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Abstract: Light field camera calibration is much more complicated by the fact that a single 
point in the 3D scene appears many times in the image plane. Compared to the previous 
geometrical models of light field camera, which describe the relationship between 3D point in 
the scene and 4D light field, we proposed an epipolar-space (EPS) based geometrical model in 
this paper, which determines the relationship between 3D point in the scene and 3-parameter 
vector in the EPS. Moreover, a close-form solution for the 3D shape measurement based on the 
geometrical model is accomplished. Our calibration method includes an initial linear solution 
and nonlinear optimization with the Levenberg-Marquardt algorithm. The light field model is 
validated with the commercially available light field camera Lytro iIIum, and the performance 
of 3D shape measurement is verified by both real scene data and the data set on the internet. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 
Unlike traditional 2D imaging that integrates a light beam from a point, the light field (LF) 
camera that consists a main-lens and a micro-lens array (MLA) allows to capture both spatial 
and angular information of a light ray from our world simultaneously. The data captured by 
light field camera is equivalent to that captured by cameras from different viewpoints, so that 
the light field data contains information about the three-dimensional (3D) shape of a scene in a 
single photographic exposure. The light field imaging has been recently developed for both 
scientific researches and industrial applications, such as LF rendering, scene reconstruction, 
3D microscopy, 3D endoscopy, et al. One of important applications of light field is depth 
estimation, in which the light field calibration is not necessary completely, making it 
convenient for data acquisition. However, the 3D shape measurement is much more essential 
than the depth estimation for many applications. To support 3D shape measurement, it is 
crucial to perform light field calibration accurately and establish precise relationship between a 
certain point in the 3D scene and its corresponding parameters in the light field. 

Generally, the main-lens is treated as a pinhole model, the micro-lens is regarded as a 
thin-lens model, and the 3D light field is defined via the so-called two-parallel-plane (TPP) 
model where a light ray is described by the intersection points of two parallel planes. Recently, 
some state-of-the-art light field models have been proposed to accomplishment light field 
calibration. In 2013, Dansereau [1] et al. proposed 15-parameter light field camera model (12 
free parameters in the intrinsic matrix), where a reference plane outside the light field camera 
is present as one of the two-parallel-planes. However, the reference plane is lack of specific 
meaning and there are redundant parameters in the transformation matrix, the calibration 
model is not easy to be used. In 2018, Wang [2] et al. proposed a multi-projection-center 
model based on two-parallel-planes. In their model, a ray is described by two planes with an 
alterable distance, which generally parameterizes the light field in focused and defocused 
formation. Instead of defining two parallel planes with variable positions, most light field 
models regard the main-lens plane and micro-lens array plane as the two parallel planes. In 
2014 and 2017, Bok [3] et al. complete their calibration model by utilizing light field raw data 
directly. In 2018, Peng [4] et al. proposed an active calibration method with the aid of an 
auxiliary camera and a projector. In this method, a series of target points along light field rays 
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within a measurement volume are used to determine a look-up table (LUT), which describes 
the relationship between the light field rays and calibration parameters. Thurow [5] et al. also 
proposed a volumetric calibration method based on polynomial mapping function, where the 
lens distortion and thin-lens assumption are considered to improve the calibration accuracy. 

In a word, a single 3D point has only one projected image in traditional camera, while the 
light field camera is much more complicated by the fact that a single point will appear in the 
image plane multiple times. As mentioned above, the previous light field camera calibration 
models often illustrated the relationship between the 3D scene and 4D rays, which are not only 
complicated but also redundant. In this paper, a light field calibration model is proposed with a 
one-to-one correspondence between a point in the 3D scene and 3D parameters in a so called 
epipolar-space (EPS), along with accurate 3D shape measurement based on our calibration 
model. Both intrinsic and extrinsic matrices are initialized with EPI images, then refined by 
nonlinear distortion correction and minimizing the squared sum of ray reprojection errors. In 
addition, the 3D shape measurement could be accomplished by combining the light field 
camera calibration parameters and the depth estimation results. In 2012, Wanner and 
Goldluecke [6] estimated the depth information by measuring the local line orientation in the 
epipolar-plane image (EPI), where the structure tensor algorithm is utilized to calculate the 
orientation and assess its reliability. Zeller [7] et al. proposed a high-order curve model for 
depth estimation, which was iteratively updated using depth error compensation. Williem [8] 
et al. proposed a framework for occlusion and noise-aware light field depth estimation, where 
they introduced the constrained angular entropy metric to measure the randomness of pixel 
color in the angular patch while reducing the effect of the occlude and noise. 

The remainder of this paper is organized as follows. Section 2 introduces the background 
and some related works of light field. Section 3 introduces our EPS-based calibration model 
and the transformation matrix between the 3D point and 3D parameters in the EPS. In section 
4, our calibration method is described in detail, including a nonlinear optimization. The 
experimental results are presented in section 5 to demonstrate the performance of our method. 

2. Background and related works 

A light field was defined as a 7D plenoptic function L (x,y,z, ,Φ,λ,t) by Adelson and Bergen 
[9] in 1991. Under the assumption that the scene is static when exposures, the wavelength of a 
particular light is constant, and the light propagates in a transparent medium, the 7D light field 
plenoptic function was reduced to a 4D function by Levoy [10]. In 2005, Ng [11] et al. 
integrated a micro-lens array between the image sensor and main-lens to accomplish a compact 
version of light field camera, where the object points are imaged at different angles via the 
micro-lenses, as shown in Fig. 1(a). Without loss of generality, the 4D light field is denoted 
L(s, t, x, y) in this paper, which has been widely utilized for its conciseness. As shown in Fig. 
1(b), the 4D light field L(s, t, x, y) intersects the angular plane at (s, t) and the spatial plane at 
(x, y). In this paper, the angular plane and spatial plane are the main-lens plane and micro-lens 
array plane, respectively. 
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Fig. 1. 4D light field. 

As shown in Fig. 2, the image plane, micro-lens array (MLA) plane and main-lens plane 
are parallel to each other and all perpendicular to the optical axis. To express the light field ray 
with TPP model, the notation of symbols used in the light field model is given in Table 1. 

Table 1. Notation of symbols in the light field model. 

1 p pO X Y−  Image coordinate system 

c c c cO X Y Z−  Camera coordinate system 

w w w wO X Y Z−  World coordinate system 

0 m mO X Y−  Micro-lens array coordinate system 

( , )i j  pixel coordinate in the sub-aperture image 

L(S, T, X, Y) Light field in TPP model in the unit of millimeter 
L(u, v, x, y) Decoded light field 

Without loss of generality, the optical center of the main lens and optical axis are defined as 
the origin cO  and the zc-axis of camera coordinate system, respectively. All coordinate 

systems follow the same convention: from the observation view (towards right in Fig. 2(a)), 
the Z  axis points towards the object ( 0CZ > ). The Y  axis points downwards and the X  

axis points to right. All the coordinates with origins xO  and in the light field L(S, T, X, Y) are 

in the unit of millimeter. To analysis the light field in a certain light field camera, a decoded 
light field L(u, v, x, y) is obtained based on Dansereau’s method, as shown in Figs. 2(b) and 
2(c), where (u, v) and (x, y) are indices in element image and micro-lens array respectively. 

 

Fig. 2. Geometrical model of light field cameras. (a) Projection model. (b) Image plane with 
four element images. (c) Micro-lens array plane. 
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In 1987, Bolles et al. proposed the epipolar-plane image (EPI) method, which they used to 
estimate sparse disparity information by analyzing the slopes of lines. As shown in Fig. 3, the 
epipolar-plane images are generated by collecting the light field data with a fixed angular 
coordinate u* and a fixed position coordinate x* (expressed as Iu*x* (v, y)), or with a fixed 
angular coordinate v* and a fixed position coordinate y* (expressed as Iv*y*(u, x)), which 
contain information in both angular and spatial dimensions in one image simultaneously. 
Considering a certain point with depth Zw in the 3D scene, the coordinate u changes when the 
coordinate x changes, therefore a line is formed on the EPI. The points with different depths are 
visualized as the lines with corresponding different slopes on the EPI. In other words, the 
slopes of the lines are indicative of the depths of the different points in the 3D scene, which is 
the basis for depth estimation. Generally speaking, it is imprecise to calculate slope from EPI 
straightly because of the limited number of sub-aperture images. In 2012, Wanner [6] et al 
proposed the extending epipolar-plane image method to calculate the slope in EPI, which is 
more accurate than these methods using sub-aperture images directly. 

 

Fig. 3. Epipolar-plane images. Bottom: the EPI Iv*y*(u, x) generated by fixing v and y, Right: the 
EPI Iu*x* (v, y) generated by fixing u and x. 

For a certain point in the scene, two corresponding lines are generated in the EPIs Iv*y*(u, x) 
and Iu*x* (v, y) respectively, as shown in the bottom and right of Fig. 3. 

3. EPS-based geometrical model of light field camera 

Given a 3D point ( , , )c c cP x y z in the scene, as shown in Fig. 4, its light field imaging process is 

illustrated in 2D condition for simplification. A light ray from point P intersects main-lens 
plane at Pm, where S is the distance in the unit of millimeter of the intersection point Pm with 
respect to the optical axis. Subsequently, the light ray intersects the micro-lens array plane at 
Px and image plane at i, where xm is the distance in the unit of millimeter of the intersection 
point Px with respect to the optical axis. The corresponding decoded light field is expressed as 
L(u, v, x, y). 

The following relationship is derived as the triangles that have equal angles are similar. 

 
' '

c m d m

c mm m

S x S x S x S x

z hh h

− − − −
+ = +  (1) 

where mh is the distance between the focal plane and main-lens plane, '
mh is the distance 

between the main-lens plane and micro-lens array plane, cx is the distance between the point P 
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to the optical axis. In addition, the light ray intersects the focal plane at P′ , where dx is the 

distance between the point P′ to the optical axis. All the parameters in Eq. (1) are in the unit of 
millimeter. 

 

Fig. 4. Geometrical Model of Light Field Camera. 

In this paper, the main-lens is considered to be an ideal thin-lens. Therefore, the 
relationship between mh and '

mh is defined by the thin-lens Gauss theory. 

 
'

1 1 1

m mf h h
= +  (2) 

where f is the main-lens focal length. After rearranging Eqs. (1) and (2), the relationship 
between the point P coordinates and the imaging position is given by 

 
'

=c m

c m

S x S x S

z fh

− −
+  (3) 

In addition, according to the similar triangles, the relationship between intersection point 
Pm and the imaging pixel in the element image is expressed as 

 
'

0( )mh
S q u u

b
= −  (4) 

where 0u is the u-coordinate center of element image as shown in Fig. 2(b), and q is the pixel 

width in the image plane. After rearranging Eqs. (3) and (4), the relationship between the 
imaging position in the micro-lens array plane and the certain point P is derived, as expressed 
in Eq. (5), 

 
'2 '

0

1 1
[ ]( )m c m

c m c

qh x h
x u u

bd z h z d
= × − − −  (5) 

where 0x is the x-coordinate center of the micro-lens array plane as shown in Fig. 2(c). The 

relationship between x and xm is 0( )mx x x d= − ⋅ , and d is pitch of micro-lens. The Eq. (5) 

describes a line corresponding to the certain point ( , , )c c cP x y z on the epipolar-plane image 

Iv*y*(u, x). As illustrated in Eq. (5), when the angular coordinate u changes, the spatial 
coordinate x changes according to Eq. (5). The slope of the line in Eq. (5) is related to the depth 
of the certain point P and is independent of the coordinate cx , which is the basis of depth 
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estimation described in many works previously. The x-intercept term of the line in Eq. (5) is 
determined by cx and cz of the point P, but has no relation to the coordinate cy completely. 

Subsequently, the similar linear equation is also deduced in EPI Iu*x* (v, y), as expressed in Eq. 
(6). 

 
'2 '

0 0

1 1
[ ]( )m c m

c m c

qh y h
y v v y

bd z h z d
= × − − − +  (6) 

where 0v and 0y are the centers of element image and micro-lens array plane, respectively, 

which are similar to those in Eq. (5). Obviously, the slopes in Eqs. (5) and (6) corresponding to 
the certain point ( , , )c c cP x y z are equal, no matter which EPI is in consideration. On the other 

hand, although both intercepts are related to the depth cz of the certain point, the intercepts in 

different EPI is related to only one coordinate, i.e., x-coordinate or y-coordinate. 
When both lines in the epipolar-plane images Iv*y*(u, x) and Iu*x* (v, y) are taken into 

consideration, there are three parameters corresponding to a certain point in the 3D scene, a 
slope and two intercepts, as the slopes in different EPIs are equal. In other words, for a certain 
3D point ( , , )c c cP x y z , a 3-parameter vector is determined, which belongs to two lines 

corresponding to the certain point ( , , )c c cP x y z in two epipolar-plane images. In this paper, the 

space constituted by the 3-parameter vectors is termed epipolar-space. Therefore, a 3D point 
( , , )c c cP x y z in the scene determines a corresponding 3D point in the epipolar-space. The 

relationship is described in Eq. (7). 

 

'2 '2

'

0

'

0

0 0

1 0 0

1 10 0

0 0 1 0

m m

m
c

m
x c

y cc

m

qh qh

bdh bd
K x

hB yx
dB zz

h
y

d

 
− 

    
    
 −   =     
    
 −   
 
  

 (7) 

where [ ], , ,1
T

c c cx y z is the homogeneous coordinates of the 3D measurement point in the 

scene, K is the slope of the lines in epipolar-plane images Iv*y*(u, x) and Iu*x* (v, y), which is 
also considered as the slope in traditional epipolar-plane theory, xB is the intercept of the line in 

Iv*y*(u, x) where the horizontal axis x is 0, and the vertical axis u is u0, yB is the intercept of the 

line in Iu*x* (v, y), where the horizontal axis y is 0, and the vertical axis v is v0, as expressed in 
Eq. (8). 

 

'2

'

0

'

0

1 1
[ ]m

c m

c m
x

c

c m
y

c

qh
K

bd z h

x h
B x

z d

y h
B y

z d

= × −

= −

= −

 (8) 
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In this paper, K is calculated from the extending epipolar-plane image [6,12, 14-17], xB , 

yB  are extracted from the center sub-aperture image, which means [ , , ,1]T
x yK B B can be 

obtained from a single light field camera image. 
Therefore, the lines in epipolar-plane images Iv*y*(u, x) and Iu*x* (v, y) are expressed as 

 0( ) xx K u u B= ⋅ − +   

 0( ) yy K v v B= ⋅ − +   

Moreover, the 3D point in the world coordinate system is related to the 3D point in the 
camera coordinate system by a rigid transformation, with the rotation R and translation t, as 
expressed in Eq. (9). 

 

'2 '2

'

0

'

0

0 0

1 0 0
0 1

1 10 0

0 0 1 0

m m

m
w

m
x w

y wc

m

qh qh

bdh bd
K x

h R tB yx
dB zz

h
y

d

 
− 

    
      −   =           
 −   
 
  

  (9) 

4. Calibration method 
The details how to effectively solve the light field camera calibration problem is provided in 
this section. We started with an analytical solution, followed by a nonlinear optimization based 
on the maximum likelihood criterion, where the lens distortion is taken into account. 

4.1 Linear initialization 

Without loss of generality, the calibration board is assumed on the plane of Z = 0 in the world 
coordinate system, and the feature point on the top-left corner is the origin of the coordinate 
system. Let [ , ]TX Y denote a feature point on the calibration plane since Z is always equal to 0. 

From Eq. (9), we have: 

 4 3 1 2

1

1 1
1

x

y c

K
X X

B
H Y M M Y

B z×

 
    
     = =    
        

 

 (10) 

where H is homographic matrix, 1M is intrinsic matrix and 2M is extrinsic matrix, expressed as: 
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[ ]1 2 3

'2 '2

11 12
'

21 22 0
1

31 32 '

0

1 2
2

                                       

0 0
0 0

0 0 0 0
0

0 0 1 0 0 0

0 0 1 0

                                       

m m

m

m

m

H h h h

qh qh

bdh bd
m m

hm m xM dm m
h

y
d

r r t
M

=

 
− 

  
  
 − = =   
  
 − 
 
  

=
0 0 1

 
 
 

  

As 1r and 2r are orthonormal, there are: 

 1 1
1 1 1 1 2 1 1 2
T T T Th M M h h M M h− − − −=  (11) 

 1
1 1 1 2 =0T Th M M h− −  (12) 

Let 

 

11 12

21 221
1 1

31 32

12 22 32 41

2 11
2

12 12

2 22
2

21 21

2 32
2

31 31

3211 22
2 2 2

12 21 31

211 22

12

0 0

0 0

0 0

1
( ) 0 0

( )

1
0 ( ) 0

( )

1
0 0 ( )

( )

1
( ) ( ) ( )

( ) (

T

B B

B B
B M M

B B

B B B B

m

m m

m

m m

m

m m

mm m
sigma

m m m

m m
sigma

m

− −

 
 
 = =
 
 
 

 − 
 
 

− 
 =  

− 
 
 
 − − − +
  

= + 2 232

21 31

) ( )
m

m m
+

 (13) 

Note that B is symmetric, defined by a 7D vector: 

 [ ]11 12 21 22 31 32 41

T
B B B B B B B=b   

Let the thi column vector of H be 1 2 3 4[ , , , ]T
i i i i ih h h h h= , there are: 

 T T
i j ijh Bh v= b   

where 

 1 1 4 1 1 4 2 2 4 2 2 4 3 3 4 3 3 4 4 4ij i j i j i j i j i j i j i j i j i j i jv h h h h h h h h h h h h h h h h h h h h = + + +    
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Therefore, Eqs. (12) and (13), from a given homography, can be written as 2 homogeneous 
equations in b: 

 12

11 22

0
( )

T

T

v

v v

 
= − 

b  (14) 

When N images of the calibration board are observed in N poses, by stacking N such equation 
as Eq. (14), we have: 

 0V =b  (15) 

where V is a 2N × 6 matrix. Once b is determined, it is easy to compute camera intrinsic matrix 

1M  using Cholesky factorization [13]. Furthermore, the extrinsic parameters are determined 

by the following Eq. (16) 

 

[ ]
[ ]

[ ]

1
1 1

1 2 3 1 1

1 2 3 2 2

3 1 2

1 2 3 2 4

1       

  

          

c

c

c

c

z
M h

m m m r z h

m m m r z h

r r r

m m m t z h m

−=

=

=
= ×

= −

 (16) 

where 

 [ ]1 2 3 4 1m m m m M=   

If 4N ≥ , we will have in general a unique solution b defined up to a scale factor, which 
are the initial value of nonlinear optimization. 

4.2 Nonlinear optimization 

There are many ways leading to ray distortion in the light field camera simultaneously, such as 
radial distortion of the main-lens, the mismatching between the imaging sensor and MLA, et 
al. To improve calibration and 3D shape measurement accuracy, the nonlinear optimization is 
necessary. Generally, the radial distortion of the main-lens is the most common distortion of 
light field camera, the distortion generated by the MLA is ignored in this paper as the structure 
of micro-lens is ideal approximately, which is also ignored as described in [1]. The undistorted 

coordinate ( , )Tx y is computed from the distorted coordinate ( , )Tx y in the central sub-aperture 

image coordinate. 

 
2 2 2 2 2

0 1 2

2 2 2 2 2
0 1 2

( )[ ( ) ( ) ]

( )[ ( ) ( ) ]

m m m m

m m m m

x x x x k x y k x y

y y y y k x y k x y

= + − + + +

= + − + + +
 (17) 

where 1 2( , )k k denotes distortion vector. To accomplish the nonlinear optimization, the 

follow-ing cost function is minimized with the initial values solved in Section 4.1 to refine the 
para-meters, including the intrinsic matrix 1M , distortion vector 1 2( , )k k and the extrinsic 

matrix ,i iR t , i = 1,2…..N. N is the number of pose. 

 ,
, 1 1 2

1 1 1 1

arg min ( , ,   , , )
u vN N N M

u v
i j i i

u v i j

E M k k R t
= = = =
  (18) 
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where E is the Euclidean distance from observed to expected projected feature locations, uN  is 

the maximum number of sub aperture images in horizontal direction, vN is the maximum 

number of sub aperture images in vertical direction, M is the number of feature points on 
calibration board. 

In this paper, this nonlinear minimization problem is solved with the Levenberg-Marquardt 
algorithm, and the “lsqnonlin” function in MATLAB is adopted to accomplish the 
optimization. 

5. Experimental results 
The light field camera, Lytro Illum, is used to verify the proposed calibration and 3D shape 
measurement methods, as shown in Fig. 5. After light field decoding, the 4D light field 
contains 15 × 15 array of sub-aperture images with 625 × 434 pixels. In experiment, a 
calibration board with circular patterns was captured at M = 13 different perspectives, which is 
about 600mm away from camera, as shown in Fig. 5. Circular centers are considered as feature 
points, the nominal distance between adjacent circular centers of the calibration board is 30.00 
mm with the error of ± 0.005mm. The 35 mm equivalent focal length of the main lens is 30 
mm, the pixel size q of the image plane is 0.0014 mm, and the distance d between adjacent 
micro-lens after decoding is 0.01732 mm, which are obtained from the metadata provided by 
Lytro. The calibration results of the light field camera are detailed in Table 2, and the position 
of the calibration board at M perspectives are shown in Fig. 6. 

 

Fig. 5. Light field camera and calibration board. 

 

Fig. 6. Calibration results of the light field camera and the calibration board. 

Table 2. Parameters of the light field camera before and after optimization. 

Parameters Initial Values Optimized Values 
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Intrinsic parameters 

11m  −0.1448 −0.1689 

12m  0.3284 0.2792 

21m  −759.4334 −763.9315 

21m  315.5135 321.7423 

31m  −752.6002 −755.8924 

32m  200.0482 216.5287 

Extrinsic 
parameters 

R ( 310 rad−× ) (−0.0913,0.1144,0.6343) (−0.0925,0.1257,0.6482) 

t(mm) (2.2242,2.1757,0.01727) (2.2573,2.1496,0.01881) 

1 2( , )k k  (0.2271,-16.4822) (2.7350,-16.3859) 

The reprojection error of the proposed geometrical model before and after nonlinear 
optimization and distortion correction is shown in Fig. 7. Obviously, the reprojection error on 
the margin of the main lens is larger than that in the middle of the main lens due to main-lens 
distortion, as shown in the Fig. 7(a). After the nonlinear optimization and correction, the 
reprojection error is identical approximately, as shown in Fig. 7(b). 

 

Fig. 7. Reprojection error. (a) without nonlinear optimization and distortion correction; (b) with 
nonlinear optimization and distortion correction. 

To further verify the proposed calibration method, the light field camera is also calibrated 
with checkerboard images, which are contained in public data sets [20] (CVPR 2013 Plenoptic 
Calibration Data sets), and the calibration results are compared to that provided by Dansereau 
[1] et al. The experimental results show that the RMS reprojection error of the proposed 
calibration method is 0.0164mm, while the RMS reprojection error of Dansereau’s calibration 
method is 0.0628mm. The proposed method achieves better light field camera calibration. 

To verify the performance of 3D shape measurement, the calibration board was 
reconstructed based on Eq. (8). The nominal distance between the adjacent feature points is 
treated as ground truth, by which the 3D shape measurement error is evaluated, as shown in 
Fig. 8. There are 8 x 8 feature points that are reconstructed, so that there are 112 points totally 
in Fig. 8. The maximum error is less than 0.9mm, and the RMS is 0.3670mm. 
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Fig. 9. 3D shape measurement results. Top: raw images from JPEG Pleno Database [18]; 
bottom: corresponding 3D measurement results of top images. 

6. Conclusion 
Compared to the traditional camera that captures 2D images, the MLA-based light field 
camera enables a single camera to record 4D light field. For light field applications, the light 
field camera calibration is necessary for 3D shape measurement. The previous works indicated 
that the 3D point depth is inversely proportional to the slope of its corresponding line on the 
EPI. In this paper, we deduced that the slopes of both lines corresponding to a certain point in 
EPIs are equal and the intercept is dependent on only xc or yc of the point except for the depth. 
Therefore, we proposed an epipolar-space based light field geometrical model, which 
determined the relationship between the 3D point to be measured and the corresponding 
3-parameter vector in the epipolar-space, instead of the 4D light field description. Moreover, 
the coordinates of the 3D point were deduced with a close-form solution based on the 
3-parameter vector. Experimental demonstration has verified that the proposed light field 
geometrical model is suitable for light field camera calibration and has the potential to 
accomplish 3D shape measurement. Future works will focus on the slope estimation method to 
improve the accuracy of the light field calibration and 3D shape measurement. 
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