possible, we consider this paper as a
first step on the way to sustainable large models. There are numerous techniques for making models
faster that could greatly benefit Terraformer and other Scaling Transformers. For example, we did
not study quantization and we believe that it can make Scaling Transformers even faster. We also
focused on inference speed and did not get improvements in training speed. The main reason is
our use of Gumbel-Softmax when training the feedforward block (see Section 3.1). Fedus et al. [8]
already provide a promising alternative, and we look forward to exploring it in future work.

Further, we hope that the community will take inspiration from Scaling Transformers and tune them
for their needs. We ran experiments using layer sizes and hyperparameters borrowed from dense
Transformers and they are most probably not optimal for Scaling Transformer. With proper tuning
and further improvements we believe one could train a Scaling Transformer to match GPT-3 in
accuracy but also run inference in reasonable time on a laptop. We put it as a fascinating challenge
to the community, since such Scaling Transformers will not only be more sustainable but will also
make large models accessible to everyone.

References

[1] Nvidia Ampere Architecture.
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/.

[2] Christopher Brix, Parnia Bahar, and Hermann Ney. Successfully applying the stabilized lottery
ticket hypothesis to the transformer architecture. arXiv preprint arXiv:2005.03454, 2020.

[3] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

[4] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with
sparse transformers. arXiv preprint arXiv:1904.10509, 2019.

[5] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane,
Tamas Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking
attention with performers. arXiv preprint arXiv:2009.14794, 2020.

[6] Arman Cohan, Franck Dernoncourt, Doo Soon Kim, Trung Bui, Seokhwan Kim, Walter Chang,
and Nazli Goharian. A discourse-aware attention model for abstractive summarization of
long documents. Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 2
(Short Papers), 2018. doi: 10.18653/v1/n18-2097. URL http://dx.doi.org/10.18653/
v1/n18-2097.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[8] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity. arXiv preprint arXiv:2101.03961, 2021.

[9] Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574, 2019.

10

[10] A. Gidiotis and G. Tsoumakas. A divide-and-conquer approach to the summarization of
long documents. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 28:
3029-3040, 2020. doi: 10.1109/TASLP.2020.3037401.

[11] Manish Gupta and Puneet Agrawal. Compression of deep learning models for text: A survey.
arXiv preprint arXiv:2008.05221, 2020.

[12] Tianyu He, Xu Tan, Yingce Xia, Di He, Tao Qin, Zhibo Chen, and Tie-Yan Liu. Layer-wise
coordination between encoder and decoder for neural machine translation. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 31, 2018.

[13] Forrest N Iandola, Albert E Shaw, Ravi Krishna, and Kurt W Keutzer. Squeezebert: What can
computer vision teach nlp about efficient neural networks? arXiv preprint arXiv:2006.11316,
2020.

[14] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.
arXiv preprint arXiv:1611.01144, 2016.

[15] Lukasz Kaiser and Samy Bengio. Discrete autoencoders for sequence models. arXiv preprint
arXiv:1801.09797, 2018.

[16] Lukasz Kaiser and Ilya Sutskever. Neural gpus learn algorithms. arXiv preprint
arXiv:1511.08228, 2015.

[17] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

[18] Young Jin Kim and Hany Hassan Awadalla. Fastformers: Highly efficient transformer models
for natural language understanding. arXiv preprint arXiv:2010.13382, 2020.

[19] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer.
arXiv preprint arXiv:2001.04451, 2020.

[20] Tao Lei, Yu Zhang, and Yoav Artzi. Training rnns as fast as cnns. CoRR, abs/1709.02755, 2017.
URL http://arxiv.org/abs/1709.02755.

[21] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with condi-
tional computation and automatic sharding. arXiv preprint arXiv:2006.16668, 2020.

[22] Bingbing Li, Zhenglun Kong, Tianyun Zhang, Ji Li, Zhengang Li, Hang Liu, and Caiwen Ding.
Efficient transformer-based large scale language representations using hardware-friendly block
structured pruning. arXiv preprint arXiv:2009.08065, 2020.

[23] Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng
Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series
forecasting. arXiv preprint arXiv:1907.00235, 2019.

[24] Zhuohan Li, Eric Wallace, Sheng Shen, Kevin Lin, Kurt Keutzer, Dan Klein, and Joey Gon-
zalez. Train big, then compress: Rethinking model size for efficient training and inference of

transformers. In International Conference on Machine Learning, pages 5958-5968. PMLR,
2020.

[25] Krzysztof Maziarz, Efi Kokiopoulou, Andrea Gesmundo, Luciano Sbaiz, Gabor Bartok,
and Jesse Berent. Gumbel-matrix routing for flexible multi-task learning. arXiv preprint
arXiv:1910.04915, 2019.

[26] Sharan Narang, Hyung Won Chung, Yi Tay, William Fedus, Thibault Fevry, Michael Matena,
Karishma Malkan, Noah Fiedel, Noam Shazeer, Zhenzhong Lan, Yanqi Zhou, Wei Li, Nan
Ding, Jake Marcus, Adam Roberts, and Colin Raffel. Do transformer modifications transfer
across implementations and applications? arXiv preprint arXiv:2102.11972, 2021.

11

[27] David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel
Rothchild, David So, Maud Texier, and Jeff Dean. Carbon emissions and large neural network
training. arXiv preprint arXiv:2104.10350, 2021.

[28] Gabriele Prato, Ella Charlaix, and Mehdi Rezagholizadeh. Fully quantized transformer for
machine translation. arXiv preprint arXiv:1910.10485, 2019.

[29] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. 2019.

[30] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research, 21:1-67, 2020.

[31] Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient content-based
sparse attention with routing transformers. arXiv preprint arXiv:2003.05997, 2020.

[32] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

[33] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts
layer. arXiv preprint arXiv:1701.06538, 2017.

[34] Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani, Penporn Koanan-
takool, Peter Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff Young, et al. Mesh-tensorflow:
Deep learning for supercomputers. In Advances in Neural Information Processing Systems,
pages 10414-10423, 2018.

[35] Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami, Michael W
Mahoney, and Kurt Keutzer. Q-bert: Hessian based ultra low precision quantization of bert. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 8815-8821,
2020.

[36] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for
deep learning in nlp. arXiv preprint arXiv:1906.02243, 2019.

[37] Sainbayar Sukhbaatar, Edouard Grave, Piotr Bojanowski, and Armand Joulin. Adaptive attention
span in transformers. arXiv preprint arXiv:1905.07799, 2019.

[38] Xiao Sun, Jungwook Choi, Chia-Yu Chen, Naigang Wang, Swagath Venkataramani, Vijay-
alakshmi Viji Srinivasan, Xiaodong Cui, Wei Zhang, and Kailash Gopalakrishnan. Hybrid
8-bit floating point (hfp8) training and inference for deep neural networks. Advances in neural
information processing systems, 32:4900—4909, 2019.

[39] Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou. Mo-
bilebert: a compact task-agnostic bert for resource-limited devices. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pages 2158-2170, 2020.

[40] Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and Da-Cheng Juan. Sparse sinkhorn attention,
2020.

[41] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey.
arXiv preprint arXiv:2009.06732, 2020.

[42] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint arXiv:1706.03762,
2017.

[43] Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai, Ligeng Zhu, Chuang Gan, and Song Han.

Hat: Hardware-aware transformers for efficient natural language processing. arXiv preprint
arXiv:2005.14187, 2020.

12

[44] Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant,
Aditya Barua, and Colin Raffel. mt5: A massively multilingual pre-trained text-to-text trans-
former, 2020.

[45] Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. arXiv preprint arXiv:2007.14062, 2020.

[46] Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter J. Liu. Pegasus: Pre-training with
extracted gap-sentences for abstractive summarization, 2020.

[47] Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan, Wenxiu Sun, and
Hongsheng Li. Learning n:m fine-grained structured sparse neural networks from scratch. In
International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=K9bw7vqgp_s.

13

