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Abstract

To harness the powerful text generation capa-001
bilities of recent large language models (LLMs)002
in the Table-to-Text task, employing parameter-003
efficient fine-tuning on open-source LLMs004
is a viable approach. However, how to en-005
hance the model’s table reasoning ability dur-006
ing LLM fine-tuning presents a challenge. In007
this study, we propose a two-step solution008
called HeLM. Different from previous fine-009
tuning-based methods that directly expand ta-010
bles as inputs, our approach injects reasoning011
information into the input table by emphasiz-012
ing table-specific row data. Our model consists013
of two modules: a table reasoner that identi-014
fies relevant row evidence, and a table sum-015
marizer that generates sentences based on the016
highlighted table. To facilitate this, we propose017
a method to train and construct reasoning labels018
for obtaining the table reasoner. On both the019
FetaQA and QTSumm datasets, our approach020
achieved state-of-the-art results in ROUGE and021
BLEU scores. Additionally, it is observed that022
highlighting input tables significantly enhances023
the model’s performance and provides valuable024
interpretability.025

1 Introduction026

Tabular data is important and ubiquitous, serv-027

ing as the fundamental format for data storage028

in databases. Analyzing and processing tabular029

data is important in the field of Natural Language030

Processing (NLP), such as table-based fact veri-031

fication (Chen et al., 2019; Aly et al., 2021) and032

table-based question answer (Pasupat and Liang,033

2015; Nan et al., 2022). The recent emergence034

of Large Language Models (LLMs) (Brown et al.,035

2020; OpenAI, 2023; Wei et al., 2022; Touvron036

et al., 2023a; Chung et al., 2022; Workshop et al.,037

2022) showcase impressive capabilities, unveiling038

vast potential in handling tabular data. Therefore,039

this paper delves specifically into the application040

of LLMs in table-to-text generation.041

Current approaches (Ye et al., 2023; Chen, 2023) 042

in utilizing LLMs for table-based tasks usually rely 043

on invoking APIs for few-shot learning or integrat- 044

ing methods like chain-of-thought (Wei et al., 2022) 045

or in-context learning. Although LLMs can achieve 046

comparable performance even without fine-tuning, 047

frequent API calls can be costly and pose informa- 048

tion security risks. Therefore, a lightweight LLM 049

system specialized in handling tabular data inde- 050

pendently stands as an effective solution. With the 051

availability of open-sourced LLMs like LLaMA 052

(Touvron et al., 2023a,b), ChatGLM (Du et al., 053

2022), and the introduction of parameter-efficient 054

training methods such as LoRA (Hu et al., 2021), 055

fine-tuning a large model with limited computa- 056

tional resources is now available. In this study, we 057

employ QLoRA (Dettmers et al., 2023) to fine-tune 058

the LLaMA2 (Touvron et al., 2023b) base model 059

specifically for table-to-text generation. 060

To enable the model to adeptly handle tabular 061

data, it requires the capability to reason intricately 062

across textual, numerical, and logical domains. 063

Some methods (Abdelaziz et al., 2017; Hui et al., 064

2022) achieve this by synthesizing executable lan- 065

guages, such as SQL. Others (Herzig et al., 2020; 066

Liu et al., 2021; Jiang et al., 2022; Gu et al., 2022) 067

pretrain on additional table data to acquire table 068

reasoning capabilities. However, some lightweight 069

LLMs often lack table reasoning capabilities due 070

to their pretraining text containing minimal tabu- 071

lar data content. In this paper, we conceptualize 072

table reasoning as the capacity to identify crucial 073

evidence within a table according to the output re- 074

quirements. In this context, we define evidence 075

as the specific row-level data crucial for answer- 076

ing the final output. Considering that input tables 077

are often extensive, essential information usually 078

resides within a small portion. Identifying and con- 079

veying this row data effectively to the model can 080

significantly enhance the model’s output quality. 081

In real-world scenarios, inputs often consist 082
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solely of tables and queries, necessitating an au-083

tomated process to gather evidence data. This pa-084

per introduces a two-step methodology designed085

to tackle these challenges. The first is a LLM-086

based table reasoner, aimed at identifying and087

Hightlighting evidence given input table. Then088

another Large Language Model based table sum-089

marizer model generates the final output. This090

methodology is termed as HeLM.091

The pivotal component of HeLM lies in the table092

reasoner, which outputs row indexes based on the093

given table and query. HeLM utilizes fine-tuned094

LLMs for this task. However, most datasets lack095

evidence labels for fine-tuning the reasoner. To096

address this issue, one direct approach is to distill097

evidence labels from more powerful LLMs. Ad-098

ditionally, we designed an algorithm that, with-099

out relying on other models or data, automatically100

constructs evidence labels using only the original101

input-output data from the table2text dataset. Af-102

ter that, combining evidence labels obtained from103

different methods can further enhance the quality104

of evidence. The table reasoner trained in this man-105

ner not only improves the overall performance of106

HeLM but also provides valuable interpretability.107

The contributions of this paper are as follows:108

(1) We propose a two-step table-to-text approach109

named HeLM, which utilizes a table reasoner110

to highlight input tables, aiding downstream ta-111

ble summarizers in producing better text outputs.112

(2) We introduce a search-based evidence label113

construction method and a workflow for training114

HeLM’s reasoner and summarizer. (3) HeLM at-115

tains state-of-the-art results in terms of BLEU and116

ROUGE scores on both the FetaQA and QTSumm117

datasets.118

2 Related work119

2.1 Table to Text Generation120

Some table-to-text tasks (Chen et al., 2020; Parikh121

et al., 2020; Cheng et al., 2022a) focus on gener-122

ating descriptions that correspond to the content123

within a selected range of tables. While tasks that124

limit the table scope for text output are relatively125

simple, they are not consistent with real-world ap-126

plications. In contrast, other tasks (Suadaa et al.,127

2021; Moosavi et al., 2021) emphasize the analy-128

sis of tables within specific domains. Furthermore,129

tasks such as QTSumm (Zhao et al., 2023) and Fe-130

TaQA (Nan et al., 2022) involve text generation for131

tables based on provided queries.132

Generally, these tasks are accomplished using 133

neural encoder-decoder models that directly gener- 134

ate sentences through the fine-tuning of language 135

models such as BART (Lewis et al., 2020) and T5 136

(Raffel et al., 2020). 137

2.2 Reasoning Over Tables 138

Enhancing a model’s table reasoning capabilities 139

is pivotal for table-related tasks. One prevalent 140

strategy is pre-training models with reasoning data 141

that includes both tables and text (Yin et al., 2020; 142

Chen et al., 2020; Liu et al., 2021; Deng et al., 143

2022; Xie et al., 2022). However, these models 144

often generate texts in an end-to-end manner, sac- 145

rificing explainability. An alternative approach, 146

named by REFACTOR (Zhao et al., 2023), sug- 147

gests generating query-relevant facts from tables 148

as intermediate results for LLM’s input. Another 149

noteworthy method, as proposed in (Cheng et al., 150

2022b), employs Codex (Chen et al., 2021) to syn- 151

thesize SQL for executing logical forms against 152

tables in question-answering tasks. Dater (Ye et al., 153

2023) takes an approach by reducing the original 154

table into relevant sub-tables. Unlike Dater, we 155

choose to preserve the entire table, as reducing it 156

to sub-tables may lead to the loss of critical global 157

information. ToTTo (Parikh et al., 2020) also high- 158

lights the human observed evidence with the entire 159

table retained, but its performance was found to be 160

extremely poor. 161

3 Methodology 162

3.1 Table-to-Text Formulation 163

Table-to-text is a generative task X → Y , where 164

the input X comprises the table T and its metadata, 165

typically involving a query Q to direct the output 166

content. The output Y can be either a sentence or a 167

paragraph. 168

3.2 HeLM Framework 169

Our framework consists of two components: a table 170

reasoner MR and a table summarizer MS . The 171

table reasoner identifies the indexes of row data 172

relevant to the query within the table. This com- 173

ponent can be implemented using various model 174

types. In this study, we employ a generative form 175

of LLM. To achieve this, we design a prompt (see 176

appendix) that concatenates rows of the table into 177

a string along with the query and task description, 178

forming the input for the table reasoner: 179
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Question: xxxxxx

Year Title Role Note

2007 Water Keiichior Leading

2015 Areno husband -

2017 Rangoon Hiromichi -

2018 OVER Driver Ryuta Seki -

Question: xxxxxx

Year Title Role Note

2007 Water Keiichior Leading

2015 Areno husband -

2017 Rangoon Hiromichi -

2018 OVER Driver Ryuta Seki -

Question: In 2007, what did Satoru Kawaguchi portray?

Question: In 2007, what did Satoru Kawaguchi portray?

HeLM Inference pipeline

Summarizer of HeLM
Step 1

HeLM
Feedback 

Summarizer

Question: xxxxxx

Answer: ...

Year Title Role Note

2007 Water Keiichior Leading

2015 Areno husband -

2017 Rangoon Hiromichi -

2018 OVER Driver Ryuta Seki -

Question: In 2007, what did Satoru Kawaguchi portray?

Answer: In 2007, Satoru Kawaguchi portrayed Keiichiro in Water.

Human annotated evidence

LLMs distilled evidence

Greedy searched evidence

Merged evidence

Question: xxxxxx

Answer: ...

Year Title Role Note

2007 Water Keiichior Leading

2015 Areno husband -

2017 Rangoon Hiromichi -

2018 OVER Driver Ryuta Seki -

Question: In 2007, what did Satoru Kawaguchi portray?

Answer: In 2007, Satoru Kawaguchi portrayed Keiichiro in Water.

HeLM
HeLM

Infered evidence：
{1}, {2,4}

Output answer

Reasoner of HeLM

Step 2

Step 3

HeLM training process

Figure 1: The overall framework of HeLM. The upper part demonstrates the training process, while the lower part
illustrates the inference process.

E = MR (Prompt(T,Q)) (1)180

The output of MR is a list of indices E =181

{ei, ...}, where ei corresponds to the row number182

in the table.183

|  Year      |     Title      |      Row      |    Note      |
|   2007 |    Water    |  Keiichior |   Leading  |
|   2015    |    Areno |  husband  |      - |
|   2017    |  Rangoon | Hiromichi |      - |

|  Year      |     Title     |      Row      |    Note      |
|* 2007 *|*  Water *|*Keiichior*|* Leading*|
|   2015    |   Areno |  husband  |      - |
|   2017    | Rangoon | Hiromichi |      - |

HL

, {1}

Figure 2: Case of table highlighting, where {1} corre-
sponds to E in equation 2.

Utilizing the information of key evidence (E) in184

the original table (T ), we highlight this information185

to obtain the modified table (T ∗). The highlighting186

operation HL(·) is to decorate each data cell of a187

key row with a special character ‘*’ symbolizing188

its significance, as depicted in Figure 2.189

T ∗ = HL(T,E) (2)190

The table summarizer will subsequently produce191

the final result based on the prompt generated by192

highlighted table T ∗ associated with query Q and 193

task description: 194

Y = MS (Prompt(T ∗, Q)) (3) 195

3.3 Table Reasoner Labels 196

Training evidence is necessary for fine-tuning a 197

table reasoning module, and we summarize three 198

sources for obtaining these evidence labels. 199

• Human annotated evidence Eman: Some 200

datasets, such as QTSumm (Zhao et al., 2023), 201

inherently include labels for relevant evidence, 202

and they are obtained through manual annota- 203

tion. 204

• LLMs distilled evidence Egpt: Labels can 205

also be distilled from other LLMs such as 206

ChatGPT (OpenAI, 2023). To better capture 207

evidence, we designed an in-context learn- 208

ing prompt (see appendix A), incorporating 209

golden labels Y to better capture evidence. 210

Egpt = LLMs(Prompt(T,Q,Y)) (4) 211

• Searched evidence Ese: Evidence labels can 212

also be obtained through search algorithms, 213

which require feedback for different E. This 214

feedback system has two requirements: one 215

is the golden output Y corresponding to the 216
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input table and query, and the other is a feed-217

back table summarizer MF . For more details218

of this algorithm, please refer to section 3.4.219

Ese = Search(T,Q,Y,MF ) (5)220

The table evidence labels obtained through vari-221

ous methods showcases significant disparities. By222

integrating these evidence labels, higher-quality223

evidence can be attained. This process entails us-224

ing highlighted tables associated with different evi-225

dence and getting sentences via the feedback sum-226

marizer MF . The evidence label for the current227

sample is chosen based on the sentence that re-228

ceives the highest evaluated score. The formula for229

generating the merged label Emerge is outlined as230

follows:231

Emerge = Merge(E, T,Q,Y,MF ) (6)232

Here, E represents the available evidence label set.233

For datasets lacking human annotated evidence,234

E = {Ese, Egpt}.235

3.4 Reasoning labels by Searching236

As mentioned earlier, the search algorithm requires237

a feedback system. The feedback system includes238

the golden output Y corresponding to the table239

query and a feedback summarizer MF . MF ’s240

output is evaluated by computing the BLEU score241

against Y to derive numerical feedback.242

In label searching, the input for MF is the sub-243

table corresponding to the evidence. Parikh et al.244

(2020); Ye et al. (2023) have proved that using245

only the sub-table corresponding to evidence as246

input yields satisfactory results when using LLMs.247

Therefore, we can use the sub-table corresponding248

to E as input, allowing the summarizer to obtain249

results for comparison with Y for feedback.250

Another reason for using the sub-table as input251

to search for evidence is that MF is more sensitive252

to sub-table evidence compared to the input of the253

complete table. Because even when relevant row254

data is not highlighted as evidence in the complete255

table input, MF might still capture it.256

Assuming the table has n rows of data, and each257

row can be either selected or not, the search space258

for this algorithm is 2n. This implies that for each259

training example, one would need to invoke LLMs260

(summarizer) 2n times to construct the optimal evi-261

dence, which is impractical. Therefore, we propose262

Algorithm 1: Reasoning evidence labels
by greedy search

Input: Table T (n rows), Query Q, Answer Y ,
Feedback summarizer MF

Output: Searched evidence Label Ese

Generate n evidence labels E = {E1, E2, ..., En},
where Ei = {i}

for i← 1 to n do
Yi = Ms(Prompt(SubTab(T,Ei), Q))
Ri = eval(Yi,Y)

end
Reorder the E according to reward R.
Evidence label Es is initialized with empty set.
Evidence label reward: Rs = 0
for i← 1 to n do
Yi = MF (Prompt(SubTab(T,Ei + Es), Q))
Ri = eval(Yi,Y)
if Ri > Rs then

Rs = Ri

Es = Ei + Es

end
end

a greedy search method to construct labels, reduc- 263

ing the searching complexity from 2n to n. 264

The core idea of this algorithm is that query- 265

relevant evidence can enhance the summarizer feed- 266

back score, while irrelevant evidence cannot en- 267

hance the feedback score. During evidence con- 268

struction, the initial evidence is an empty set. Based 269

on feedback results, we expand this evidence by 270

adding row index one by one, and we repeat this 271

process until the score no longer increases or reach 272

a certain step. We have also designed heuristic 273

steps to efficiently select evidence rows. A more 274

detailed procedure is shown in Algorithm 1. 275

3.5 HeLM Training 276

HeLM comprises two modules: Reasoner and Sum- 277

marizer. Training a complete HeLM modules in- 278

volves the following steps: 279

Step 1 Obtain feedback summarizer: Distilling 280

Egpt through LLMs, and training a rough table 281

summarizer M0
S using either Egpt or Eman. 282(

HL(Egpt/man, T ), Q,Y
)
→ M0

S (7) 283

Step 2 Obtain merged evidence: Treating the 284

table summarizer M0
S as MF to obtain Ese using 285

Algorithm 1, then combining the existing evidence 286

through Equation 6 to obtain Emerge. 287

Step 3 Train reasoner and summarizer: Train 288

reasoner MS using Emerge, and train summarizer 289

MR using Y and T ∗ corresponding to Emerge. 290

(HL(Emerge, T ), Q,Y) → MS (8) 291

(T,Q,Emerge) → MR (9) 292
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Figure 1 displays the comprehensive training and293

inference process of HeLM.294

Facing the immense size of recent language mod-295

els, conducting full-parameters fine-tuning is pro-296

hibitively expensive. As a practical alternative, we297

adopt the parameter-efficient finetuning strategy,298

QLoRA (Dettmers et al., 2023; Hu et al., 2021), to299

train our reasoner and summarizer. This approach300

significantly reduces trainable parameters to 0.6%301

of the original, enabling fine-tuning of LLMs on302

consumer devices.303

4 Experiments304

4.1 Dataset and Evaluation305

FeTaQA: FeTaQA is a dataset designed for free-306

form table question-answering, constructed using307

information from Wikipedia. It introduces a table308

question answering scenario, where questions are309

answered in natural language. The FeTaQA dataset310

comprises 7,326 question-answer pairs in the train-311

ing set, 1,000 in the validation set, and 2,006 in312

the test set. For the evaluation of results on the313

FeTaQA dataset, we employ commonly adopted314

metrics, including ROUGE-1, ROUGE-2, ROUGE-315

L (Lin, 2004), and the BLEU (Papineni et al., 2002;316

Post, 2018) score.317

QTSumm: QTSumm is a query-focused table sum-318

marization dataset, requiring text generation mod-319

els to engage in human-like reasoning and analysis320

over the provided table to generate a tailored sum-321

mary. The training and validation sets consist of322

4,981 and 1,052 examples respectively, and the test323

set comprises 1,078 examples. Notably, in com-324

parison to the FeTaQA dataset, QTSumm exhibits325

longer output lengths. For the evaluation of results326

on QTSumm, we employ not only ROUGE-L and327

BLEU scores but also the METEOR (Banerjee and328

Lavie, 2005) as the evaluation metric.329

4.2 Implementation Details330

All models are executed on a single NVIDIA-A100331

GPU with 80G of memory. We optimized our base-332

line LLMs through 4-bit QLoRA finetuning, uti-333

lizing an effective batch size of 8 for 2 epochs.334

The optimization process employed the AdamW335

(Loshchilov and Hutter, 2018) optimizer with de-336

fault momentum parameters and a constant learn-337

ing rate schedule set at 2e-4. For QLoRA, Nor-338

malFloat4 with double quantization was applied to339

the base models, and LoRA adapters were added340

to all linear layers with parameters r = 16 and341

Models R-1 R-2 R-L BLEU

Fine-tuning based methods

T5-small 55 33 47 21.60
T5-base 61 39 51 28.14
T5-large 63 41 53 30.54
UnifiedSKG 64 42 54 31.5
TAPEX 62 40 51 30.2
OmniTab 63 41 52 30.7
PLOG 64 43 55 31.8
HeLM†

LLaMA2-7B 65.4 43.5 55.4 32.95
HeLM†

LLaMA2-13B 67.8 46.4 57.9 35.10

Few-shot LLMs methods

TabCot(GPT-3) 61 38 49 27.02
Dater(Codex) 66 45 56 30.92

Table 1: Results on FeTaQA dataset. The † marked
models are trained using QLoRA.

α = 32. The maximum input length was con- 342

strained to 2048. For generating outputs from the 343

LLMs, we employed nucleus sampling (Holtzman 344

et al., 2019) with parameters p = 0.9 and a temper- 345

ature of 0.1. 346

Our model, HeLMLLaMA2-13B, denotes that both 347

the summarizer and reasoner utilize LLaMA2-13B 348

as the backbone model for parameter-efficient fine- 349

tuning. The prompt used for fine-tuning is detailed 350

in Appendix A.

Models BLEU R-L METEOR

Fine-tuning based methods

T5-Large 20.3 38.7 40.2
BART-large 21.2 40.6 43.0
OmniTab 22.4 42.4 44.7
TAPEX 23.1 42.1 45.6
LLaMA2-13B† 23.3 42.8 46.7
HeLM†

LLaMA2-13B 23.9 43.7 48.1
- Eman 25.0 45.3 50.0

Few-shot LLMs methods

LLaMA2-7B 14.0 31.2 37.3
LLaMA2-13B 17.5 33.2 42.3
LLaMA2-70B 19.0 38.0 46.4
GPT-3.5 20.0 39.9 50.0
GPT-4 19.5 40.5 51.1

Table 2: Results on QTSumm dataset. The † marked
models are trained using QLoRA.

351
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4.3 Baselines352

There are primarily two types of baselines for353

Table-to-Text task, that is, fine-tuning methods,354

and few-shot methods using LLMs. In the Fe-355

TaQA dataset, fine-tuning baselines contain the356

T5-based (Raffel et al., 2020) models (T5-Small,357

T5-Base, and T5-Large), as well as TAPEX (Liu358

et al., 2021), OmniTab (Jiang et al., 2022), and359

PLOG (Liu et al., 2022). TAPEX and OmniTab360

are both BART-based models, with additional pre-361

training on custom training data.362

In FeTaQA dataset, methods using LLMs for363

few-shot learning include Dater (Codex) (Ye et al.,364

2023) and TabCOT (Chen, 2023). The few-shot365

LLMs baselines for the QTSumm dataset are di-366

rectly adapted from (Zhao et al., 2023), including367

methods such as LLaMA2 and GPT-4.368

4.4 Main Results369

HeLMLLaMA2-13B demonstrate superior perfor-370

mance on both the QTSumm and FeTaQA371

datasets. Specifically, on the FeTaQA dataset,372

HeLMLLaMA2-13B outperforms the previous lead-373

ing method, Dater, with a 1.8 and 1.9 improvement374

in Rouge-1 and Rouge-L respectively. More no-375

tably, there is a substantial improvement in the376

BLEU score, with an increase of 3.26. Addition-377

ally, BLEU scores of fine-tuning methods are con-378

sistently higher than few-shot-based LLMs.379

Models Fluency Correct Adequate

TabCot(GPT3) 2.05 1.98 2.02
LLaMA2-QLoRA 2.00 2.11 2.06
HeLM 1.96 1.92 1.91

Table 3: Human evaluation on FeTaQA. The numbers
in the table indicate the average ranking.

On the QTSumm dataset, the method fine-tuned380

based on LLaMA2-13B demonstrates significant381

improvement compared to other fine-tuning meth-382

ods. Due to QTSumm providing manual evidence383

Eman, we can use this evidence to directly high-384

light the table as input for the HeLM’s summarizer385

in evaluation. The corresponding result is denoted386

as HeLM-Eman. In comparison with other LLMs,387

HeLM-Eman and HeLM achieve the highest and388

second-highest scores in ROUGE-L and BLEU.389

However, GPT-4 achieves the highest score in the390

METEOR.391

Relying solely on the ROUGE and BLEU scores392

cannot comprehensively assess the model’s perfor-393

mance. Therefore, human evaluation is necessary. 394

We conducted a human evaluation in three aspects: 395

(1) fluency (whether the output sentences are flu- 396

ent and without grammar errors), (2) correctness 397

(the accuracy of numerical values and logical cor- 398

rectness of sentences), and (3) adequacy (whether 399

the output results cover all aspects of the ques- 400

tions). Models we compared included LLaMA2- 401

13B LoRA, which is also based on efficient fine- 402

tuning, as well as Tabcot (GPT3), an LLMs-based 403

few-shot method. We randomly sampled 100 exam- 404

ples from the test set and recruited three annotators 405

to rank the three models. 406

Among these three metrics, correctness is the 407

most indicative table reasoning ability. TabCot 408

performs lower on fluency compared to LLaMA2 409

LoRA, but its correctness is significantly better. 410

This suggests that fine-tuning on a specific dataset 411

is more focused on learning surface-level features. 412

Regarding the table reasoning ability as indicated 413

by correctness, LLMs like GPT-3 showcases su- 414

perior capabilities. HeLM performs best in cor- 415

rectness, indicating the positive impact of HeLM’s 416

reasoner on the overall accuracy of the results. 417

Models R-1 R-2 R-L BLEU

Different highlight evidence

LLaMA2-13B† 66.5 44.7 56.2 33.24
HeLM†

LLaMA2-13B 67.8 46.4 57.9 35.10
- w/o HL 66.6 44.7 56.6 33.13
- subTab 65.0 43.3 55.5 32.28
- Egpt w/o Y 68.1 46.6 58.1 35.34
- Egpt 69.4 47.8 59.2 36.33
- Ese 68.1 46.6 58.0 34.96
- Emerge 69.6 48.2 59.5 36.74

Different model size

LLaMA2-7B† 65.0 43.0 54.8 32.68
HeLM†

LLaMA2-7B 65.4 43.5 55.4 32.95
- w/o HL 64.7 43.0 54.8 32.28

Table 4: Ablation study on FeTaQA dataset. The †
marked models are trained using QLoRA.

4.5 Ablation Study 418

4.5.1 Impact of model size 419

As shown in Table 4, when using LLaMA2-7B as 420

the base model for fine-tuning, HeLMLLaMA2-7B 421

showed a 2.15 decrease in BLEU score and a 422

2.5 decrease in ROUGE-L score compared to 423
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(1) Table caption: 2014 Newark by-election

TabCot (GPT3): The Conservative party held the seat in the 2014 
Newark by-election. The margin of victory was 19.1%.

party Candidate Votes % ± 

Conservative Robert Jenrick 17,431 45.0 8.9

UKIP Roger Helmer 10,028 25.9 22.1

Labour Michael Payne 6,842 17.7 4.7

Independent Paul Baggaley 1,891 4.9 N/A

Green David Kirwan 1,057 2.7 N/A

... ... ... ... ...

Majority Majority 7,403 19.1 12.4

Club Season League Total Total

Club Season Division ... Apps Goals

Dearby County 1989-90 First Division ... 10 1

Dearby County 1990-91 First Division ... 19 4

... ... ... ... ... ...

Coventry City 1995-96 Premier League ... 37 2

Coventry City 1995-96 Premier League ... 38 2

Coventry City 1995-96 Premier League ... 25 0

... ... ... ...

Coventry City 2001-02 Premier League ... 5 0

Coventry City Total Total ... 199 5

Southampton 2001-02 Premier League ... 30 0

... ... ... ...

(2) Table caption: Paul Williams (footballer, born 1971)

(3) Table caption: Cliff Gorman

Year Title Role Note

1969 Justine Toto -

1970 The Boys in the band Emory

... ... ... ...

1980 Night of the Juggler Gus Soltic -

1981 The Bunker Joseph Gobbels TV movie

1984 Angel Lt. Andrews -

1992 Night and the City Phil Nasseros -

1992 Hoffa Solly Stein -

... ... ... ...

(4) Table caption: Swimming at the 2012 Summer 

Olympics – Women's 200 metre backstroke

Rank Lane Name Nationality Time Notes

- 5 Missy Franklin United States 2:04.06 WR

- 6 Anastasia Zuyeva Russia 2:05.92 -

- 4 Elizabeth Beisel United States 2:06.55 -

4 1 Elizabeth Simmonds Great Britain 2:07.26 -

5 3 Meagen Nay Australia 2:07.43 -

6 7 Kirsty Coventry Zimbabwe 2:08.18 -

7 2 Alexianne Castel France 2:08.43 -

8 8 Sinead Russell Canada 2:09.86 -

Query: Who won the 2014 Newark by-election and by what margin?

Golden: Conservative Robert Jenrick won with a majority of 7,403.

HeLM: The 2014 Newark by-election was won by Robert Jenrick of 
the Conservative Party with a majority of 7,403 votes. 

LLaMA2-QLoRA: The Conservative Party's Robert Jenrick won the 
2014 Newark by-election with 45.0% of the vote, a majority of 19.1%.

TabCot (GPT3): Williams made 169 appearances for Coventry City 
over six seasons.

Query: How many appearances did Williams make for Coventry 
City, and for how many seasons did he play for the club?

Golden: Williams made 199 appearances for Coventry City in 7 
consecutive seasons.

HeLM: Williams made 199 appearances for Coventry City in seven 
seasons.  

LLaMA2-QLoRA: Williams made 58 appearances for Coventry City 
in two seasons.

TabCot (GPT3): Cliff Gorman played the roles of Lt. Andrews in Angel (1981), 
Joseph Goebbels in The Bunker (1981), and Solly Stein in Hoffa (1992).

Query: What roles did Cliff Gorman play between 1981 to 1984?

Golden: Cliff Gorman played as Joseph Goebbels in the 1981 TV movie The 
Bunker and as Lt. Andrews in the film Angel (1984).

HeLM: Cliff Gorman played the role of Joseph Goebbels in the TV movie 
The Bunker (1981), Lieutenant Andrews in Angel (1984), and Solly Stein in 
Hoffa (1992).

LLaMA2-QLoRA: Cliff Gorman played the role of Joseph Goebbels in the TV 
movie The Bunker (1981) and the role of Lt. Andrews in Angel (1984).

TabCot (GPT3): The last two finishers were Sinead Russell in 8th place with a 
time of 2:09.86 and Kirsty Coventry in 6th place with a time of 2:08.18.

Query: Who were the last two finishers of the at the 2012 Summer Olympics 
for the Women's 200 metre backstroke?

Golden: France's Alexianne Castel (2:08.43) and Canada's Sinead Russell 
(2:09.86) closed out the championship field.

HeLM: Canada's Sinead Russell finished eighth in 2:09.86 and Australia's 
Belinda Hutchison rounded out the finale in ninth with a time of 2:10.00.

LLaMA2-QLoRA: The last two finishers of the Women's 200 metre backstroke 
were Kirsty Coventry with a time of 2:08.18 and Alexianne Castel with a time of 
2:08.43.

Figure 3: Cases from the FeTaQA Dataset. The reasoner of HeLM has highlighted specific parts of the table using
red boxes. The rows in the table with a green background represent manually observed evidence related to the query.

HeLMLLaMA2-13B. Directly fine-tuning LLaMA2-424

7B using LoRA also exhibited a 1.4 decrease in425

ROUGE-L compared to LLaMA2-13B. This in-426

dicates that LLM’s size significantly affects the427

results for the Table-to-Text task.428

4.5.2 Impact of table highlighting429

HeLM’s summarizer takes tables highlighted with430

evidence as input, and different evidence will have431

different effects on the output results of the summa-432

rizer. When the summarizer of HeLMLLaMA2-13B433

receives unmodified tables as input, specifically, the434

result of -w/o HL showed a decrease of both BLEU435

and ROUGE-L. This signifies the effectiveness of436

highlighting crucial information in LLM’s input437

tables. Additionally, when using the same evidence438

for test data, and constructing a sub-table with only439

key row information as input instead of retaining 440

all table data, the approach -subTab has a 2.82 de- 441

crease in BLEU score. This suggests the benefit of 442

retaining sufficient table information. Another ob- 443

servation is that when no highlighting is applied to 444

the input table, LLaMA2 outperformed HeLM-w/o 445

HL. This happens because HeLM’s summarizer 446

generated dependency on highlighted evidence dur- 447

ing training. However, during testing, when the 448

highlighting is absent, it results in poorer perfor- 449

mance compared to LLaMA2. 450

4.5.3 Impact of evidence labels 451

Keeping the summarizer of HeLMLLaMA2-13B fixed, 452

we examine the output derived from employing var- 453

ious evidence labels for table highlighting, aiming 454

to illustrate the impact of evidence label quality. 455
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During testing, the evidence used for highlighting456

the input table in our base model HeLMLLaMA2 is457

generated by the HeLMLLaMA2’s reasoner. Egpt458

and Ese are reasoning evidence mentioned in sec-459

tion 3.3, while Emerge is a combination of the two460

evidence labels. It’s important to note that all three461

labels were obtained with knowledge of the golden462

summary Y . Egpt w/o Y , based on the method used463

for Egpt, eliminates Y from the prompt. Thus, the464

BLEU score also decreased by 1.01. According to465

the Table 4, the evaluation score corresponding to466

Emerge is the highest, indicating that the evidence467

quality of Emerge is the best. This also indicates468

that although the overall quality of Ese obtained469

through greedy search is lower than Egpt, some470

samples perform better than Egpt.471

4.6 Cases Analysis472

We showcase some instances of accurate and inac-473

curate predictions generated by HeLM’s table rea-474

soner, alongside outputs from TabCot(GPT3) and475

LLaMA2-QLoRA respectively, as shown in Figure476

3. For instance, case (2) shows the results given two477

questions about numerical calculation. HeLM’s478

reasoner accurately finds the player’s records dur-479

ing their tenure at Coventry, aiding the table sum-480

marizer in precisely calculating the player’s tenure481

and total appearances. In contrast, both LLaMA2-482

QLoRA and TabCot(GPT3) give wrong answers483

for the two questions.484

Cases (3) and (4) represent instances where the485

reasoner made inaccurate judgments. In case (3),486

the reasoner highlighted two irrelevant rows, one487

of which appeared in the summarizer’s output. In488

case (4), the reasoner missed highlighting one row,489

leading the summarizer to fabricate a ninth-ranking490

entry, but the table only contained data for the top491

eight ranks. Therefore, it’s evident that the summa-492

rizer places significant emphasis on the highlighted493

segments of the table as identified by the reasoner.494

5 Conclusion495

In this paper, leveraging existing open-source LLM,496

we devised a lightweight two-step table-to-text so-497

lution named HeLM. HeLM comprises two mod-498

ules: table reasoner and table summarizer. Both499

modules adopt LLaMA2 as the backbone model500

and conduct efficient fine-tuning using designed501

prompts. Additionally, we explored diverse meth-502

ods for constructing reasoning evidence, encom-503

passing distillation from ChatGPT and construc-504

tion by a searching algorithm. Our experimental 505

findings showcase that leveraging the reasoner to 506

highlight important row data of the input table sig- 507

nificantly elevates the quality of the output and 508

provides valuable interpretability. 509

Limitations and Future work 510

Despite HeLM achieving good results on two table- 511

to-text datasets, there are still some limitations and 512

space for further improvement: (1) We haven’t ex- 513

tensively investigated table highlighting formats, 514

and there might be more effective ways. (2) Cur- 515

rently, HeLM is trained for specific datasets, lack- 516

ing generalization; training HeLM on a mixture 517

of table-to-text datasets could be a better solution. 518

(3) The evidence labels generated by greedy search 519

in table reasoner could be further improved. For 520

instance, we can employ reinforcement learning 521

to search for more optimal evidence labels. (4) 522

Despite our model achieving high scores in BLEU 523

and ROUGE metrics, its advantages in numerical 524

and textual accuracy aren’t notably pronounced 525

compared to some powerful LLMs. 526

Ethics Statement 527

We acknowledge the importance of the ACL Ethics 528

Policy and agree with it. The objective of HeLM 529

systems in this paper is to enhance data processing 530

efficiency. The datasets, QTSumm and FeTaQA, 531

utilized in this paper are both public datasets under 532

the MIT license. 533

In human evaluation, we recruit 3 graduate stu- 534

dents in computer science and statistic majors (2 535

male and 1 female) each student is paid $11.2 536

(above average local payment of similar jobs) per 537

hour. 538
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System:
You are a linguistic expert, and you need to determine which parts of the row data in table are relevant to the question and answer.
I will first give you two examples of input and Sub-table Row output. Note that your output format can only be 'row(*)' !!!
User:
[example 1]
[example 2]
###Input:[table] \n ##Question:[query] \n ##Answer:[golden output] \n ###Sub-table Row:

Prompt to get !"#$

Figure 4: The prompt used to obtain Egpt using GPT-3.5-trubo. The content within the green brackets represents
two examples used for few-shot learning. The inputs such as tables, queries, etc., within the red brackets, can be
replaced according to specific input requirements.

A Prompt Design764

Prompt to get Egpt: To achieve better results, we765

incorporate two examples of input-output pairs766

within the prompt to help LLMs understand the767

output format. Additionally, we include the golden768

summary Y to guide a better identification of ev-769

idence. The details of the prompt template for770

obtaining Egpt can be found in Figure 4. Addition-771

ally, the two samples used in the prompt can be772

found in Figure 6.

System:
You are an expert table reasoner, your task is to output the relative
row indexes which might be helpful for answering the query.
User:
###Table:[table] \n ###Query:[query] \n ###Output:[golden output]

Prompt of Reasoner 

System:
You are an expert table reasoner, your task is to output the answer
given Table and Query. Relative table units to query are surrounded
by “*”.
User:
###Table:[table] \n ###Query:[query] \n ###Output:[golden output]

Prompt of Summarizer 

Figure 5: The top section shows the prompt correspond-
ing to the reasoner, and the bottom section shows the
prompt corresponding to the summarizer. The elements
within the red brackets can be replaced based on differ-
ent examples.

773
Prompt of reasoner and summarizer In HeLM,774

both the table reasoner and summarizer utilize775

LLMs, necessitating the construction of input776

prompt text. Figure 5 displays the prompt tem-777

plates used for the two components in HeLM. Dur-778

ing inference, leave the area after “###Output” in779

the prompt blank. 780

B Code libraries 781

HeLM utilizes the PyTorch deep learning frame- 782

work, loading models provided by Huggingface, 783

and utilizes the PEFT package for parameter- 784

efficient fine-tuning. The training framework of 785

the model is modified based on the LLM-finetuning 786

HUB.

###Input: Table caption: University of Oregon Admissions
col: - | 2014 | 2013 | 2012 | 2011 | 2010
row 1: Applicants | 21,359 | 21,938 | 21,263 | 23,012 | 18,515
row 2: Admits | 15,997 | 16,206 | 15,770 | 16,790 | 14,588
row 3: %Admitted | 74.9 | 73.9 | 74.2 | 73.0 | 78.8
row 4: Avg GPA | 3.58 | 3.60 | 3.57 | 3.59 | 3.52
row 5: Enrolled | 3,961 | 3,966 | 4,031 | 4,167 | 3,978
row 6: SAT range* | 990–1230 | 990–1240 | 991–1224 | 993–1223 | 991–1218

##Question: How many students were accepted from the 21,359 people who
applied for the University of Oregon in 2014 and how many students enrolled?
##Answer: For students entering University of Oregon 2014, 15,997 freshmen
were accepted out of 21,359 applicants, a 74.9% acceptance rate, and 3,961
enrolled.
###Sub-table Row: row(1, 2, 3, 5)

Example 1

###Input:
Table caption: Annette Taddeo Early elections, 2008–2016
col: Party | Party | Candidate | Votes | %
row 1: - | Republican | Rick Scott/Carlos López-Cantera | 2,865,343 | 48.1%
row 2: - | Democratic | Charlie Crist/Annette Taddeo | 2,801,198 | 47.1%
row 3: - | Libertarian | Adrian Wyllie/Greg Roe | 223,356 | 3.8%
row 4: - | No Party Affiliation | Glenn Burkett/Jose Augusto Matos | 41,341 | 0.7%
row 5: - | No Party Affiliation | Farid Khavari/Lateresa A. Jones | 20,186 | 0.3%
row 6: Total votes | Total votes | Total votes | 5,951,561 | -

##Question: What duo finished second in the election, what duo won the
election, what percentage of vote did each duo receive, and what party was
victorious?
##Answer: The Crist-Taddeo lost the election to Republican Rick Scott and
Carlos López-Cantera, 48.1 to 47.1%.
###Sub-table Row: row(1, 2)

Example 2

Figure 6: Two examples used in figure 4

787
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