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Abstract

To harness the powerful text generation capa-
bilities of recent large language models (LLMs)
in the Table-to-Text task, employing parameter-
efficient fine-tuning on open-source LLMs
is a viable approach. However, how to en-
hance the model’s table reasoning ability dur-
ing LLM fine-tuning presents a challenge. In
this study, we propose a two-step solution
called HeLM. Different from previous fine-
tuning-based methods that directly expand ta-
bles as inputs, our approach injects reasoning
information into the input table by emphasiz-
ing table-specific row data. Our model consists
of two modules: a table reasoner that identi-
fies relevant row evidence, and a table sum-
marizer that generates sentences based on the
highlighted table. To facilitate this, we propose
a method to train and construct reasoning labels
for obtaining the table reasoner. On both the
FetaQA and QTSumm datasets, our approach
achieved state-of-the-art results in ROUGE and
BLEU scores. Additionally, it is observed that
highlighting input tables significantly enhances
the model’s performance and provides valuable
interpretability.

1 Introduction

Tabular data is important and ubiquitous, serv-
ing as the fundamental format for data storage
in databases. Analyzing and processing tabular
data is important in the field of Natural Language
Processing (NLP), such as table-based fact veri-
fication (Chen et al., 2019; Aly et al., 2021) and
table-based question answer (Pasupat and Liang,
2015; Nan et al., 2022). The recent emergence
of Large Language Models (LLMs) (Brown et al.,
2020; OpenAl, 2023; Wei et al., 2022; Touvron
et al., 2023a; Chung et al., 2022; Workshop et al.,
2022) showcase impressive capabilities, unveiling
vast potential in handling tabular data. Therefore,
this paper delves specifically into the application
of LL.Ms in table-to-text generation.

Current approaches (Ye et al., 2023; Chen, 2023)
in utilizing LLMs for table-based tasks usually rely
on invoking APIs for few-shot learning or integrat-
ing methods like chain-of-thought (Wei et al., 2022)
or in-context learning. Although LLMs can achieve
comparable performance even without fine-tuning,
frequent API calls can be costly and pose informa-
tion security risks. Therefore, a lightweight LLM
system specialized in handling tabular data inde-
pendently stands as an effective solution. With the
availability of open-sourced LLMs like LLaMA
(Touvron et al., 2023a,b), ChatGLM (Du et al.,
2022), and the introduction of parameter-efficient
training methods such as LoRA (Hu et al., 2021),
fine-tuning a large model with limited computa-
tional resources is now available. In this study, we
employ QLoRA (Dettmers et al., 2023) to fine-tune
the LLaMAZ2 (Touvron et al., 2023b) base model
specifically for table-to-text generation.

To enable the model to adeptly handle tabular
data, it requires the capability to reason intricately
across textual, numerical, and logical domains.
Some methods (Abdelaziz et al., 2017; Hui et al.,
2022) achieve this by synthesizing executable lan-
guages, such as SQL. Others (Herzig et al., 2020;
Liu et al., 2021; Jiang et al., 2022; Gu et al., 2022)
pretrain on additional table data to acquire table
reasoning capabilities. However, some lightweight
LLMs often lack table reasoning capabilities due
to their pretraining text containing minimal tabu-
lar data content. In this paper, we conceptualize
table reasoning as the capacity to identify crucial
evidence within a table according to the output re-
quirements. In this context, we define evidence
as the specific row-level data crucial for answer-
ing the final output. Considering that input tables
are often extensive, essential information usually
resides within a small portion. Identifying and con-
veying this row data effectively to the model can
significantly enhance the model’s output quality.

In real-world scenarios, inputs often consist



solely of tables and queries, necessitating an au-
tomated process to gather evidence data. This pa-
per introduces a two-step methodology designed
to tackle these challenges. The first is a LLM-
based table reasoner, aimed at identifying and
Hightlighting evidence given input table. Then
another Large Language Model based table sum-
marizer model generates the final output. This
methodology is termed as HeLLM.

The pivotal component of HeLLM lies in the table
reasoner, which outputs row indexes based on the
given table and query. HeLLM utilizes fine-tuned
LLMs for this task. However, most datasets lack
evidence labels for fine-tuning the reasoner. To
address this issue, one direct approach is to distill
evidence labels from more powerful LLMs. Ad-
ditionally, we designed an algorithm that, with-
out relying on other models or data, automatically
constructs evidence labels using only the original
input-output data from the table2text dataset. Af-
ter that, combining evidence labels obtained from
different methods can further enhance the quality
of evidence. The table reasoner trained in this man-
ner not only improves the overall performance of
HeLM but also provides valuable interpretability.

The contributions of this paper are as follows:
(1) We propose a two-step table-to-text approach
named HelLM, which utilizes a table reasoner
to highlight input tables, aiding downstream ta-
ble summarizers in producing better text outputs.
(2) We introduce a search-based evidence label
construction method and a workflow for training
HelLM'’s reasoner and summarizer. (3) HeLM at-
tains state-of-the-art results in terms of BLEU and
ROUGE scores on both the FetaQA and QTSumm
datasets.

2 Related work

2.1 Table to Text Generation

Some table-to-text tasks (Chen et al., 2020; Parikh
et al., 2020; Cheng et al., 2022a) focus on gener-
ating descriptions that correspond to the content
within a selected range of tables. While tasks that
limit the table scope for text output are relatively
simple, they are not consistent with real-world ap-
plications. In contrast, other tasks (Suadaa et al.,
2021; Moosavi et al., 2021) emphasize the analy-
sis of tables within specific domains. Furthermore,
tasks such as QT'Summ (Zhao et al., 2023) and Fe-
TaQA (Nan et al., 2022) involve text generation for
tables based on provided queries.

Generally, these tasks are accomplished using
neural encoder-decoder models that directly gener-
ate sentences through the fine-tuning of language
models such as BART (Lewis et al., 2020) and T5
(Raffel et al., 2020).

2.2 Reasoning Over Tables

Enhancing a model’s table reasoning capabilities
is pivotal for table-related tasks. One prevalent
strategy is pre-training models with reasoning data
that includes both tables and text (Yin et al., 2020;
Chen et al., 2020; Liu et al., 2021; Deng et al.,
2022; Xie et al., 2022). However, these models
often generate texts in an end-to-end manner, sac-
rificing explainability. An alternative approach,
named by REFACTOR (Zhao et al., 2023), sug-
gests generating query-relevant facts from tables
as intermediate results for LLM’s input. Another
noteworthy method, as proposed in (Cheng et al.,
2022b), employs Codex (Chen et al., 2021) to syn-
thesize SQL for executing logical forms against
tables in question-answering tasks. Dater (Ye et al.,
2023) takes an approach by reducing the original
table into relevant sub-tables. Unlike Dater, we
choose to preserve the entire table, as reducing it
to sub-tables may lead to the loss of critical global
information. ToTTo (Parikh et al., 2020) also high-
lights the human observed evidence with the entire
table retained, but its performance was found to be
extremely poor.

3 Methodology

3.1 Table-to-Text Formulation

Table-to-text is a generative task X — ), where
the input X comprises the table 7" and its metadata,
typically involving a query (Q to direct the output
content. The output ) can be either a sentence or a
paragraph.

3.2 HeLM Framework

Our framework consists of two components: a table
reasoner M p and a table summarizer Mg. The
table reasoner identifies the indexes of row data
relevant to the query within the table. This com-
ponent can be implemented using various model
types. In this study, we employ a generative form
of LLM. To achieve this, we design a prompt (see
appendix) that concatenates rows of the table into
a string along with the query and task description,
forming the input for the table reasoner:
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Figure 1: The overall framework of HeLM. The upper part demonstrates the training process, while the lower part

illustrates the inference process.

E = Mg (Prompt(T', Q)) (1)

The output of Mp is a list of indices F =
{ei, ...}, where ¢; corresponds to the row number
in the table.

| Year | Title | Row | Note |
HL | 2007 | Water | Keiichior | Leading |
| 2015 | Areno | husband | - |
| 2017 | Rangoon | Hiromichi | - |, {1}
| Year | Title | Row | Note |

| * 2007 *|* Water *|*Keiichior* | * Leading*|
| 2015 | Areno | husband | - |
| 2017 | Rangoon | Hiromichi | - |

Figure 2: Case of table highlighting, where {1} corre-
sponds to E in equation 2.

Utilizing the information of key evidence (F) in
the original table (1"), we highlight this information
to obtain the modified table (1™*). The highlighting
operation HL(+) is to decorate each data cell of a
key row with a special character ‘*’ symbolizing
its significance, as depicted in Figure 2.

T* = HL(T, E) )

The table summarizer will subsequently produce
the final result based on the prompt generated by

highlighted table 7™ associated with query () and
task description:

Y = Mg (Prompt(T*, Q)) 3)

3.3 Table Reasoner Labels

Training evidence is necessary for fine-tuning a
table reasoning module, and we summarize three
sources for obtaining these evidence labels.

* Human annotated evidence E),,,: Some
datasets, such as QT'Summ (Zhao et al., 2023),
inherently include labels for relevant evidence,
and they are obtained through manual annota-
tion.

* LLMs distilled evidence F,;: Labels can
also be distilled from other LLMs such as
ChatGPT (OpenAl, 2023). To better capture
evidence, we designed an in-context learn-
ing prompt (see appendix A), incorporating
golden labels ) to better capture evidence.

Egp = LLMs(Prompt(7', Q,Y)) (4)

e Searched evidence F.: Evidence labels can
also be obtained through search algorithms,
which require feedback for different £. This
feedback system has two requirements: one
is the golden output ) corresponding to the



input table and query, and the other is a feed-
back table summarizer M . For more details
of this algorithm, please refer to section 3.4.

Ese = Search(T,Q, Y, Mp) 5)

The table evidence labels obtained through vari-
ous methods showcases significant disparities. By
integrating these evidence labels, higher-quality
evidence can be attained. This process entails us-
ing highlighted tables associated with different evi-
dence and getting sentences via the feedback sum-
marizer M . The evidence label for the current
sample is chosen based on the sentence that re-
ceives the highest evaluated score. The formula for
generating the merged label E,,,c,4 is outlined as
follows:

Emerge = Mefge(E, Tv Q, y> MF) (6)

Here, E represents the available evidence label set.
For datasets lacking human annotated evidence,
E = {Esea Egpt}-

3.4 Reasoning labels by Searching

As mentioned earlier, the search algorithm requires
a feedback system. The feedback system includes
the golden output ) corresponding to the table
query and a feedback summarizer Mp. Mpg’s
output is evaluated by computing the BLEU score
against ) to derive numerical feedback.

In label searching, the input for M g is the sub-
table corresponding to the evidence. Parikh et al.
(2020); Ye et al. (2023) have proved that using
only the sub-table corresponding to evidence as
input yields satisfactory results when using LLMs.
Therefore, we can use the sub-table corresponding
to E as input, allowing the summarizer to obtain
results for comparison with ) for feedback.

Another reason for using the sub-table as input
to search for evidence is that M g is more sensitive
to sub-table evidence compared to the input of the
complete table. Because even when relevant row
data is not highlighted as evidence in the complete
table input, M r might still capture it.

Assuming the table has n rows of data, and each
row can be either selected or not, the search space
for this algorithm is 2". This implies that for each
training example, one would need to invoke LLMs
(summarizer) 2™ times to construct the optimal evi-
dence, which is impractical. Therefore, we propose

Algorithm 1: Reasoning evidence labels
by greedy search

Input: Table T'(n rows), Query ), Answer )/,
Feedback summarizer M r
Output: Searched evidence Label E;.
Generate n evidence labels E = {E1, Ea, ...
where E; = {i}
fori < 1tondo
Vi = M, (Prompt(SubTab(T, E; ), Q))
R; = eval(Y;,))

s En},

end
Reorder the E according to reward R.
Evidence label F; is initialized with empty set.
Evidence label reward: Rs = 0
fori < 1tondo
Vi = Mp(Prompt(SubTab(T, E; + E;), Q))
R; = eval(Vs,))
if R; > R then
Rs =R,
Es == Ez + Es
end
end

a greedy search method to construct labels, reduc-
ing the searching complexity from 2" to n.

The core idea of this algorithm is that query-
relevant evidence can enhance the summarizer feed-
back score, while irrelevant evidence cannot en-
hance the feedback score. During evidence con-
struction, the initial evidence is an empty set. Based
on feedback results, we expand this evidence by
adding row index one by one, and we repeat this
process until the score no longer increases or reach
a certain step. We have also designed heuristic
steps to efficiently select evidence rows. A more
detailed procedure is shown in Algorithm 1.

3.5 HeLM Training

HeLM comprises two modules: Reasoner and Sum-
marizer. Training a complete HeLM modules in-
volves the following steps:

Step 1 Obtain feedback summarizer: Distilling
E,p through LLMs, and training a rough table
summarizer MY using either Egpt or Eppan,.

(HL(Egpt/mam T),Q, y) — M% @)

Step 2 Obtain merged evidence: Treating the
table summarizer M% as M to obtain E, using
Algorithm 1, then combining the existing evidence
through Equation 6 to obtain E,,¢rge.

Step 3 Train reasoner and summarizer: Train
reasoner Mg using Fyperge, and train summarizer
Mg using Y and T™ corresponding to Fyp,erge.

(HL(EmETng: T)7 Q7 y) — MS (8)
(T> Q7 Emerge) — MR (9)



Figure 1 displays the comprehensive training and
inference process of HeLM.

Facing the immense size of recent language mod-
els, conducting full-parameters fine-tuning is pro-
hibitively expensive. As a practical alternative, we
adopt the parameter-efficient finetuning strategy,
QLoRA (Dettmers et al., 2023; Hu et al., 2021), to
train our reasoner and summarizer. This approach
significantly reduces trainable parameters to 0.6%
of the original, enabling fine-tuning of LLMs on
consumer devices.

4 Experiments

4.1 Dataset and Evaluation

FeTaQA: FeTaQA is a dataset designed for free-
form table question-answering, constructed using
information from Wikipedia. It introduces a table
question answering scenario, where questions are
answered in natural language. The FeTaQA dataset
comprises 7,326 question-answer pairs in the train-
ing set, 1,000 in the validation set, and 2,006 in
the test set. For the evaluation of results on the
FeTaQA dataset, we employ commonly adopted
metrics, including ROUGE-1, ROUGE-2, ROUGE-
L (Lin, 2004), and the BLEU (Papineni et al., 2002;
Post, 2018) score.

QTSumm: QTSumm is a query-focused table sum-
marization dataset, requiring text generation mod-
els to engage in human-like reasoning and analysis
over the provided table to generate a tailored sum-
mary. The training and validation sets consist of
4,981 and 1,052 examples respectively, and the test
set comprises 1,078 examples. Notably, in com-
parison to the FeTaQA dataset, QTSumm exhibits
longer output lengths. For the evaluation of results
on QTSumm, we employ not only ROUGE-L and
BLEU scores but also the METEOR (Banerjee and
Lavie, 2005) as the evaluation metric.

4.2 Implementation Details

All models are executed on a single NVIDIA-A100
GPU with 80G of memory. We optimized our base-
line LLMs through 4-bit QLoRA finetuning, uti-
lizing an effective batch size of 8 for 2 epochs.
The optimization process employed the AdamW
(Loshchilov and Hutter, 2018) optimizer with de-
fault momentum parameters and a constant learn-
ing rate schedule set at 2e-4. For QLoRA, Nor-
malFloat4 with double quantization was applied to
the base models, and LoRA adapters were added
to all linear layers with parameters » = 16 and

Models R-1 R-2 R-L BLEU
Fine-tuning based methods
T5-small 55 33 47 21.60
T5-base 61 39 51 28.14
T5-large 63 41 53 30.54
UnifiedSKG 64 42 54 31.5
TAPEX 62 40 51 30.2
OmniTab 63 41 52 30.7
PLOG 64 43 55 31.8
HeLM|| \i0os 654 435 554 32.95
HelM|| i) 3 67.8 464 579 3510
Few-shot LLMs methods

TabCot(GPT-3) 61 38 49 27.02
Dater(Codex) 66 45 56 30.92

Table 1: Results on FeTaQA dataset. The T marked
models are trained using QLoRA.

a = 32. The maximum input length was con-
strained to 2048. For generating outputs from the
LLMs, we employed nucleus sampling (Holtzman
et al., 2019) with parameters p = 0.9 and a temper-
ature of 0.1.

Our model, HeLM| | ama2-138, denotes that both
the summarizer and reasoner utilize LLaMA?2-13B
as the backbone model for parameter-efficient fine-
tuning. The prompt used for fine-tuning is detailed
in Appendix A.

Models BLEU R-L METEOR
Fine-tuning based methods
T5-Large 20.3 38.7 40.2
BART-large 212 40.6 43.0
OmniTab 22.4 42.4 4477
TAPEX 23.1 42.1 45.6
LLaMA2-13Bf 233 428 46.7
HeLM! 1o 5 239 437 48.1
- Eran 25.0 453 50.0
Few-shot LLMs methods
LLaMA2-7B 14.0 31.2 37.3
LLaMA2-13B 17.5 33.2 42.3
LLaMA2-70B 19.0 38.0 46.4
GPT-3.5 20.0 399 50.0
GPT-4 19.5 40.5 51.1

Table 2: Results on QTSumm dataset. The T marked
models are trained using QLoRA.



4.3 Baselines

There are primarily two types of baselines for
Table-to-Text task, that is, fine-tuning methods,
and few-shot methods using LLMs. In the Fe-
TaQA dataset, fine-tuning baselines contain the
T5-based (Raffel et al., 2020) models (T5-Small,
T5-Base, and T5-Large), as well as TAPEX (Liu
et al., 2021), OmniTab (Jiang et al., 2022), and
PLOG (Liu et al., 2022). TAPEX and OmniTab
are both BART-based models, with additional pre-
training on custom training data.

In FeTaQA dataset, methods using LLMs for
few-shot learning include Dater (Codex) (Ye et al.,
2023) and TabCOT (Chen, 2023). The few-shot
LLMs baselines for the QTSumm dataset are di-
rectly adapted from (Zhao et al., 2023), including
methods such as LLaMA?2 and GPT-4.

4.4 Main Results

HeLMj 1 ama2-138 demonstrate superior perfor-
mance on both the QTSumm and FeTaQA
datasets. Specifically, on the FeTaQA dataset,
HeLLMy 1 ama2-138 outperforms the previous lead-
ing method, Dater, with a 1.8 and 1.9 improvement
in Rouge-1 and Rouge-L respectively. More no-
tably, there is a substantial improvement in the
BLEU score, with an increase of 3.26. Addition-
ally, BLEU scores of fine-tuning methods are con-
sistently higher than few-shot-based LLM:s.

Models Fluency  Correct Adequate
TabCot(GPT3) 2.05 1.98 2.02
LLaMA2-QLoRA  2.00 2.11 2.06
HelLM 1.96 1.92 191

Table 3: Human evaluation on FeTaQA. The numbers
in the table indicate the average ranking.

On the QT'Summ dataset, the method fine-tuned
based on LLaMA2-13B demonstrates significant
improvement compared to other fine-tuning meth-
ods. Due to QT'Summ providing manual evidence
FEran, we can use this evidence to directly high-
light the table as input for the HeLM’s summarizer
in evaluation. The corresponding result is denoted
as HeLM-E,, 4. In comparison with other LLMs,
HelLM-FE,, ., and HeLM achieve the highest and
second-highest scores in ROUGE-L and BLEU.
However, GPT-4 achieves the highest score in the
METEOR.

Relying solely on the ROUGE and BLEU scores
cannot comprehensively assess the model’s perfor-

mance. Therefore, human evaluation is necessary.
We conducted a human evaluation in three aspects:
(1) fluency (whether the output sentences are flu-
ent and without grammar errors), (2) correctness
(the accuracy of numerical values and logical cor-
rectness of sentences), and (3) adequacy (whether
the output results cover all aspects of the ques-
tions). Models we compared included LLaMA2-
13B LoRA, which is also based on efficient fine-
tuning, as well as Tabcot (GPT3), an LLMs-based
few-shot method. We randomly sampled 100 exam-
ples from the test set and recruited three annotators
to rank the three models.

Among these three metrics, correctness is the
most indicative table reasoning ability. TabCot
performs lower on fluency compared to LLaMA2
LoRA, but its correctness is significantly better.
This suggests that fine-tuning on a specific dataset
is more focused on learning surface-level features.
Regarding the table reasoning ability as indicated
by correctness, LLMs like GPT-3 showcases su-
perior capabilities. HeLM performs best in cor-
rectness, indicating the positive impact of HeLM’s
reasoner on the overall accuracy of the results.

Models R-1 R-2 R-L BLEU

Different highlight evidence

LLaMA2-13BT  66.5 447 562 33.24
HeLM! | \1io 3 67.8 464 579 3510
- w/o HL 66.6 447 566 33.13
- subTab 650 433 555 3228
- Egpt /oy 68.1 466 58.1 3534
- Egpi 69.4 478 592 3633
- By 68.1 46.6 580 34.96
- Ererge 69.6 482 59.5 36.74
Different model size
LLaMA2-7Bf 650 43.0 548 32.68
HeLM! \1oon 654 435 554 3295
- w/o HL 647 430 548 3228

Table 4: Ablation study on FeTaQA dataset. The t
marked models are trained using QLoRA.

4.5 Ablation Study

4.5.1 Impact of model size

As shown in Table 4, when using LLaMA2-7B as
the base model for fine-tuning, HeLMy | sma2-78
showed a 2.15 decrease in BLEU score and a
2.5 decrease in ROUGE-L score compared to



(1) Table caption: 2014 Newark by-election

party Candidate Votes % +
Conservative  Robert Jenrick 17,431 45.0 8.9
UKIP Roger Helmer 10,028 259 221
Labour Michael Payne 6,842 17.7 4.7
Independent Paul Baggaley 1,891 4.9 N/A
Green David Kirwan 1,057 27 N/A
[ Majority Majority 7,403 19.1 12.4 ]

Query: Who won the 2014 Newark by-election and by what margin?
Golden: Conservative Robert Jenrick won with a majority of 7,403.

HeLM: The 2014 Newark by-election was won by Robert Jenrick of
the Conservative Party with a majority of 7,403 votes.

LLaMA2-QLoRA: The Conservative Party's Robert Jenrick won the
2014 Newark by-election with 45.0% of the vote, a majority of 19.1%.

TabCot (GPT3): The Conservative party held the seat in the 2014
Newark by-election. The margin of victory was 19.1%.

(2) Table caption: Paul Williams (footballer, born 1971)

Club Season League Total  Total

Club Season Division Apps  Goals
Dearby County 1989-90 First Division 10 1
Dearby County 1990-91 First Division 19 4
Coventry City 1995-96 Premier League 37 2
Coventry City 1995-96 Premier League 38 2
Coventry City 1995-96 Premier League 25 0
Coventry City 2001-02 Premier League 5 0
Coventry City Total Total 199 5
Southampton 2001-02 Premier League 30 0

Query: How many appearances did Williams make for Coventry
City, and for how many seasons did he play for the club?

Golden: Williams made 199 appearances for Coventry City in 7
consecutive seasons.

HeLM: Williams made 199 appearances for Coventry City in seven
seasons.

LLaMA2-QLoRA: Williams made 58 appearances for Coventry City
in two seasons.

TabCot (GPT3): Williams made 169 appearances for Coventry City
over six seasons.

(3) Table caption: Cliff Gorman

Year Title Role Note
1969 Justine Toto -
1970 The Boys in the band Emory

1980 Night of the Juggler Gus Soltic -
1981 The Bunker Joseph Gobbels TV movie
1984 Angel Lt. Andrews -
1992 Night and the City Phil Nasseros -
1992 Hoffa Solly Stein -

Query: What roles did Cliff Gorman play between 1981 to 1984?

Golden: Cliff Gorman played as Joseph Goebbels in the 1981 TV movie The
Bunker and as Lt. Andrews in the film Angel (1984).

HeLM: Cliff Gorman played the role of Joseph Goebbels in the TV movie

The Bunker (1981), Lieutenant Andrews in Angel (1984), and Solly Stein in
Hoffa (1992).

LLaMA2-QLoRA: Cliff Gorman played the role of Joseph Goebbels in the TV
movie The Bunker (1981) and the role of Lt. Andrews in Angel (1984).

TabCot (GPT3): Cliff Gorman played the roles of Lt. Andrews in Angel (1981),
Joseph Goebbels in The Bunker (1981), and Solly Stein in Hoffa (1992).

(4) Table caption: Swimming at the 2012 Summer
Olympics — Women's 200 metre backstroke

Rank Lane Name Nationality Time Notes

- 5 Missy Franklin United States 2:04.06 WR
6 Anastasia Zuyeva Russia 2:05.92
4 Elizabeth Beisel United States 2:06.55

4 1 Elizabeth Simmonds Great Britain 2:07.26

5] 3 Meagen Nay Australia 2:07.43

6 7 Kirsty Coventry Zimbabwe 2:08.18

7 2 Alexianne Castel France 2:08.43

(s 8 Sinead Russell Canada 2:09.86 - )

Query: Who were the last two finishers of the at the 2012 Summer Olympics
for the Women's 200 metre backstroke?

Golden: France's Alexianne Castel (2:08.43) and Canada's Sinead Russell
(2:09.86) closed out the championship field.

HeLM: Canada's Sinead Russell finished eighth in 2:09.86 and Australia's
Belinda Hutchison rounded out the finale in ninth with a time of 2:10.00.

LLaMA2-QLoRA: The last two finishers of the Women's 200 metre backstroke
were Kirsty Coventry with a time of 2:08.18 and Alexianne Castel with a time of

TabCot (GPT3): The last two finishers were Sinead Russell in 8th place with a
time of 2:09.86 and Kirsty Coventry in 6th place with a time of 2:08.18.

Figure 3: Cases from the FeTaQA Dataset. The reasoner of HeLM has highlighted specific parts of the table using
red boxes. The rows in the table with a green background represent manually observed evidence related to the query.

HeLMj 1 ama2-138- Directly fine-tuning LLaMA2-
7B using LoRA also exhibited a 1.4 decrease in
ROUGE-L compared to LLaMA2-13B. This in-
dicates that LLLM’s size significantly affects the
results for the Table-to-Text task.

4.5.2 Impact of table highlighting

HeLLM’s summarizer takes tables highlighted with
evidence as input, and different evidence will have
different effects on the output results of the summa-
rizer. When the summarizer of HeLMj [ amaA2-13B
receives unmodified tables as input, specifically, the
result of -w/o0 HL showed a decrease of both BLEU
and ROUGE-L. This signifies the effectiveness of
highlighting crucial information in LLM’s input
tables. Additionally, when using the same evidence
for test data, and constructing a sub-table with only

key row information as input instead of retaining
all table data, the approach -subTab has a 2.82 de-
crease in BLEU score. This suggests the benefit of
retaining sufficient table information. Another ob-
servation is that when no highlighting is applied to
the input table, LLaMA?2 outperformed HeLM-w/o
HL. This happens because HeLM’s summarizer
generated dependency on highlighted evidence dur-
ing training. However, during testing, when the
highlighting is absent, it results in poorer perfor-
mance compared to LLaMA2.

4.5.3 Impact of evidence labels

Keeping the summarizer of HeLMj 1 ama2-138 fixed,
we examine the output derived from employing var-
ious evidence labels for table highlighting, aiming
to illustrate the impact of evidence label quality.



During testing, the evidence used for highlighting
the input table in our base model HeLMj | ama2 i
generated by the HeLMj [ama2’s reasoner. FEg,
and F,, are reasoning evidence mentioned in sec-
tion 3.3, while E,,,¢,4¢ 1s a combination of the two
evidence labels. It’s important to note that all three
labels were obtained with knowledge of the golden
summary V. Eg. 4/, y, based on the method used
for Egy, eliminates ) from the prompt. Thus, the
BLEU score also decreased by 1.01. According to
the Table 4, the evaluation score corresponding to
Eperge is the highest, indicating that the evidence
quality of E,,crqe 1s the best. This also indicates
that although the overall quality of E. obtained
through greedy search is lower than E,;, some
samples perform better than E;.

4.6 Cases Analysis

We showcase some instances of accurate and inac-
curate predictions generated by HeLLM’s table rea-
soner, alongside outputs from TabCot(GPT3) and
LLaMA2-QLoRA respectively, as shown in Figure
3. For instance, case (2) shows the results given two
questions about numerical calculation. HeLM’s
reasoner accurately finds the player’s records dur-
ing their tenure at Coventry, aiding the table sum-
marizer in precisely calculating the player’s tenure
and total appearances. In contrast, both LLaMA2-
QLoRA and TabCot(GPT3) give wrong answers
for the two questions.

Cases (3) and (4) represent instances where the
reasoner made inaccurate judgments. In case (3),
the reasoner highlighted two irrelevant rows, one
of which appeared in the summarizer’s output. In
case (4), the reasoner missed highlighting one row,
leading the summarizer to fabricate a ninth-ranking
entry, but the table only contained data for the top
eight ranks. Therefore, it’s evident that the summa-
rizer places significant emphasis on the highlighted
segments of the table as identified by the reasoner.

5 Conclusion

In this paper, leveraging existing open-source LLM,
we devised a lightweight two-step table-to-text so-
lution named HeLM. HeLM comprises two mod-
ules: table reasoner and table summarizer. Both
modules adopt LLaMA?2 as the backbone model
and conduct efficient fine-tuning using designed
prompts. Additionally, we explored diverse meth-
ods for constructing reasoning evidence, encom-
passing distillation from ChatGPT and construc-

tion by a searching algorithm. Our experimental
findings showcase that leveraging the reasoner to
highlight important row data of the input table sig-
nificantly elevates the quality of the output and
provides valuable interpretability.

Limitations and Future work

Despite HeLLM achieving good results on two table-
to-text datasets, there are still some limitations and
space for further improvement: (1) We haven’t ex-
tensively investigated table highlighting formats,
and there might be more effective ways. (2) Cur-
rently, HeLLM is trained for specific datasets, lack-
ing generalization; training HeLM on a mixture
of table-to-text datasets could be a better solution.
(3) The evidence labels generated by greedy search
in table reasoner could be further improved. For
instance, we can employ reinforcement learning
to search for more optimal evidence labels. (4)
Despite our model achieving high scores in BLEU
and ROUGE metrics, its advantages in numerical
and textual accuracy aren’t notably pronounced
compared to some powerful LLMs.

Ethics Statement

We acknowledge the importance of the ACL Ethics
Policy and agree with it. The objective of HeLM
systems in this paper is to enhance data processing
efficiency. The datasets, QTSumm and FeTaQA,
utilized in this paper are both public datasets under
the MIT license.

In human evaluation, we recruit 3 graduate stu-
dents in computer science and statistic majors (2
male and 1 female) each student is paid $11.2
(above average local payment of similar jobs) per
hour.
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-

System:

User:
[example 1]
[example 2]

N

###Input:[table] \n ##Question:[query] \n ##Answer:[golden output] \n ###Sub-table Row:

Prompt to get E g,

You are a linguistic expert, and you need to determine which parts of the row data in table are relevant to the question and answer.
I will first give you two examples of input and Sub-table Row output. Note that your output format can only be 'row(*)" !!!

J

Figure 4: The prompt used to obtain E,; using GPT-3.5-trubo. The content within the green brackets represents
two examples used for few-shot learning. The inputs such as tables, queries, etc., within the red brackets, can be

replaced according to specific input requirements.

A Prompt Design

Prompt to get £ ,;: To achieve better results, we
incorporate two examples of input-output pairs
within the prompt to help LLMs understand the
output format. Additionally, we include the golden
summary ) to guide a better identification of ev-
idence. The details of the prompt template for
obtaining E,; can be found in Figure 4. Addition-
ally, the two samples used in the prompt can be

found in Figure 6.
Prompt of Reasoner
System:

You are an expert table reasoner, your task is to output the relative
row indexes which might be helpful for answering the query.

User:

###Table:[table] \n #H#Query:[query] \n ###Output:[golden output]

Prompt of Summarizer

| g

System:

You are an expert table reasoner, your task is to output the answer
given Table and Query. Relative table units to query are surrounded
by “*”.

User:

#it#Table:[table] \n ###Query:[query] \n ###Output:[golden output]

- J

Figure 5: The top section shows the prompt correspond-
ing to the reasoner, and the bottom section shows the
prompt corresponding to the summarizer. The elements
within the red brackets can be replaced based on differ-
ent examples.

Prompt of reasoner and summarizer In HeLM,
both the table reasoner and summarizer utilize
LLMs, necessitating the construction of input
prompt text. Figure 5 displays the prompt tem-
plates used for the two components in HeLM. Dur-
ing inference, leave the area after “###Output” in

11

the prompt blank.
B Code libraries

HelM utilizes the PyTorch deep learning frame-
work, loading models provided by Huggingface,
and utilizes the PEFT package for parameter-
efficient fine-tuning. The training framework of
the model is modified based on the LLM-finetuning

HUB.
- ST -
###Input: Table caption: University of Oregon Admissions
col: - 2014|2013 2012|2011 |2010
row 1: Applicants | 21,359 21,938 [ 21,263 | 23,012 | 18,515
row 2: Admits | 15,997 | 16,206 | 15,770 | 16,790 | 14,588
row 3: % Admitted | 74.9 | 73.9 1 74.2]73.0 | 78.8
row 4: Avg GPA | 3.583.60 | 3.57 | 3.59 | 3.52
row 5: Enrolled | 3,961 | 3,966 | 4,031 | 4,167 | 3,978
row 6: SAT range* | 990-1230 | 990-1240 | 991-1224 | 993-1223 | 991-1218

##Question: How many students were accepted from the 21,359 people who
applied for the University of Oregon in 2014 and how many students enrolled?
##Answer: For students entering University of Oregon 2014, 15,997 freshmen
were accepted out of 21,359 applicants, a 74.9% acceptance rate, and 3,961
enrolled.

###Sub-table Row: row(1, 2, 3, 5)

- J
- ST -
###nput:

Table caption: Annette Taddeo Early elections, 2008-2016

col: Party | Party | Candidate | Votes | %

row 1: - | Republican | Rick Scott/Carlos Lopez-Cantera | 2,865,343 | 48.1%

row 2: - | Democratic | Charlie Crist/Annette Taddeo | 2,801,198 | 47.1%

row 3: - | Libertarian | Adrian Wyllie/Greg Roe | 223,356 | 3.8%

row 4: - | No Party Affiliation | Glenn Burkett/Jose Augusto Matos | 41,341 | 0.7%
row 5: - | No Party Affiliation | Farid Khavari/Lateresa A. Jones | 20,186 | 0.3%
row 6: Total votes | Total votes | Total votes | 5,951,561 | -

##Question: What duo finished second in the election, what duo won the
election, what percentage of vote did each duo receive, and what party was
victorious?

##Answer: The Crist-Taddeo lost the election to Republican Rick Scott and
Carlos Lopez-Cantera, 48.1 to 47.1%.

###Sub-table Row: row(l, 2)

J

Figure 6: Two examples used in figure 4
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