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ABSTRACT

As a subset of unsupervised representation learning, self-supervised representation
learning adopts self-defined signals as supervision and uses the learned representa-
tion for downstream tasks, such as object detection and image captioning. Many
proposed approaches for self-supervised learning follow naturally a multi-view per-
spective, where the input (e.g., original images) and the self-supervised signals (e.g.,
augmented images) can be seen as two redundant views of the data. Building from
this multi-view perspective, this paper provides an information-theoretical frame-
work to better understand the properties that encourage successful self-supervised
learning. Specifically, we demonstrate that self-supervised learned representations
can extract task-relevant information and discard task-irrelevant information. Our
theoretical framework paves the way to a larger space of self-supervised learning
objective design. In particular, we propose a composite objective that bridges the
gap between prior contrastive and predictive learning objectives, and introduce
an additional objective term to discard task-irrelevant information. To verify our
analysis, we conduct controlled experiments to evaluate the impact of the compos-
ite objectives. We also explore our framework’s empirical generalization beyond
the multi-view perspective, where the cross-view redundancy may not be clearly
observed.

1 INTRODUCTION

Self-supervised learning (SSL) (Zhang et al., 2016; Devlin et al., 2018; Oord et al., 2018; Tian
et al., 2019) learns representations using a proxy objective (i.e., SSL objective) between inputs and
self-defined signals. Empirical evidence suggests that the learned representations can generalize well
to a wide range of downstream tasks, even when the SSL objective has not utilize any downstream
supervision during training. For example, SimCLR (Chen et al., 2020) defines a contrastive loss
(i.e., an SSL objective) between images with different augmentations (i.e., one as the input and the
other as the self-supervised signal). Then, one can take SimCLR as features extractor and adopt
the features to various computer vision applications, spanning image classification, object detection,
instance segmentation, and pose estimation (He et al., 2019). Despite success in practice, only a
few work (Arora et al., 2019; Lee et al., 2020; Tosh et al., 2020) provide theoretical insights into
the learning efficacy of SSL. Our work shares a similar goal to explain the success of SSL, from the
perspectives of Information Theory (Cover & Thomas, 2012) and multi-view representation1.

To understand (a subset2 of) SSL, we start by the following multi-view assumption. First, we regard
the input and the self-supervised signals as two corresponding views of the data. Using our running
example, in SimCLR (Chen et al., 2020), the augmented images (i.e., the input and the self-supervised
signal) are an image with different views. Second, we adopt a common assumption in multi-view
learning: either view alone is (approximately) sufficient for the downstream tasks (see Assumption 1
in prior work (Sridharan & Kakade, 2008)). The assumption suggests that the image augmentations
(e.g., changing the style of an image) should not affect the labels of images, or analogously, the self-
supervised signal contains most (if not all) of the information that the input has about the downstream
tasks. With this assumption, our first contribution is to formally show that the self-supervised learned

1The work (Lee et al., 2020; Tosh et al., 2020) are done concurrent and in parallel, and part of their
assumptions/ conclusions are similar to ours. We will elaborate the differences more in the related work section.

2We discuss the limitations of the multi-view assumption in Section 2.1.
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Figure 1: High-level takeaways for our main results using information diagrams. (a) We present to learn
minimal and sufficient self-supervision: minimize H(ZX |S) for discarding task-irrelevant information and
maximize I(ZX ;S) for extracting task-relevant information. (b) The resulting learned representation ZX∗

contains all task relevant information from the input with a potential loss εinfo and discards task-irrelevant
information with a fixed gap I(X;S|T ). (c) Our core assumption: the self-supervised signal is approximately
redundant to the input for the task-relevant information.

representations can 1) extract all the task-relevant information (from the input) with a potential loss;
and 2) discard all the task-irrelevant information (from the input) with a fixed gap. Then, using
classification task as an example, we are able the quantify the smallest generalization error (Bayes
error rate) given the discussed task-relevant and task-irrelevant information.

As the second contribution, our analysis 1) connects prior arts for SSL on contrastive (Oord et al.,
2018; Bachman et al., 2019; Chen et al., 2020; Tian et al., 2019) and predictive learning (Zhang et al.,
2016; Vondrick et al., 2016; Tulyakov et al., 2018; Devlin et al., 2018) approaches; and 2) paves the
way to a larger space of composing SSL objectives to extract task-relevant and discard task-irrelevant
information simultaneously. For instance, the combination between the contrastive and predictive
learning approaches achieves better performance than contrastive- or predictive-alone objective
and enjoys less over-fitting problem. We also present a new objective to discard task-irrelevant
information. The objective can be easily incorporated with prior self-supervised learning objectives.

We conduct controlled experiments on visual (the first set) and visual-textual (the second set) self-
supervised representation learning. The first set of experiments are performed when the multi-view
assumption is likely to hold. The goal is to compare different compositions of SSL objectives on
extracting task-relevant and discarding task-irrelevant information. The second set of experiments are
performed when the input and the self-supervised signal lie in very different modalities. Under this
cross-modality setting, the task-relevant information may not mostly lie in the shared information be-
tween the input and the self-supervised signal. The goal is to examine SSL objectives’ generalization,
where the multi-view assumption is likely to fail.

2 A MULTI-VIEW INFORMATION-THEORETICAL FRAMEWORK

Notations. For the input, we denote its random variable as X , sample space as X , and outcome
as x. We learn a representation (ZX / Z/ zx) from the input through a deterministic mapping FX :
ZX = FX(X). For the self-supervised signal, we denote its random variable/ sample space/ outcome
as S/ S/ s. Two sample spaces can be different between the input and the self-supervised signal:
X 6= S . The information required for downstream tasks is referred to as “task-relevant information”:
T / T / t. Note that SSL has no access to the task-relevant information. Lastly, we use I(A;B)
to represent mutual information, I(A;B|C) to represent conditional mutual information, H(A) to
represent the entropy, and H(A|B) to represent conditional entropy for random variables A/B/C. We
provide high-level takeaways for our main results in Figure 1. We defer all proofs to Supplementary.

2.1 MULTI-VIEW ASSUMPTION

In our paper, we regard the input (X) and the self-supervised signals (S) as two views of the data.
Here, we provide a table showing different X/S in various SSL frameworks:

Framework BERT (Devlin et al., 2018) Look & Listen (Arandjelovic & Zisserman, 2017) SimCLR (Chen et al., 2020) Colorization (Zhang et al., 2016)

Inputs (X) Non-masked Words Image Image Image Lightness
Self-supervised Signals (S) Masked Words Audio Stream Same Image with Augmentation Image Color

We note that not all SSL frameworks realize the inputs and the self-supervised signals as corresponding
views. For instance, Jigsaw puzzle (Noroozi & Favaro, 2016) considers (shuffled) image patches as
the input and the positions of the patches as the self-supervised signals. Another example is Learning
by Predicting Rotations (Gidaris et al., 2018), which considers an image (rotating with a specific
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angle) as the input and the rotation angle of the image as the self-supervised signal. We point out
that the frameworks that regard X/S as two corresponding views (Chen et al.; 2020; He et al., 2019)
have a much better empirical downstream performance than the frameworks that do not (Noroozi &
Favaro, 2016; Gidaris et al., 2018). Our paper hence focuses on the multi-view setting between X/S.

Next, we adopt the common assumption (i.e., multi-view assumption (Sridharan & Kakade, 2008; Xu
et al., 2013)) in the multi-view learning between the input and the self-supervised signal:
Assumption 1 (Multi-view, restating Assumption 1 in prior work (Sridharan & Kakade, 2008)). The
self-supervised signal is approximately redundant to the input for the task-relevant information. In
other words, there exist an εinfo > 0 such that I(X;T |S) ≤ εinfo.

Assumption 1 states that, when εinfo is small, the task-relevant information lies mostly in the shared
information between the input and the self-supervised signals. We argue this assumption is mild
with the following example. For self-supervised visual contrastive learning (Hjelm et al., 2018; Chen
et al., 2020), the input and the self-supervised signal are the same image with different augmentations.
Using image augmentations can be seen as changing the style of an image while not affecting the
content. And we argue that the information required for downstream tasks should only be retained
in the content but not the style. Next, we point out the failure cases of the assumption (or have
large εinfo): the input and the self-supervised signal contain very different task-relevant information.
For instance, a drastic image augmentation (e.g., adding large noise) may change the content of the
image (e.g., the noise completely occludes the objects). Another example is BERT (Devlin et al.,
2018), with too much masking, downstream information may exist differently in the masked (i.e., the
self-supervised signals) and the non-masked (i.e., the input) words. Analogously, too much masking
makes the non-masked words have insufficient context to predict the masked words.

2.2 LEARNING MINIMAL AND SUFFICIENT REPRESENTATIONS FOR SELF-SUPERVISION

We start by discussing the supervised representation learning. The Information Bottleneck (IB)
method (Tishby et al., 2000; Achille & Soatto, 2018) generalizes minimal sufficient statistics to the
representations that are minimal (i.e., less complexity) and sufficient (i.e., better fidelity). To learn
such representations for downstream supervision, we consider the following objectives:
Definition 1 (Minimal and Sufficient Representations for Downstream Supervision). Let Zsup

X be
the sufficient supervised representation and Zsupmin

X be the minimal and sufficient representation:
Zsup
X = arg max

ZX

I(ZX ;T ) and Zsupmin

X = arg min
ZX

H(ZX |T ) s.t. I(ZX ;T ) is maximized.

To reduce the complexity of the representation ZX , the prior methods (Tishby et al., 2000; Achille
& Soatto, 2018) presented to minimize I(ZX ;X) while ours presents to minimize H(ZX |T ). We
provide a justification: minimizing H(ZX |T ) reduces the randomness from T to ZX , and the
randomness is regarded as a form of incompressibility (Calude, 2013). Hence, minimizing H(ZX |T )
leads to a more compressed representation (discarding redundant information)3. Note that we do not
constrain the downstream task T as classification, regression, or clustering.

Then, we present SSL objectives to learn sufficient (and minimal) representations for self-supervision:
Definition 2 (Minimal and Sufficient Representations for Self-supervision). Let Zssl

X be the sufficient
self-supervised representation and Zsslmin

X be the minimal and sufficient representation:
Zssl
X = arg max

ZX

I(ZX ;S) and Zsslmin

X = arg min
ZX

H(ZX |S) s.t. I(ZX ;S) is maximized.

Definition 2 defines our self-supervised representation learning strategy. Now, we are ready to
associate the supervised and self-supervised learned representations:
Theorem 1 (Task-relevant information with a potential loss εinfo). The supervised learned represen-
tations (i.e., Zsup

X and Zsupmin

X ) contain all the task-relevant information in the input (i.e., I(X;T )).
The self-supervised learned representations (i.e., Zssl

X and Zsslmin

X ) contain all the task-relevant
information in the input with a potential loss εinfo. Formally,

I(X;T ) = I(Zsup
X ;T ) = I(Zsupmin

X ;T ) ≥ I(Zssl
X ;T ) ≥ I(Zsslmin

X ;T ) ≥ I(X;T )− εinfo.
3We do not claimH(ZX |T ) minimization is better than I(ZX ;X) minimization for reducing the complexity

in the representations ZX . In Supplementary, we will show that H(ZX |T ) minimization and I(ZX ;X)
minimization are interchangeable under our framework’s setting.
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Figure 2: Remarks on contrastive and predictive learning objectives for self-supervised learning. Between
the representation ZX and the self-supervised signal S, contrastive objective performs mutual information
maximization and predictive objectives perform log conditional likelihood maximization. We show that the SSL
objectives aim at extracting task-relevant and discarding task-irrelevant information. Last, we summarize the
computational blocks for practical deployments for these objectives.

When εinfo is small, Theorem 1 indicates that the self-supervised learned representations can extract
almost as much task-relevant information as the supervised one. While when εinfo is non-trivial, the
learned representations may not always lead to good downstream performance. This result has also
been observed in prior work (Tschannen et al., 2019) and InfoMin (Tian et al., 2020), which claim
the representations with maximal mutual information may not have the best performance.
Theorem 2 (Task-irrelevant information with a fixed compression gap I(X;S|T )). The sufficient
self-supervised representation (i.e., I(Zssl

X ;T )) contains more task-irrelevant information in the input
than the sufficient and minimal self-supervised representation (i.e., I(Zsslmin

X ;T )). The latter contains
an amount of the information, I(X;S|T ), that cannot be discarded from the input. Formally,
I(Zssl

X ;X|T ) = I(X;S|T ) + I(Zssl
X ;X|S, T ) ≥ I(Zsslmin

X ;X|T ) = I(X;S|T ) ≥ I(Zsupmin
X ;X|T ) = 0.

Theorem 2 indicates that a compression gap (i.e., I(X;S|T )) exists when we discard the task-
irrelevant information from the input. To be specific, I(X;S|T ) is the amount of the shared informa-
tion between the input and the self-supervised signal excluding the task-relevant information. Hence,
I(X;S|T ) would be large if the downstream tasks requires only a portion of the shared information.

2.3 CONNECTIONS WITH CONTRASTIVE AND PREDICTIVE LEARNING OBJECTIVES

Theorem 1 and 2 state that our self-supervised learning strategies (i.e., min H(ZX |S) and
max I(ZX ;S) defined in Definition 2) can extract task-relevant and discard task-irrelevant informa-
tion. A question emerges:

“What are the practical aspects of the presented self-supervised learning strategies?”

To answer this question, we present 1) the connections with prior SSL objectives, especially for
contrastive (Oord et al., 2018; Bachman et al., 2019; Chen et al., 2020; Tian et al., 2019; Hjelm et al.,
2018; He et al., 2019) and predictive (Zhang et al., 2016; Pathak et al., 2016; Vondrick et al., 2016;
Tulyakov et al., 2018; Peters et al., 2018; Devlin et al., 2018) learning objectives, showing that these
objectives are extracting task-relevant information; and 2) a new inverse predictive learning objective
to discard task-irrelevant information. We illustrate important remarks in Figure 2.

Contrastive Learning (is extracting task-relevant information). Contrastive learning objec-
tive (Oord et al., 2018) maximizes the dependency/contrastiveness between the learned representa-
tion ZX and the self-supervised signal S, which suggests maximizing the the mutual information
I(ZX ;S). Theorem 1 suggests that maximizing I(ZX ;S) results in ZX containing (approximately)
all the information required for the downstream tasks from the input X . To deploy the contrastive
learning objective, we suggest contrastive predictive coding (CPC) (Oord et al., 2018)4, which is a
mutual information lower bound with low variance (Poole et al., 2019; Song & Ermon, 2019):

LCL := max
ZS = FS(S),

ZX = FX (X), G

E(zs1,zx1),··· ,(zsn,zxn)∼Pn(ZS ,ZX )

[
1

n

n∑
i=1

log
e〈G(zxi),G(zsi)〉

1
n

∑n
j=1 e

〈G(zxi),G(zsj)〉

]
, (1)

where FS : S → Z is a deterministic mapping and G is a project head that projects a representation
in Z into a lower-dimensional vector. If the input and self-supervised signals share the same

4Other contrastive learning objectives can be other mutual information lower bounds such as DV-bound
or NWJ-bound (Belghazi et al., 2018) or its JS-divergence (Poole et al., 2019; Hjelm et al., 2018) variants.
Among different objectives, Tschannen et al. (2019) have suggested that the objectives with large variance
(e.g., DV-/NWJ-bound (Belghazi et al., 2018)) may lead to worsen performance compared to the low variance
counterparts (e.g., CPC (Oord et al., 2018) and JS-div. (Poole et al., 2019)).
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sample space, i.e., X = S, we can impose FX = FS (e.g., self-supervised visual representation
learning (Chen et al., 2020)). The projection head, G, can be an identity, a linear, or a non-linear
mapping. Last, we note that modeling equation 1 often requires a large batch size (e.g., large n
in equation 1) to ensure a good downstream performance (He et al., 2019; Chen et al., 2020).

Forward Predictive Learning (is extracting task-relevant information). Forward predictive
learning encourages the learned representation ZX to reconstruct the self-supervised signal S,
which suggests maximizing the log conditional likelihood EPS,ZX [logP (S|ZX)]. By the chain rule,
I(ZX ;S) = H(S)−H(S|ZX), where H(S) is irrelevant to ZX . Hence, maximizing I(ZX ;S) is
equivalent to maximizing −H(S|ZX) = EPS,ZX [logP (S|ZX)], which is the predictive learning
objective. Together with Theorem 1, if zx can perfectly reconstruct s for any (s, zx) ∼ PS,ZX , then
ZX contains (approximately) all the information required for the downstream tasks from the input
X . A common approach to avoid intractability in computing EPS,ZX [logP (S|ZX)] is assuming
a variational distribution Qφ(S|ZX) with φ representing the parameters in Qφ(·|·). Specifically,
we present to maximize EPS,ZX [logQφ(S|ZX)], which is a lower bound of EPS,ZX [logP (S|ZX)]5.
Qφ(·|·) can be any distribution such as Gaussian or Laplacian and φ can be a linear model, a kernel
method, or a neural network. Note that the choice of the reconstruction type of loss depends on
the distribution type of Qφ(·|·), and is not fixed. For instance, if we let Qφ(S|ZX) be Gaussian

N
(
S|R(ZX), σI

)
with σI as a diagonal matrix6, the objective becomes:

LFP := max
ZX=FX (X),R

Es,zx∼PS,ZX

[
− ‖s−R(zx)‖22

]
, (2)

where R : Z → S is a deterministic mapping to reconstruct S from Z and we ignore the constants
derived from the Gaussian distribution. Last, in most real-world applications, the self-supervised
signal S has a much higher dimension (e.g., a 224× 224× 3 image) than the representation ZX (e.g.,
a 64-dim. vector). Hence, modeling a conditional generative model Qφ(S|ZX) will be challenging.

Inverse Predictive Learning (is discarding task-irrelevant information). Inverse predictive
learning encourages the self-supervised signal S to reconstruct the learned representation ZX ,
which suggests maximizing the log conditional likelihood EPS,ZX [logP (ZX |S)]. Given Theorem 2
together with −H(ZX |S) = EPS,ZX [logP (ZX |S)], we know if s can perfectly reconstruct zx
for any (s, zx) ∼ PS,ZX under the constraint that I(ZX ;S) is maximized, then ZX discards the
task-irrelevant information, excluding I(X;S|T ). Similar to the forward predictive learning, we use
EPS,ZX [logQφ(ZX |S)] as a lower bound of EPS,ZX [logP (ZX |S)]. In our deployment, we take the

advantage of the design in equation 1 and let Qφ(ZX |S) be Gaussian N
(
ZX |FS(S), σI

)
:

LIP := max
ZS=FS(S),ZX=FX (X)

Ezs,zx∼PZS,ZX

[
− ‖zx − zs‖22

]
. (3)

Note that optimizing equation 3 alone results in a degenerated solution, e.g., learning ZX and ZS to
be the same constant.

Composing SSL Objectives (to extract task-relevant and discard task-irrelevant information
simultaneously). So far, we discussed how prior self-supervised learning approaches extract task-
relevant information via the contrastive or the forward predictive learning objectives. Our analysis also
inspires a new loss, the inverse predictive learning objective, to discard task-irrelevant information.
Now, We present a composite loss to combine them together:

LSSL = λCLLCL + λFPLFP + λIPLIP , (4)

where λCL, λFP , and λIP are hyper-parameters. This composite loss enables us to extract task-
relevant and discard task-irrelevant information simultaneously.

5EPS,ZX
[logP (S|ZX )] = max

Qφ
EPS,ZX

[logQφ(S|ZX )] +DKL

(
P (S|ZX ) ‖Qφ(S|ZX )

)
≥ max

Qφ
EPS,ZX

[logQφ(S|ZX )].

6The assumption of identity covariance in the Gaussian is only a particular parameterization of the distri-
bution Q(·|·). Other examples are MocoGAN (Tulyakov et al., 2018), which assumes Q is Laplacian (i.e., `1
reconstruction loss) and φ is a deconvolutional network (Long et al., 2015). Transformer-XL (Dai et al., 2019)
assumes Q is a categorical distribution (i.e., cross entropy loss) and φ is a Transformer network (Vaswani et al.,
2017). Although Gaussian with diagonal covariance is not the best assumption, it is perhaps the simplest one.
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2.4 THEORETICAL ANALYSIS - BAYES ERROR RATE FOR DOWNSTREAM CLASSIFICATION

In last subsection, we see the practical aspects of our designed SSL strategies. Now, we provide an
theoretical analysis on the representations’ generalization error when T is a categorical variable . We
use Bayes error rate as an example, which stands for the irreducible error (smallest generalization
error (Feder & Merhav, 1994)) when learning an arbitrary classifier from the representation to infer
the labels. In specific, let Pe be the Bayes error rate of arbitrary learned representations ZX and T̂ as
the estimation for T from our classifier, Pe := Ezx∼PZX [1−max

t∈T
P (T̂ = t|zx)].

To begin with, we present a general form of sample complexity with mutual information (I(ZX ;S))
estimation using empirical samples from distribution PZX ,S . Let P (n)

ZX ,S
denote the (uniformly

sampled) empirical distribution of PZX ,S and Î(n)θ (ZX ;S) := E
P

(n)
ZX ;S

[f̂θ(zx, s)] with f̂θ being the

estimated log density ratio (i.e., log p(s|zx)/p(s)).
Proposition 1 (Mutual Information Neural Estimation, restating Theorem 1 by Tsai et al. (2020)).
Let 0 < δ < 1. There exists d ∈ N and a family of neural networks F := {f̂θ : θ ∈ Θ ⊆ Rd} where
Θ is compact, so that ∃θ∗ ∈ Θ, with probability at least 1−δ over the draw of {zxi, si}ni=1 ∼ P

⊗n
ZX ,S

,∣∣∣Î(n)θ∗ (ZX ;S)− I(ZX ;S)
∣∣∣ ≤ O(√d+log(1/δ)

n

)
.

This proposition shows that there exists a neural network θ∗, with high probability, Î(n)θ∗ (ZX ;S)
can approximate I(ZX ;S) with n samples at rate O(1/

√
n). Under this network θ∗ and the same

parameters d and δ, we are ready to present our main results on the Bayes error rate. Formally, let |T |
be T ’s cardinalitiy and Th(x) = min {max {x, 0}, 1− 1/|T |} as a thresholding function:
Theorem 3 (Bayes Error Rates for Arbitrary Learned Representations). For an arbitrary learned
representations ZX , Pe = Th(P̄e) with

P̄e ≤ 1− exp

(
−
(
H(T ) + I(X;S|T ) + I(Z;X|S, T )− Î(n)θ∗ (ZX ;S) +O

(√d+ log(1/δ)

n

)))
.

Given arbitrary learned representations (ZX ), Theorem 3 suggests the corresponding Bayes error rate
(Pe) is small when: 1) the estimated mutual information

(
Î
(n)
θ∗ (ZX ;S)

)
is large; 2) a larger number of

samples n are used for estimating the mutual information; and 3) the task-irrelevant information
(
the

compression gap I(X;S|T ) and the superfluous information I(Z;X|S, T ), defined in Theorem 2
)

is small. The first and the second results supports the claim that maximizing I(ZX ;S) may learn
the representations that are beneficial to downstream tasks. The third result implies the learned
representations may perform better on the downstream task when the compression gap is small.
Additionally, Zsslmin is preferable than Zssl since I(Zsslmin ;X|S, T ) = 0 and I(Zssl;X|S, T ) ≥ 0.

Theorem 4 (Bayes Error Rates for Self-supervised Learned Representations). Let P sup
e /P ssl

e /P sslmin
e

be the Bayes error rate of the supervised or the self-supervised learned representations
Zsup
X /Zssl

X /Zsslmin

X . Then, P ssl
e = Th(P̄ ssl

e ) and P sslmin
e = Th(P̄ sslmin

e ) with

− log (1− P sup
e ) + log 2

log (|T |) ≤ {P̄ ssl
e , P̄ sslmin

e } ≤ 1− exp
(
− (log 2 + P sup

e · log |T |+ εinfo)
)
.

Given our self-supervised learned representations (Zssl
X and Zsslmin

X ), Theorem 4 suggests a smaller
upper bound of P ssl

e (or P sslmin
e ) when the redundancy between the input and the self-supervised

signal (εinfo, defined in Assumption 1) is small. This result implies the self-supervised learned
representations may perform better on the downstream task when the multi-view redundancy is small.

3 CONTROLLED EXPERIMENTS

This section aims at providing empirical supports for Theorems 1 and 2 and comparing different
SSL objectives. In particular, we present information inequalities in Theorems 1 and 2 regarding the
amount of the task-relevant and the task-irrelevant information that will be extracted and discarded
when learning self-supervised representations. Nonetheless, quantifying the information is notoriously
hard and often leads to inaccurate quantifications in practice (McAllester & Stratos, 2020; Song &
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Figure 3: Comparisons for different compositions of SSL objectives on Omniglot and CIFAR10.

Ermon, 2019). Not to mention the information we aim to quantify is the conditional information,
which is believed to be even more challenging than quantifying the unconditional one (Póczos &
Schneider, 2012). To address this concern, we instead study the generalization error of the self-
supervised learned representations, theoretically (Bayes error rate discussed in Section 2.4) and
empirically (test performance discussed in this section).

Another important aspect of the experimental design is examining equation 4, which can be viewed as
a Lagrangian relaxation to learn representations that contain minimal and sufficient self-supervision
(see Definition 2): a weighted combination between I(ZX ;S) and −H(ZX |S). In particular, the
contrastive loss LCL and the forward-predictive loss LFP represent different realizations of modeling
I(ZX ;S) and the inverse-predictive loss LFP represents a realization of modeling −H(ZX |S).

We design two sets of experiments: The first one is when the input and self-supervised signals
lie in the same modality (visual) and are likely to satisfy the multi-view redundancy assumption
(Assumption 1). The second one is when the input and self-supervised signals lie in very different
modalities (visual and textual), thus challenging the SSL objective’s generalization ability.

Experiment I - Visual Representation Learning. We use Omniglot dataset (Lake et al., 2015) 7

in this experiment. The training set contains images from 964 characters, and the test set contains 659
characters. There are no characters overlap between the training and test set. Each character contains
twenty examples drawn from twenty different people. We regard image as input (X) and generate
self-supervised signal (S) by first sampling an image from the same character as the input image and
then applying translation/ rotation to it. Furthermore, we represent task-relevant information (T ) by
the labels of the image. Under this self-supervised signal construction, the exclusive information in
X or S are drawing styles (i.e., by different people) and image augmentations, and only their shared
information contribute to T . To formally show the later, if T representing the label for X/S, then
P (T |X) and P (T |S) are Dirac. Hence, T ⊥⊥ S|X and T ⊥⊥ X|S, suggesting Assumption 1 holds.

We train the feature mapping FX(·) with SSL objectives (see eq. equation 4), set FS(·) = FX(·),
let R(·) be symmetrical to FX(·), and G(·) be an identity mapping. On the test set, we fix the
mapping and randomly select 5 examples per character as the labeled examples. Then, we classify
the rest of the examples using the 1-nearest neighbor classifier based on feature (i.e., ZX = FX(X))
cosine similarity. The random performance on this task stands at 1

659 ≈ 0.15% . One may refer to
Supplementary for more details.
. Results & Discussions. In Figure 3, we evaluate the generalization ability on the test set for
different SSL objectives. First, we examine how the introduced inverse predictive learning objective
LIP can help improve the performance along with the contrastive learning objective LCL. We
present the results in Figure 3 (a) and also provide experiments with SimCLR (Chen et al., 2020) on
CIFAR10 (Krizhevsky et al., 2009) in Figure 3 (b), where λIP = 0 refers to the exact same setup as
in SimCLR (which considers only LCL). We find that adding LIP in the objective can boost model
performance, although being sensitive to the hyper-parameter λIP . According to Theorem 2, the
improved performance suggests a more compressed representation results in better performance for
the downstream tasks. Second, we add the discussions with the forward predictive learning objective
LFP . We present the results in Figure 3 (c). Comparing to LFP , LCL 1) reaches better test accuracy;
2) requires shorter training epochs to reach the best performance; and 3) suffers from overfitting with
long-epoch training. Combining both of them (LCL + 0.005LFP ) brings their advantages together.

Experiment II - Visual-Textual Representation Learning. We provide experiments using MS
COCO dataset (Lin et al., 2014) that contains 328k multi-labeled images with 2.5 million labeled

7More complex datasets such as CIFAR10 (Krizhevsky et al., 2009) or ImageNet (Deng et al., 2009),
to achieve similar performance, require a much larger training scale from contrastive to forward predictive
objective. For example, on ImageNet, MoCo (He et al., 2019) uses 8 GPUs for its contrastive objective and
ImageGPT (Chen et al.) uses 2048 TPUs for its forward predictive objective. We choose the Omniglot to ensure
fair comparisons among different self-supervised learning objectives under reasonable computation constraint.

7



Published as a conference paper at ICLR 2021

(a) MS COCO (Using LCL as SSL objective)
Setting Micro ROC-AUC Subset Acc.

Cross-modality Self-supervised Learning

Raw BERT + Raw ResNet 0.5963± 0.0034 0.0166± 0.0017
Pre-trained BERT + Raw ResNet 0.5915± 0.0035 0.0163± 0.0011
Raw BERT + Pre-trained ResNet 0.7049± 0.0040 0.2081± 0.0063

Pre-trained BERT + Pre-trained ResNet 0.7065± 0.0026 0.2123± 0.0040

Non Self-supervised Learning

Only Pre-trained ResNet 0.6761± 0.0045 0.1719± 0.0015

Figure 4: Comparisons for different settings on self-supervised visual-textual representation training. We report
metrics on MS COCO validation set with mean and standard deviation from 5 random trials.

instances from 91 objects. Each image has 5 annotated captions describing the relationships between
objects in the scenes. We regard image as input (X) and its textual descriptions as self-supervised
signal (S). Since vision and text are two very different modalities, the multi-view redundancy may
not be satisfied, which means εinfo may be large in Assumption 1.

We adopt LCL (+λIPLIP) as our SSL objective. We use ResNet18 (He et al., 2016) image encoder for
FX(·) (trained from scratch or fine-tuned on ImageNet (Deng et al., 2009) pre-trained weights), BERT-
uncased (Devlin et al., 2018) text encoder for FS(·) (trained from scratch or BookCorpus (Zhu et al.,
2015)/Wikipedia pre-trained weights), and a linear layer for G(·). After performing self-supervised
visual-textual representation learning, we consider the downstream multi-label classification over
91 categories. We evaluate learned visual representation (ZX ) using downstream linear evaluation
protocol (Oord et al., 2018; Hénaff et al., 2019; Tian et al., 2019; Hjelm et al., 2018; Bachman et al.,
2019; Tschannen et al., 2019). Specifically, a linear classifier is trained from the self-supervised
learned (fixed) representation to the labels on the training set. Commonly used metrics for multi-label
classification are reported on MS COCO validation set: Micro ROC-AUC and Subset Accuracy. One
may refer to Supplementary for more details on these metrics.
. Results & Discussions. First, Figure 4 (a) suggests that the SSL strategy can still work when
the input and self-supervised signals lie in different modalities. For example, pre-trained ResNet
with BERT (either raw or the pre-trained one) outperforms pre-trained ResNet alone. We also see
that the self-supervised learned representations benefit more if the ResNet is pre-trained but not the
BERT. This result is in accord with the fact that object recognition requires more understanding in
vision, and hence the pre-trained ResNet is preferrable than the pre-trained BERT. Next, Figure 4 (b)
suggests that the self-supervised learned representations can be further improved by combining LCL
and LIP , suggesting LIP may be a useful objective to discard task-irrelevant information.

Remarks on λIP and LIP . As observed in the experimental results, λIP is a sensitive hyper-
parameter to the performance. We provide an optimization perspective to address this concern.
Note that one of the our goals is to examine the setting when learning the minimal and sufficient
representations for self-supervision (see Definition 2): minimize H(ZX |S) under the constraint that
I(ZX ;S) is maximized. However, this constrained optimization is not feasible when considering
gradients methods in neural networks. Hence, our approach can be seen as its Lagrangian Relaxation
by a weighted combination between LCL (or LFP , representing I(ZX ;S)) and LIP (representing
H(ZX |S)) with the λIP being the Lagrangian coefficient.

The optimal λIP can be obtained by solving the Lagrangian dual, which depends on the parametriza-
tion of LCL (or LFP ) and LIP . Different parameterizations lead to different loss and gradient
landscapes, and hence the optimal λIP differs across experiments. This conclusion is verified by the
results presented in Figure 3 (a) and (b) and Figure 4 (b). Lastly, we point out that even not solving
the Lagrangian dual, an empirical observation across experiments is that λIP which leads to the best
performance is when the scale of LIP is one-tenth to the scale of LCL (or LFP ).

4 RELATED WORK

Prior work by Arora et al. (2019) and the recent concurrent work (Lee et al., 2020; Tosh et al., 2020)
are landmarks for theoretically understanding the success of SSL. In particular, Arora et al. (2019);
Lee et al. (2020) showed a decreased sample complexity for downstream supervised tasks when
adopting contrastive learning objectives (Arora et al., 2019) or predicting the known information
in the data (Lee et al., 2020). Tosh et al. (2020) showed that the linear functions of the learned
representations are nearly optimal on downstream prediction tasks. By viewing the input and the
self-supervised signal as two corresponding views of the data, we discuss the differences among
these works and ours. On the one hand, the work by Arora et al. (2019); Lee et al. (2020) assume
strong independence between the views conditioning on the downstream tasks , i.e., I(X;S|T ) ≈ 0.
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On the other hand, the work by Tosh et al. (2020) and ours assume strong independence between
the downstream task and one view conditioning on the other view, i.e., I(T ;X|S) ≈ 0. Prior
work (Balcan et al., 2005; Du et al., 2010) have compared these two assumptions and pointed out the
former one (I(X;S|T ) ≈ 0) is too strong and not likely to hold in practice. We note that all these
related work and ours have shown that the self-supervised learning methods are learning to extract
task-relevant information. Our work additionally presents to discard task-irrelevant information and
quantifies the amount of information that cannot be discarded.

Our method also resembles the InfoMax principle (Linsker, 1988; Hjelm et al., 2018) and the Multi-
view Information Bottleneck method (Federici et al., 2020). The InfoMax principle aims at preserving
the information of itself, while ours aims at extracting the information in the self-supervised signal.
On the other hand, to reduce the redundant information across views, the Multi-view Information
Bottleneck method proposed to minimize the conditional mutual information I(ZX ;X|S) , while
ours propose to minimize the conditional entropy H(ZX |S). The conditional entropy minimization
problem can be easily optimized via our proposed inversed predictive learning objective.

Another related work is InfoMin (Tian et al., 2020), where both InfoMin and our method suggest to
learn the representations that contain “not” too much information. In particular, InfoMin presents to
augment the data (i.e., by constructing learnable data augmentations) such that the shared information
between augmented variants is as minimal as possible, followed by the mutual information maxi-
mization between the learned features from the augmented variants. Our method instead considers
standard augmentations (e.g., rotations and translations), followed by learning representations that
contain no more than the shared information between the augmented variants of the data.

On the empirical side, we explain why contrastive (Oord et al., 2018; Bachman et al., 2019; Chen
et al., 2020) and predictive learning (Zhang et al., 2016; Pathak et al., 2016; Vondrick et al., 2016;
Chen et al.) approaches can unsupervised extract task-relevant information. Different from these
work, we present an objective to discard task-irrelevant information and show its combination with
existing contrastive or predictive objectives benefits the performance.

5 CONCLUSION

This work studies both theoretical and empirical perspectives on self-supervised learning. We
show that the self-supervised learned representations could extract task-relevant information (with a
potential loss) and discard task-irrelevant information (with a fixed gap), along with their practical
deployments such as contrastive and predictive learning objectives. We believe this work sheds
light on the advantages of self-supervised learning and may help better understand when and why
self-supervised learning is likely to work. In the future, we plan to connect our framework and recent
SSL methods that cannot be easily fit into our analysis: e.g., BYOL (Grill et al., 2020), SWAV (Caron
et al., 2020), and Unifromality-Alignment (Wang & Isola, 2020).
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A REMARKS ON LEARNING MINIMAL AND SUFFICIENT REPRESENTATIONS

In the main text, we discussed the objectives to learn minimal and sufficient representations (Definition
1). Here, we discuss the similarities and differences between the prior methods (Tishby et al., 2000;
Achille & Soatto, 2018) and ours. First, to obtain sufficient representations (for the downstream
task T ), all the methods presented to maximize I(ZX ;T ). Then, to maintain minimal amount of
information in the representations, the prior methods (Tishby et al., 2000; Achille & Soatto, 2018)
presented to minimize I(ZX ;X) and the ours presents to minimize H(ZX |T ). Our goal is to relate
I(ZX ;X) minimization and H(ZX |T ) minimization in our framework.

To begin with, under the constraint I(ZX ;T ) is maximized, we see that minimizing I(ZX ;X) is
equivalent to minimizing I(ZX ;X|T ). The reason is that I(ZX ;X) = I(ZX ;X|T ) + I(ZX ;X;T ),
where I(ZX ;X;T ) = I(ZX ;T ) due to the determinism from X to ZX (our framework learns
a deterministic function from X to ZX ) and I(ZX ;T ) is maximized in our constraint. Then,
I(ZX ;X|T ) = H(ZX |T ) − H(ZX |X,T ), where H(ZX |T ) contains no randomness (no infor-
mation) as ZX being deterministic from X . Hence, I(ZX ;X|T ) minimization and H(ZX |T )
minimization are interchangeable.

The same claim can be made from the downstream task T to the self-supervised signal S. In
specific, when X to ZX is deterministic, I(ZX ;X|S) minimization and H(ZX |S) minimization
are interchangeable. As discussed in the related work section, for reducing the amount of the
redundant information, Federici et al. (2020) presented to use I(ZX ;X|S) minimization and ours
presented to use H(ZX |T ) minimization. We also note that directly minimizing the conditional
mutual information (i.e., I(ZX ;X|S)) requires a min-max optimization (Mukherjee et al., 2020),
which may cause instability in practice. To overcome the issue, Federici et al. (2020) assumes a
Gaussian encoder for X → ZX and presents an upper bound of the original objective.

B PROOFS FOR THEOREM 1 AND 2

We start by presenting a useful lemma from the fact that FX(·) is a deterministic function:

Lemma 1 (Determinism). If P (ZX |X) is Dirac, then the following conditional independence holds:
T ⊥⊥ ZX |X and S ⊥⊥ ZX |X , inducing a Markov chain S ↔ T ↔ X → ZX .

Proof. When ZX is a deterministic function of X , for any A in the sigma-algebra induced by ZX
we have E[1[ZX∈A]|X, {T, S}] = E[1[ZX∈A]|X,S] = E[1[ZX∈A]|X], which implies T ⊥⊥ ZX |X
and S ⊥⊥ ZX |X .

Theorem 1 and 2 in the main text restated:
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Theorem 5 (Task-relevant information with a potential loss εinfo, restating Theorem 1 in the main
text). The supervised learned representations (i.e., I(Zsup

X ;T ) and I(Zsupmin

X ;T )) contain all the
task-relevant information in the input (i.e., I(X;T )). The self-supervised learned representations (i.e.,
I(Zssl

X ;T ) and I(Zsslmin

X ;T )) contain all the task-relevant information in the input with a potential
loss εinfo. Formally,

I(X;T ) = I(Zsup
X ;T ) = I(Zsupmin

X ;T ) ≥ I(Zssl
X ;T ) ≥ I(Zsslmin

X ;T ) ≥ I(X;T )− εinfo.

Proof. The proofs contain two parts. The first one is showing the results for the supervised learned
representations and the second one is for the self-supervised learned representations.

Supervised Learned Representations: Adopting Data Processing Inequality (DPI by Cover & Thomas
(2012)) in the Markov chain S ↔ T ↔ X → ZX (Lemma 1), I(ZX ;T ) is maximized at I(X;T ).
Since both supervised learned representations (Zsup

X and Zsupmin

X ) maximize I(ZX ;T ), we conclude
I(Zsup

X ;T ) = I(Zsupmin

X ;T ) = I(X;T ).

Self-supervised Learned Representations: First, we have

I(ZX ;S) = I(ZX ;T )− I(ZX ;T |S) + I(ZX ;S|T ) = I(ZX ;T ;S) + I(ZX ;S|T )

and
I(X;S) = I(X;T )− I(X;T |S) + I(X;S|T ) = I(X;T ;S) + I(X;S|T ).

By DPI in the Markov chain S ↔ T ↔ X → ZX (Lemma 1), we know

• I(ZX ;S) is maximized at I(X;S)

• I(ZX ;S;T ) is maximized at I(X;S;T )

• I(ZX ;S|T ) is maximized at I(X;S|T )

Since both self-supervised learned representations (Zssl
X and Zsslmin

X ) maximize I(ZX ;S), we have
I(Zssl

X ;S) = I(Zsslmin

X ;S) = I(X;S). Hence, I(Zssl
X ;S;T ) = I(Zsslmin

X ;S;T ) = I(X;S;T ) and
I(Zssl

X ;S|T ) = I(Zsslmin

X ;S|T ) = I(X;S|T ). Using the result I(Zssl
X ;S;T ) = I(Zsslmin

X ;S;T ) =
I(X;S;T ), we get

I(Zssl
X ;T ) = I(X;T )− I(X;T |S) + I(Zssl

X ;T |S)

and
I(Zsslmin

X ;T ) = I(X;T )− I(X;T |S) + I(Zsslmin

X ;T |S).

Now, we are ready to present the inequalities:

1. I(X;T ) ≥ I(Zssl
X ;T ) due to I(X;T |S) ≥ I(Zssl

X ;T |S) by DPI.

2. I(Zssl
X ;T ) ≥ I(Zsslmin

X ;T ) due to I(Zssl
X ;T |S) ≥ I(Zsslmin

X ;T |S) = 0. Since H(ZX |S) is
minimized at Zsslmin

X , I(Zsslmin

X ;T |S) = 0.

3. I(Zsslmin

X ;T ) ≥ I(X;T )− εinfo due to

I(X;T )− I(X;T |S) + I(Zsslmin

X ;T |S) ≥ I(X;T )− I(X;T |S) ≥ I(X;T )− εinfo,
where I(X;T |S) ≤ εinfo by the redundancy assumption.

Theorem 6 (Task-irrelevant information with a fixed compression gap I(X;S|T ), restating Theorem
2 in the main text). The sufficient self-supervised representation (i.e., I(Zssl

X ;T )) contains more task-
irrelevant information in the input than then the sufficient and minimal self-supervised representation
(i.e., I(Zsslmin

X ;T )). The later contains an amount of the information, I(X;S|T ), that cannot be
discarded from the input. Formally,
I(Zssl

X ;X|T ) = I(X;S|T ) + I(Zssl
X ;X|S, T ) ≥ I(Zsslmin

X ;X|T ) = I(X;S|T ) ≥ I(Zsupmin

X ;X|T ) = 0.
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Proof. First, we see that

I(ZX ;X|T ) = I(ZX ;X;S|T ) + I(ZX ;X|S, T ) = I(ZX ;S|T ) + I(ZX ;X|S, T ),

where I(ZX ;X;S|T ) = I(ZX ;S|T ) by DPI in the Markov chain S ↔ T ↔ X → ZX .

We conclude the proof by combining the following:

• From the proof in Theorem 5, we showed I(Zssl
X ;S|T ) = I(Zsslmin

X ;S|T ) = I(X;S|T ).

• Since H(ZX |S) is minimized at Zsslmin

X , I(Zsslmin

X ;X|S, T ) = 0.

• Since H(ZX |T ) is minimized at Zsupmin

X , I(Zsupmin

X ;X|T ) = 0.

C PROOF FOR PROPOSITION 1

Proposition 2 (Mutual Information Neural Estimation, restating Proposition 1 in the main text). Let
0 < δ < 1. There exists d ∈ N and a family of neural networks F := {f̂θ : θ ∈ Θ ⊆ Rd} where Θ is
compact, so that ∃θ∗ ∈ Θ, with probability at least 1 − δ over the draw of {zxi, si}ni=1 ∼ P⊗nZX ,S ,∣∣∣Î(n)θ∗ (ZX ;S)− I(ZX ;S)

∣∣∣ ≤ O(√d+log(1/δ)
n

)
.

Sketch of Proof. The proof is a standard instance of uniform convergence bound. First, we assume
the boundness and the Lipschitzness of f̂θ. Then, we use the universal approximation lemma of
neural networks (Hornik et al.). Last, combing all these two along with the uniform convergence in
terms of the covering number (Bartlett, 1998), we complete the proof.

We note that the complete proof can be found in the prior work (Tsai et al., 2020). An alterna-
tive but similar proof can be found in another prior work (Belghazi et al., 2018), which gives

us
∣∣∣Î(n)θ∗ (ZX ;S)− I(ZX ;S)

∣∣∣ ≤ O

(√
dlog d+log(1/δ)

n

)
. The subtle difference between them is

that, given a neural network function space Θ ⊆ Rd and its covering number N (Θ, η), Tsai
et al. (2020) has N (Θ, η) = O

(
(η)−d

)
by Bartlett (1998) and Belghazi et al. (2018) has

N (Θ, η) = O
(

(η/
√
d)−d

)
by Shalev-Shwartz & Ben-David (2014). Both are valid and the one

used by Tsai et al. (2020) is tighter.

D PROOFS FOR THEOREM 3 AND 4

To begin with, we see that

I(ZX ;T ) = I(ZX ;X)− I(ZX ;X|T ) + I(ZX ;T |X) = I(ZX ;X)− I(ZX ;X|T )

= I(ZX ;S)− I(ZX ;S|X) + I(ZX ;X|S)− I(ZX ;X|T )

= I(ZX ;S) + I(ZX ;X|S)− I(ZX ;X|T )

≥ I(ZX ;S)− I(ZX ;X|T ),

where I(ZX ;T |X) = I(ZX ;S|X) = 0 due to the determinism from X to ZX . Then, in the proof
of Theorem 6, we have shown I(ZX ;X|T ) = I(ZX ;S|T ) + I(ZX ;X|S, T ). Hence,

I(ZX ;T ) ≥ I(ZX ;S)− I(ZX ;S|T )− I(ZX ;X|S, T )

≥ I(ZX ;S)− I(X;S|T )− I(ZX ;X|S, T ),

where I(ZX ;S|T ) ≤ I(X;S|T ) by DPI.

Theorem 3 and 4 in the main text restated:

14
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Theorem 7 (Bayes Error Rates for Arbitrary Learned Representations, restating Theorem 3 in the
main text). For an arbitrary learned representations ZX , Pe = Th(P̄e) with

P̄e ≤ 1− exp
−
(
H(T )+I(X;S|T )+I(Z;X|S,T )−Î(n)

θ∗ (ZX ;S)+O
(√

d+log(1/δ)
n

))
.

Proof. We use the inequality between Pe and H(T |ZX) indicated by Feder & Merhav (1994):

−log(1− Pe) ≤ H(T |ZX).

Combining with I(ZX ;T ) = H(T ) − H(T |ZX) and I(ZX ;T ) ≥ I(ZX ;S) − I(X;S|T ) −
I(ZX ;X|S, T ), we have

log(1− Pe) ≥ −H(T ) + I(ZX ;S)− I(X;S|T )− I(ZX ;X|S, T ).

Hence,

Pe ≤ 1− exp
−
(
H(T )+I(X;S|T )+I(Z;X|S,T )−I(ZX ;S)

)
.

Next, by definition of the Bayes error rate, we know 0 ≤ Pe ≤ 1− 1
|T | .

We conclude the proof by combining Proposition 2,
∣∣∣Î(n)θ∗ (ZX ;S)− I(ZX ;S)

∣∣∣ ≤

O

(√
d+log(1/δ)

n

)
.

Theorem 8 (Bayes Error Rates for Self-supervised Learned Representations, restating Theorem 4 in
the main text). Let P sup

e /P ssl
e /P sslmin

e be the Bayes error rate of the supervised or the self-supervised
learned representations Zsup

X /Zssl
X /Zsslmin

X . Then, P ssl
e = Th(P̄ ssl

e ) and P sslmin
e = Th(P̄ sslmin

e ) with

− log (1− P sup
e ) + log 2

log (|T |)
≤ {P̄ ssl

e , P̄ sslmin
e } ≤ 1− exp−(log 2+P sup

e ·log |T |+εinfo).

Proof. We use the two inequalities between Pe and H(T |ZX) by Feder & Merhav (1994) and Cover
& Thomas (2012):

−log(1− Pe) ≤ H(T |ZX)

and
H(T |ZX) ≤ log 2 + Pelog|T |.

Combining the results from Theorem 5:

I(Zsup
X ;T ) ≥ I(Zssl

X ;T ) ≥ I(Zsslmin

X ;T ) ≥ I(Zsup
X ;T )− εinfo,

we have

• the upper bound of the self-supervised learned representations’ Bayes error rate:

{−log(1− P ssl
e ),−log(1− P sslmin

e )} ≤ {H(T |Zssl
X ), H(T |Zsslmin

X )}
≤ H(T |Zsup

X ) + εinfo

≤ log 2 + P sup
e log|T |+ εinfo,

which suggests {P ssl
e , P sslmin

e } ≤ 1− exp−(log 2+P sup
e ·log |T |+εinfo).

• the lower bound of the self-supervised learned representations’ Bayes error rate:

−log(1− P sup
e ) ≤ H(T |Zsup

X )

≤ {H(T |Zssl
X ), H(T |Zsslmin

X )}
≤ {log 2 + P ssl

e log|T |,≤ {log 2 + P sslmin
e log|T |},

which suggests − log (1−P sup
e )+log 2

log (|T |) ≤ {P ssl
e , P sslmin

e }.

We conclude the proof by having Pe lie in the feasible range: 0 ≤ Pe ≤ 1− 1
|T | .
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E TIGHTER BOUNDS FOR THE BAYES ERROR RATES

We note that the bound used in Theorems 7 and 8: −log(1− Pe) ≤ H(T |ZX) ≤ log 2 + Pelog|T |
is not tight. A tighter bound is H−(Pe) ≤ H(T |ZX) ≤ H+(Pe) with

H−(Pe) := H
(
k(1− Pe)

)
+ k(1− Pe)log k when

k − 1

k
≤ Pe ≤

k

k + 1
, 1 ≤ k ≤ |T | − 1,

and H+(Pe) := H(Pe) + Pelog (|T | − 1),

where H(x) = −xlog(x)− (1− x)log(1− x).

It is clear that −log(1− Pe) ≤ H−(Pe) and H+(Pe) ≤ log 2 + Pelog(|T |).

Hence, Theorem 7 and 8 can be improved as follows:
Theorem 9 (Tighter Bayes Error Rates for Arbitrary Learned Representations). For an arbitrary
learned representations ZX , Pe = Th(P̄e) with P̄e ≤ Peupper. Peupper is derived from the program

arg max
Pe

H−(Pe) ≤ H(T )− Î(n)θ (Zssl
X ;S) + I(X;S|T ) + I(ZX ;X|S, T ) +O

(√d+ log(1/δ)

n

)
.

Theorem 10 (Tighter Bayes Error Rates for Self-supervised Learned Representations). Let
P sup
e /P ssl

e /P sslmin
e be the Bayes error rate of the supervised or the self-supervised learned rep-

resentations Zsup
X /Zssl

X /Zsslmin

X . Then, P ssl
e = Th(P̄ ssl

e ) and P sslmin
e = Th(P̄ sslmin

e ) with

Pe
ssl
lower ≤ {P̄ ssl

e , P̄ sslmin
e } ≤ Pesslupper.

Pe
ssl
lower is derived from the following program

arg min
P ssl
e

H−(P sup
e ) ≤ H+(P ssl

e )

and Pesslupper is derived from the following program

arg max
P ssl
e

H−(P ssl
e ) ≤ H+(P sup

e ) + εinfo.

F MORE ON VISUAL REPRESENTATION LEARNING EXPERIMENTS

In the main text, we design controlled experiments on self-supervised visual representation learning
to empirically support our theorem and examine different compositions of SSL objectives. In this
section, we will discuss 1) the architecture design; 2) different deployments of contrastive/ forward
predictive learning; and 3) different self-supervised signal construction strategy. We argue that these
three additional set of experiments may be interesting future work.

F.1 ARCHITECTURE DESIGN

The input image has size 105 × 105. For image augmentations, we adopt 1) rotation with
degrees from −10◦ to +10◦; 2) translation from −15 pixels to +15 pixels; 3) scaling
both width and height from 0.85 to 1.0; 4) scaling width from 0.85 to 1.25 while fixing
the height; and 5) resizing the image to 28 × 28. Then, a deep network takes a 28 × 28
image and outputs a 1024−dim. feature vector. The deep network has the structure:
Conv − BN− ReLU− Conv − BN− ReLU−MaxPool− Conv − BN− ReLU−MaxPool− Conv
−BN− ReLU−MaxPool− Flatten− Linear − L2Norm. Conv has 3x3 ker-
nel size with 128 output channels, MaxPool has 2x2 kernel size, and Linear
is a 1152 to 1024 weight matrix. R(·) is symmetric to FX(·), which has
Linear − BN− ReLU− UnFlatten− DeConv − BN− ReLU− DeConv − BN− ReLU− DeConv
−BN− ReLU− DeConv. R(·) has the exact same number of parameters as FX(·). Note that we
use the same network designs in I(·, ·) and H(·|·) estimations. To reproduce the results in our
experimental section, please refer to our released code8.

8https://github.com/yaohungt/Self_Supervised_Learning_Multiview
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(a) Omniglot (Composing SSL Objectives with LFP as MSE)
Objective Trained for Test Accuracy

LCL 500 epochs 85.59± 0.05%
LCL + LIP 500 epochs 85.90± 0.09%

LFP 20000 epochs 84.83± 0.07%
LFP + 10LIP 20000 epochs 84.96± 0.04%
LCL + 10LFP 9000 epochs 86.13± 0.21%

LCL + 10LFP + LIP 9000 epochs 86.17± 0.13%

Figure 5: Comparisons for different objectives/compositions of SSL objectives on self-supervised visual
representation training. We report mean and its standard error from 5 random trials.

F.2 DIFFERENT DEPLOYMENTS FOR CONTRASTIVE AND PREDICTIVE LEARNING OBJECTIVES

In the main text, for practical deployments, we suggest Contrastive Predictive Coding (CPC) Oord
et al. (2018) for LCL and assume Gaussian distribution for the variational distributions in LFP / LIP .
The practical deployments can be abundant by using different mutual information approximations for
LCL and having different distribution assumptions for LFP / LIP . In the following, we discuss a few
examples.

Contrastive Learning. Other than CPC Oord et al. (2018), another popular contrastive learning
objective is JS Bachman et al. (2019), which is the lower bound of Jensen-Shannon divergence
between P (ZS , ZX) and P (ZS)P (ZX) (a variational bound of mutual information). Its objective
can be written as

max
ZS=FS(S),ZX=FX(X),G

EP (ZS ,ZX)
[−softplus

(−〈G(zx), G(zs)〉
)]−EP (ZS)P (ZX)

[
softplus

(〈G(zx), G(zs)〉
)]
,

where we use softplus to denote softplus (x) = log (1 + exp (x)).

Predictive Learning. Gaussian distribution may be the simplest distribution form that we can
imagine, which leads to Mean Square Error (MSE) reconstruction loss. Here, we use forward
predictive learning as an example, and we discuss the case when S lies in discrete {0, 1} sample
space. Specifically, we let Qφ(S|ZX) be factorized multivariate Bernoulli:

max
ZX=FX(X),R

EPS,ZX

[
p∑
i=1

si · log [R(zx)]i + (1− si) · log [1−R(zx)]i

]
. (5)

This objective leads to Binary Cross Entropy (BCE) reconstruction loss.

If we assume each reconstruction loss corresponds to a particular distribution form, then by ignoring
which variatioinal distribution we choose, we are free to choose arbitrary reconstruction loss. For
instance, by switching s and z in eq. equation 5, the objective can be regarded as Reverse Binary
Cross Entropy Loss (RevBCE) reconstruction loss. In our experiments, we find RevBCE works the
best among {MSE, BCE, and RevBCE}. Therefore, in the main text, we choose RevBCE as the
example reconstruction loss as LFP .

More Experiments. We provide an additional set of experiments by having {CPC, JS} for LCL and
{MSE, BCE, RevBCE} reconstruction loss for LFP in Figure 5. From the results, we find different
formulation of objectives bring very different test generalization performance. We argue that, given
a particular task, it is challenging but important to find the best deployments for contrastive and
predictive learning objectives.

F.3 DIFFERENT SELF-SUPERVISED SIGNAL CONSTRUCTION STRATEGY

In the main text, we design a self-supervised signal construction strategy that the input (X) and the
self-supervised signal (S) differ in {drawing styles, image augmentations}. This self-supervised
signal construction strategy is different from the one that is commonly adopted in most self-supervised
visual representation learning work Tian et al. (2019); Bachman et al. (2019); Chen et al. (2020).
Specifically, prior work consider the difference between input and the self-supervised signal only in
image augmentations. We provide additional experiments in Fig. 6 to compare these two different
self-supervised signal construction strategies.

We see that, comparing to the common self-supervised signal construction strategy Tian et al. (2019);
Bachman et al. (2019); Chen et al. (2020), the strategy introduced in our controlled experiments
has much better generalization ability to test set. It is worth noting that, although our construction

17



Published as a conference paper at ICLR 2021

Figure 6: Comparisons for different self-supervised signal construction strategies. The differences between the
input and the self-supervised signals are {drawing styles, image augmentations} for our construction strategy
and only {image augmentations} for SimCLR Chen et al. (2020)’s strategy. We choose LCL as our objective,
reporting mean and its standard error from 5 random trials.

strategy has access to the label information (i.e., we sample the self-supervised signal image from the
same character with the input image), our SSL objectives do not train with the labels. Nonetheless,
since we implicitly utilize the label information in our self-supervised construction strategy, it will
be unfair to directly compare our strategy and prior one. An interesting future research direction is
examining different self-supervised signal construction strategy and even combine full/part of label
information into self-supervised learning.

G METRICS IN VISUAL-TEXTUAL REPRESENTATION LEARNING

• Subset Accuracy (A) Sorower, also know as the Exact Match Ratio (MR), ignores all
partially correct (consider them incorrect) outputs and extend accuracy from the single label
case to the multi-label setting.

MR =
1

n

n∑
i=1

1[Yi=Hi]

• Micro AUC ROC score Fawcett (2006) computes the AUC (Area under the curve) of a
receiver operating characteristic (ROC) curve.
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