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ABSTRACT

The optimisation of neural networks can be sped up by orthogonalising the gradi-
ents before the optimisation step, ensuring the diversification of the learned repre-
sentations. We orthogonalise the gradients of the layer’s components/filters with
respect to each other to separate out the intermediate representations. Our method
of orthogonalisation allows the weights to be used more flexibly, in contrast to
restricting the weights to an orthogonalised sub-space. We tested this method on
ImageNet and CIFAR-10 resulting in a large decrease in learning time, and also
obtain a speed-up on the semi-supervised learning BarlowTwins. We obtain sim-
ilar accuracy to SGD without fine-tuning and better accuracy for naı̈vely chosen
hyper-parameters.

1 INTRODUCTION

Figure 1: An example of the speed-up obtained by
orthogonalising the gradients on CIFAR-10.

Neural network layers are made up of several
identical, but differently parametrised, compo-
nents, e.g. filters in a convolutional layer, or
heads in a multi-headed attention layer. Lay-
ers consist of several components so that they
can provide a diverse set of intermediary rep-
resentations to the next layer, however, there
is no constraint or bias, other than the implicit
bias from the cost function, to learning differ-
ent parametrisations. We introduce this diversi-
fication bias in the form of orthogonalised gra-
dients and find a resultant speed-up in learn-
ing and sometimes improved performance, see
fig. 1.

Our novel contributions include this new opti-
misation method, thorough testing on CIFAR-
10 and ImageNet, additional testing on a semi-supervised learning method, and experiments to sup-
port our hypothesis.

In section 2 we detail the method and results to give an understanding of how this method works
and its capabilities. Then, in section 3, we provide experimental justifications and supporting exper-
iments for this method along with finer details of the implementation and limitations.

2 OVERVIEW OF NEW METHOD AND RESULTS

2.1 RELATED WORKS

Gradient orthogonalisation has been explored in the domain of multi-task learning (Yu et al., 2020)
to keep the different tasks separate and relevant. However in this work we focus on orthogonalisation
for improving single task performance.

Weight orthogonalisation has been extensively explored with both empirical (Bansal et al., 2018; Jia
et al., 2017) and theoretical (Jia et al., 2019) justifications. However, modifying the weights during
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training is unstable, and, in addition, it limits the weights to a tiny subspace. Deep learning is know
to work well despite the immense size of the weight space, and as such we do not view this as an
advantage. Xie et al. (2017) obtain improved performance over Stochastic Gradient Descent (SGD)
via weight orthogonalisation and allows them to train very deep networks, we aim to achieve the
same thing while being more flexible with model and optimisation method choice. We do this by
orthogonalising the gradients before they are used by an optimisation method rather than modifying
the weights themselves.

2.2 ORTHOGONALISING GRADIENTS

Given a neural network, f , with L layers made from components, c,

f = ◦Li=1 (fi) , (1)
fl(x) = [cl1(x), cl2(x), . . . , clNl

(x)], (2)

where ◦ is the composition operator, Nl is the number of components in layer l, cl : RSl−1×Nl−1 →
RSl is a parametrised function and cli denotes cl parametrised with θli ∈ RPl giving fl :
RSl−1×Nl−1 → RSl×Nl parametrised by θl ∈ RPl×Nl .

Let
Gl = [∇cl1,∇cl2, . . . ,∇clNl

], (3)

be the Pl ×Nl matrix of the components’ gradients.

Then the nearest orthonormal matrix, i.e. the orthonormal matrix, Ol, that minimises the Frobenius
norm of its difference from Gl

min
Ol

‖Ol −Gl‖ subject to ∀i, j :
〈
Oli, Olj

〉
= δij ,

where δij is the Kronecker delta function, is the product of the left and right singular vector matricies
from the Singular Value Decomposition (SVD) of Gl (Trefethen & Bau III, 1997),

Gl = UlΣlV
T
l , (4)

Ol = UlV
T
l . (5)

Thus, we can adjust a first-order gradient descent method, such as Stochastic Gradient Descent with
Momentum (SGDM) (Polyak, 1964), to make steps where the components are pushed in orthogonal
directions,

v
(t+1)
l = γv

(t)
l + ηO

(t)
l , and (6)

θ
(t+1)
l = θ

(t)
l − v

(t+1)
l , (7)

where vl is the velocity matrix, t ∈ Z0+ is the time, γ is the momentum decay term, and η is the step
size. We call this method Orthogonal Stochastic Gradient Descent with Momentum (Orthogonal-
SGDM). This modification can clearly be applied to any first-order optimisation algorithm by re-
placing the gradients with O(t)

l before the calculation of the next iterate.

Code for creating orthogonal optimisers in PyTorch is provided at https://anonymous.
4open.science/r/Orthogonal-Optimisers. And code for the experi-
ments in this work is provided at https://anonymous.4open.science/r/
Orthogonalised-Gradients

2.3 RESULTS

2.3.1 CIFAR-10

We trained a suite of models on the CIFAR-10 (Krizhevsky et al., 2009) data set with a mini-batch
size of 1024, learning rate of 10−2, momentum of 0.9, and a weight decay of 5 × 10−4 for 100
epochs. We then repeated this using Orthogonal-SGDM instead of SGDM and plot the results in
figs. 2 and 3 and table 1.
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Table 1: Test loss and accuracy across a suite of models on CIFAR-10 comparing normal SGDM
with Orthogonal-SGDM, standard error across five runs.

Test Loss Test Accuracy (%)

SGDM Orthogonal-SGDM SGDM Orthogonal-SGDM

BasicCNN1 0.7603 ± 0.0061 0.6808 ± 0.0038 73.60 ± 0.19 76.67 ± 0.10
resnet202 0.6728 ± 0.0301 0.6766 ± 0.0155 79.14 ± 0.62 87.12 ± 0.12
resnet442 0.7000 ± 0.0166 0.7600 ± 0.0299 79.81 ± 0.37 88.12 ± 0.20
resnet183 0.9656 ± 0.0104 0.8427 ± 0.0121 77.01 ± 0.21 84.68 ± 0.12
resnet343 1.0468 ± 0.0134 0.7087 ± 0.0165 75.86 ± 0.26 85.42 ± 0.33
resnet503 1.2304 ± 0.0462 0.6797 ± 0.0235 67.99 ± 0.73 86.51 ± 0.12
densenet1213 1.0027 ± 0.0132 0.8669 ± 0.0132 75.26 ± 0.30 84.34 ± 0.15
densenet1613 1.1399 ± 0.0096 1.1688 ± 0.1960 75.81 ± 0.20 85.51 ± 0.19
resnext50 32x4d3 1.2470 ± 0.0254 0.6669 ± 0.0223 68.73 ± 0.30 86.37 ± 0.24
wide resnet50 23 1.4141 ± 0.0337 0.7018 ± 0.0091 69.42 ± 0.33 87.30 ± 0.12

Figure 2: Validation accuracy from one run of SGDM vs Orthogonal-SGDM for a selection of
models. Full plot in appendix C. Best viewed in colour.

Figure 3: Validation losses from one run of SGDM vs Orthogonal-SGDM for a selection of models.
Full plot in appendix C. Best viewed in colour.

Orthogonal-SGDM is more efficient and achieves better test accuracy than SGDM for every model
we trained on CIFAR-10 without hyper-parameter tuning. The validation curves follow the training
curves, figs. 4 and 5, and have the same patterns, this means that Orthogonal-SGDM exhibits the
same generalisation performance as SGDM. More importantly though, we can see that the model

1As described in appendix B.1
2Model same as in He et al. (2015)
3From https://pytorch.org/vision/0.9/models.html
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Figure 4: Train accuracy from one run of SGDM vs Orthogonal-SGDM for a selection of models.
Best viewed in colour.

Figure 5: Train losses from one run of SGDM vs Orthogonal-SGDM for a selection of models. Best
viewed in colour.

learns much faster at the beginning of training, as shown by fig. 2, this means that we do not need
as many epochs to get to a well-performing network. This is especially good in light of the large
data sets that new models are being trained on, where they are trained for only a few epochs, or even
less (Brown et al., 2020).

For SGDM the performance of the residual networks designed for ImageNet (Deng et al., 2009) (18,
34, 50) get worse as the models get bigger. The original ResNet authors, He et al. (2015), note that
unnecessarily large networks may over-fit on a small data set such as CIFAR-10. However, when
trained with Orthogonal-SGDM, these models do not suffer from this over-parametrisation problem
and even slightly improve in performance as the models get bigger, in clear contrast to SGDM. This
agnosticism to over-parametrisation helps alleviate the need for the practitioner to tune a model’s
architecture to the task at hand to achieve a reasonable performance.

2.3.2 MATCHING RESNET’S PERFORMANCE

Having shown that Orthogonal-SGDM speeds up learning with non-optimised hyper-parameters,
we now aim to show that it can achieve state-of-the-art results. To do this we use the same hyper-
parameters as the original ResNet paper (He et al., 2015), which have been painstakingly tuned to
benefit SGDM, to train using Orthogonal-SGDM.

This also tests the efficacy of Orthogonal-SGDM as a drop-in replacement for SGDM. Orthogonal-
SGDM gets close to the original results, table 2, even though the hyper-parameters are perfected
for SGDM. It is the authors’ belief that with enough hyper-parameter tuning SGD or SGDM will
be the best optimisation method; however, this experiment shows that Orthogonal-SGDM is robust
to hyper-parameter choice and can easily replace SGDM in existing projects. Unfortunately, the
authors do not have the compute-power to extensively hyper-parameter tune a residual network for
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Table 2: Test loss and accuracy of a resnet20, as in He et al. (2015), on CIFAR-10; hyper-parameter
tuned to normal SGDM vs Orthogonal-SGDM, standard error across five runs. Mini-batch size of
128, see section 3.6 for why this hyper-parameter value impedes Orthogonal-SGDM, learning-rate
of 0.1, momentum of 0.9, weight-decay of 10−4, and a learning rate schedule of ×0.1 at epochs
100, 150 for 200 epochs.

Test Loss Test Accuracy (%)

SGDM (He et al., 2015) — 91.25
SGDM 0.4053 ± 0.0054 91.17 ± 0.28
Orthogonal-SGDM 0.4231 ± 0.0043 90.18 ± 0.30

Orthogonal-SGDM, however, it is exceedingly likely that better results would be achieved by doing
so.

2.3.3 IMAGENET

Figure 6: Validation accuracy of SGDM vs Orthogonal-SGDM on ImageNet

Orthogonal-SGDM also works on a large data set such as ImageNet (Deng et al., 2009) — fig. 6.
Using a resnet34, mini-batch size of 1024, learning rate of 10−2, momentum of 0.9, and a weight
decay of 5×10−4, for 100 epochs. SGDM achieves a test accuracy of 61.9% and a test loss of 1.565
while Orthogonal-SGDM achieves 67.5% and 1.383 respectively. While these results are a way off
the capabilities of the model they still demonstrate a significant speed-up and improvement from
using Orthogonal-SGDM, especially at the start of learning, and further reinforces how a dearth of
hyper-parameter tuning impedes performance.

2.3.4 BARLOW TWINS

Figure 7: Barlow Twins loss during the unsupervised phase using LARS and Orthogonal LARS on
ImageNet

Barlow Twins (Zbontar et al., 2021) is a semi-supervised method that uses “the cross-correlation
matrix between the outputs of two identical networks fed with distorted versions of a sample” to
avoid collapsing to trivial solutions. While the authors do provide code, we could not replicate their
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results by running it. To train within our compute limitations we used a mini-batch size of 1024
instead of 2048 however this should not affect the results since “Barlow Twins does not require
large batches” (Zbontar et al., 2021). Additionally, Barlow Twins uses the Layer-wise Adaptive Rate
Scaling (LARS) algorithm (You et al., 2017), which is designed to adjust the learning rate based on
the ratio between the magnitudes of the gradients and weights, there should be no significant slow-
down, or speed-up, in learning due to the mini-batch size. We do not orthogonalise the gradients for
the dense layers (see section 3.5).

Comparing our own runs, we establish that orthogonalising the gradients before the LARS algorithm
does speed up learning as shown in fig. 7, in agreement with previous experiments. This is evidence
that orthogonalising gradients is also beneficial for semi-supervised learning and, moreover, that
optimisation algorithms other than SGDM can be improved in this way.

2.3.5 IN COMPARISON TO ADAM

We compare our method to the Adam optimiser (Kingma & Ba, 2014). Adam has found its place
as a reliable optimiser that works over a wide variety of hyper-parameter sets, yielding consistent
performance with little fine-tuning needed. We see our optimisation method occupying the same
space as Adam.

Table 3: Test accuracy across a suite of hyper-parameter sets on CIFAR-10 on a resnet20, standard
error across five runs. For Adam β2 = 0.99.

SGDM Adam

LR Momentum Original Orthogonal Original Orthogonal

10−1 0.95 83.59 ± 2.09 85.58 ± 0.98 38.95 ± 8.95 76.84 ± 1.53

10−2 0.95 82.66 ± 1.02 87.72 ± 0.44 74.23 ± 2.38 86.48 ± 0.17

10−3 0.95 66.59 ± 0.44 85.88 ± 0.33 83.08 ± 0.76 85.12 ± 0.06

10−1 0.9 82.52± 1.16 85.06± 0.47 28.26± 7.16 73.62± 2.96

10−2 0.9 79.96± 0.48 87.44± 0.25 73.46± 1.19 85.26± 0.38

10−3 0.9 60.69± 0.18 84.67± 0.21 83.16± 0.66 85.25± 0.31

10−1 0.8 84.16 ± 0.43 86.01 ± 0.74 27.50 ± 6.76 71.88 ± 4.25

10−2 0.8 77.42 ± 0.98 87.18 ± 0.12 72.60 ± 1.76 86.75 ± 0.26

10−3 0.8 53.21 ± 0.43 82.95 ± 0.40 80.89 ± 1.93 85.52 ± 0.29

10−1 0.5 80.08 ± 0.36 87.37 ± 0.18 18.39 ± 4.84 72.10 ± 2.83

10−2 0.5 68.64 ± 1.05 86.05 ± 0.10 71.62 ± 1.95 84.22 ± 0.69

10−3 0.5 43.51 ± 1.02 78.68 ± 0.77 81.67 ± 1.05 84.21 ± 0.43

Our method outperforms Adam on all but one hyper-parameter set — table 3. In addition since we
can apply our method to any previous optimisation method, we also test Orthogonal-Adam and find
that it outperforms Adam too including at high learning rates where Adam suffers from blow-ups.
See figs. 13 and 14 for the training plots.

3 DISCUSSION OF PROBLEM AND METHOD

3.1 NORMALISATION

When we perform SVD on the reshaped gradient tensor, we obtain an orthonormal matrix, since
this changes the magnitude of the gradient we look at the effect of this normalisation. Normalised
SGDM (N-SGDM) (Nesterov, 2003) provides an improvement in non-convex optimisation since it is
difficult to get stuck in a local minimum as the step size is not dependent on the gradient magnitude.
However, it hinders convergence to a global minimum since there is no way of shortening the step
size; deep learning is highly non-convex and is unlikely to be optimised to a global minimum.
Therefore, it stands to reason that normalising the gradient would speed up the optimisation of deep
networks.
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We compare N-SGDM to normalising the gradients per component — i.e. normalising the columns
of Gl, eq. (3), instead of orthognormalising it — Component Normalised SGDM (CN-SGDM),
as well as to SGDM and Orthogonal-SGDM. N-SGDM improves over SGDM, and CN-SGDM
improves over N-SGDM except from the oft case where it diverges. Finally, Orthogonal-SGDM
obtains the best solutions while remaining stable on all the models.

Table 4: Test accuracy for several models trained with SGDM, Normalised SGDM, Component
Normalised SGDM, and Orthogonal-SGDM; trained as in section 2.3.1.

SGDM N-SGDM CN-SGDM Orthogonal-SGDM

BasicCNN 73.68± 0.27 73.72± 0.45 74.53± 0.32 76.75± 0.23

resnet18 76.83± 0.22 78.94± 0.19 0.00± 0.00 84.94± 0.10

resnet50 69.35± 0.30 79.35± 0.21 0.00± 0.00 86.59± 0.10

resnet44 79.73± 1.27 83.60± 0.77 84.44± 0.55 87.49± 0.39

densenet121 75.45± 0.20 79.06± 0.04 0.00± 0.00 84.86± 0.07

3.2 DIVERSIFIED INTERMEDIARY REPRESENTATIONS

Along with different parametrisations we also desire different intermediary representations, a model
will perform better if its layers output N different representations as opposed to N similar ones.

Given xl are the resulting representations from the intermediary layers,

xl =
(
◦li=1fi

)
(x0)

where x0 is the input and xl is the intermediary representation after layer l. Then xli is the repre-
sentation provided by cli.

We now look at the statistics of the absolute cosine of all distinct pairs of different latent features,

Rl =
{∣∣〈xli, xlj〉2∣∣ | i < j

}
.

The representations have smaller cosines when using Orthogonal-SGDM versus SGDM — fig. 8. In
addition, Orthogonal-SGDM shows a steady decline in cosine similarity throughout training. This
indicates that more information is being passed to the next layer as the network is trained.

Figure 8: Mean of the absolute cosine of all distinct pairs of different intermediary representations,
E[Rl] , l ∈ {1, 2, 3}, for all layers of a BasicCNN trained on CIFAR-10 as in section 2.3.1.

3.3 DEAD PARAMETERS

Dead parameters occur when the activation function has a part with zero gradient, e.g. a Rectified
Linear Unit (ReLU). If the result of the activation remains in this part, then the gradients of the
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preceding parameters will be zero and prevented from learning. This limits the model’s capacity
based on a parameterisation, however temporarily dead parameters can be beneficial and act as a
regulariser, similar to dropout. To detect temporarily dead parameters, we simply look for param-
eters with zero gradient. Comparing the amount of dead parameters produced by SGDM versus
Orthogonal-SGDM, figs. 9a and 9b respectively, shows that Orthogonal-SGDM ends with around
and order of magnitude more temporarily dead parameters. This implies a much higher regularisa-
tion which helps to explain Orthogonal-SGDM’s insensitivity to over-parametrisation.

(a) With SGDM. (b) With Orthogonal-SGDM.

Figure 9: Number of temporarily dead parameters in layer2[1].conv2 of a resnet50 trained as in
section 2.3.1.

3.4 IMPLEMENTATION DETAILS

While the QR decomposition is the most common orthogonalisation method, it is, in practice, less
stable as the gradients are rank deficient (Demmel, 1997, Section 3.5), i.e. they have at least one
small singular value. Orthogonal-SGDM has a longer wall time than SGDM because of the added
expense of the SVD which has non-linear time complexity in the matrix size. In practice, we have
found that the calculation of the SVD is either more than made up for by the speed up in iterates or
a prohibitively expensive cost, with dense layers being the largest and so most problematic.

While there exist methods for computing an approximate SVD which are faster, we have used
PyTorch’s default implementation since we are more concerned with Orthogonal-SGDM’s perfor-
mance and efficiency in iterates and not in wall time. Even so the overhead is small, training a
resnet20 as in section 2.3.1 takes 720.3 seconds with 96.4 of them taken up by the SVD calculation
— an increase of 15.5% over normal SGDM. While this is a significant amount of time we can see
that our method can take only 2% of the number of epochs to reach the same accuracy — fig. 2.

It is doubtful that convergence of SVD is needed, so a custom matrix orthogonalisation algorithm,
that has the required stability but remains fast and approximate, will reduce the computation over-
head significantly and may allow previously infeasible networks to be optimised using Orthogonal-
SGDM. However, we note that even with a more suitable implementation, this method would still
bias towards many smaller layers for a deeper, thinner network.

3.5 FULLY CONNECTED LAYERS

Figure 10: Orthogonalising just the convolutional
filters vs both the convolutional layers and fi-
nal dense layer on CIFAR-10; trained as in sec-
tion 2.3.1.

Fully connected or dense layers also fit our
component model from eq. (2) where the com-
ponents are based on the inner product of the
input and the parametrisation,

cli(x) = σ(〈flatten(x), θli〉),

where σ is an activation function, Sl = 1
giving fl : RSl−1×Nl−1 → RNl and θl ∈
RSl−1·Nl−1×Nl as desired. Intuitively, each col-
umn of the weight matrix acts as a linear map
resulting in one item in the output vector. Thus,

8



Under review as a conference paper at ICLR 2022

the gradients of fully connected layers can also
be orthogonalised.

Table 5: Test accuracy and loss for Orthogonal-SGDM on CIFAR-10 when orthogonalising all layers
vs orthogonalising just the convolutional layers. Trained as in section 2.3.1, standard error across
five runs.

SGDM Orthogonal-SGDM Conv Orthogonal-SGDM

Loss Acc (%) Loss Acc (%) Loss Acc (%)
BasicCNN 0.7603 ± 0.0061 73.60 ± 0.19 0.6808 ± 0.0038 76.67 ± 0.10 0.6732 ± 0.0041 76.80 ± 0.18

resnet34 1.0468 ± 0.0134 75.86 ± 0.26 0.7087 ± 0.0165 85.42 ± 0.33 0.6268 ± 0.0105 85.68 ± 0.21

resnet20 0.6728 ± 0.0301 79.14 ± 0.62 0.6766 ± 0.0155 87.12 ± 0.12 0.4824 ± 0.0225 87.70 ± 0.40

As noted in section 3.4 the extra wall time is dominated by the largest parameter, this is often
the dense layer; table 5 shows that for CIFAR-10 there is no impact on the error rate from not
orthogonalising the final dense layer, and the training curves are the same shape — fig. 10. While
both the error rates and losses decrease when not orthogonalising the dense layer we hesitate to
say that orthogonalising dense layers is detrimental since these networks only have a dense final
classification layer which is qualitatively different from intermediary dense layers.

3.6 LIMITATIONS DUE TO MINI-BATCH SIZE

Figure 11: CIFAR-10 with mini-batch size=4
trained as in section 2.3.1.

Orthogonal-SGDM does not perform as well as
SGDM when the mini-batch size is extremely
small, fig. 11, due to the increased levels of
noise for the SVD. This is the most likely rea-
son that the resnet20 from section 2.3.2 fails to
match the original performance.

A mini-batch size of 16 is where Orthogonal-
SGDM starts to outperform SGDM on a
resnet18 for CIFAR-10. Few models need such
small mini-batch sizes, but if they do then
SGDM would be a more suitable optimisation
algorithm. In addition to the learning collapse,
the time taken by SVD is only dependent on
the parameter size and not the mini-batch size,
so increasing the number of mini-batches per
epoch also increases the wall time to train. The
reason for the collapse in training with small mini-batch sizes will be subject to further research.

4 CONCLUSION

In this work we have laid out a new optimisation method, tested it on different models and data sets,
showing close to state-of-the-art results out of the box and robustness to hyper-parameter choice and
over-parametrised models. Orthogonal-SGDM also has practical application in problems such as
object detection and semantic segmentation since they make use of a pre-trained image classification
backbone.

SGDM with a vast amount of hyper-parameter tuning still reigns supreme, but Orthogonal-SGDM
is an excellent method for quick verification of models or for prototyping — when we want decent
results fast, but do not need the absolute best performing model. However, as more data set sizes are
growing more models are being trained on fewer to less than one epoch of data (Brown et al., 2020)
leading to an extremely limited ability to tune the hyper-parameters.

Lastly, we mentioned briefly in section 1 how attention heads fit our model but, since they are beyond
the scope of this work, we will explore the potential gain in using Orthogonal-SGDM with them in
future work, and expect a similarly exceptional gain will be obtained.
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A COSINE THRESHOLD

We use the cosine metric
〈x, y〉2 =

x · y
‖x‖2‖y‖2

(8)

in this work since it allows the comparison of the directions of high-dimensional vectors, and so
obtain insight about the surface we are optimising on. However, we note that the “significance” of
the cosine between two random vectors depends on their size.

Assuming both vectors’ components are random variables

x = [x1, x2, . . . , xN ] ,

where xi ∼ N (0, σ2), then the components of their dot product

〈x, y〉 = [x1 · y1, x2 · y2, . . . xN · yN ] ,

have variance σ4. Now, from the central limit theorem, the dot product has variance σ4

N where N is
the size of the vectors. Finally, dividing by the magnitude of the vectors gives a variance of σ̄ = σ2

N
for the cosine metric.

To gain some understanding of the significance of a cosine distance, we define a four-sigma threshold
on the distribution of cosines, so, assuming σ = 1, µ = 0, we get a threshold value of

µ± 4σ̄ = 0± 4σ√
N

= ± 4√
N

(9)

This is important because a distance of 0.1 might seem small, but for 10, 000-dimensional vectors,
it easily clears our significance threshold.

B MODEL SUMMARIES

B.1 BASICCNN

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Layer ( t y p e ) Outpu t Shape Param #

================================================================
Conv2d−1 [−1 , 32 , 16 , 16] 896

BatchNorm2d−2 [−1 , 32 , 16 , 16] 64
Conv2d−3 [−1 , 32 , 8 , 8 ] 9 ,248

BatchNorm2d−4 [−1 , 32 , 8 , 8 ] 64
Conv2d−5 [−1 , 32 , 4 , 4 ] 9 ,248

BatchNorm2d−6 [−1 , 32 , 4 , 4 ] 64
L inea r−7 [−1 , 10] 5 ,130

BasicCNN−8 [−1 , 10] 0
================================================================
T o t a l params : 24 ,714
T r a i n a b l e params : 24 ,714
Non− t r a i n a b l e params : 0
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
I n p u t s i z e (MB) : 0 . 0 1
Forward / backward p a s s s i z e (MB) : 0 . 1 6
Params s i z e (MB) : 0 . 0 9
E s t i m a t e d T o t a l S i z e (MB) : 0 . 2 7
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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C FULL RESULTS PLOT

(a) Validation Accuracy

(b) Validation Loss

Figure 12: SGDM vs Orthogonal SGDM
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Table 6: Test loss across a suite of hyper-parameter sets on CIFAR-10 on a resnet20, standard error
across five runs. For Adam β2 = 0.99.

SGDM Adam

LR Momentum Original Orthogonal Original Orthogonal

10−1 0.95 0.5487 ± 0.0913 0.4916 ± 0.0420 2.4148 ± 0.7090 0.7938 ± 0.0663

10−2 0.95 0.5762 ± 0.0431 0.4772 ± 0.0277 0.8395 ± 0.1079 0.5415 ± 0.0153

10−3 0.95 0.9323 ± 0.0149 0.4988 ± 0.0114 0.6013 ± 0.0305 0.5998 ± 0.0131

10−1 0.9 0.6089± 0.0535 0.5370± 0.0230 9.0193± 5.9607 0.9803± 0.1607

10−2 0.9 0.6217± 0.0194 0.4841± 0.0087 0.8898± 0.0447 0.5903± 0.0201

10−3 0.9 1.0977± 0.0036 0.5042± 0.0055 0.6045± 0.0312 0.5829± 0.0102

10−1 0.8 0.5395 ± 0.0091 0.5414 ± 0.0459 4.5143 ± 1.6628 1.0984 ± 0.2710

10−2 0.8 0.6669 ± 0.0290 0.4940 ± 0.0163 0.8741 ± 0.0627 0.5114 ± 0.0204

10−3 0.8 1.2805 ± 0.0106 0.5238 ± 0.0034 0.6950 ± 0.0656 0.5671 ± 0.0088

10−1 0.5 0.6796 ± 0.0158 0.5003 ± 0.0148 15683.8291 ± 15681.5332 0.9481 ± 0.1072

10−2 0.5 0.8927 ± 0.0304 0.4950 ± 0.0121 0.9594 ± 0.0846 0.6610 ± 0.0285

10−3 0.5 1.5309 ± 0.0189 0.6284 ± 0.0186 0.6482 ± 0.0511 0.6228 ± 0.0213

Table 7: Test loss for several models trained with SGDM, Normalised SGDM, Component Nor-
malised SGDM, and Orthogonal-SGDM.

SGDM N-SGDM CN-SGDM Orthogonal-SGDM

BasicCNN 0.7559± 0.0065 0.7637± 0.0098 0.7443± 0.0094 0.6824± 0.0081

resnet18 0.9252± 0.0098 0.9726± 0.0214 nan± nan 0.7938± 0.0083

resnet50 1.0950± 0.0181 0.9454± 0.0126 nan± nan 0.6785± 0.0076

resnet44 0.7093± 0.0678 0.7641± 0.0441 0.7902± 0.0477 0.7694± 0.0426

densenet121 0.9357± 0.0071 1.0096± 0.0167 nan± nan 0.8142± 0.0084
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(a) Validation Accuracy

(b) Validation Loss

Figure 13: A compassion of Adam and SGDM, learning rate = 1× 10−3, β1 = 0.9, β2 = 0.99.
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(a) Validation Accuracy

(b) Validation Loss

Figure 14: A compassion of Adam and SGDM, learning rate = 1× 10−2, β1 = 0.8, β2 = 0.99.
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